1
|
John DM, Pillai NS, Sivan A, P L, P A, Sreekanth K, G S, K.M S. Ferromagnetic ZnO nanostructures from an organo zinc complex formulated via Piper Longum L-assisted green synthesis: Multifaceted prospects in photocatalysis, antimicrobial activity, and cell viability studies. Heliyon 2024; 10:e33360. [PMID: 39027587 PMCID: PMC11255676 DOI: 10.1016/j.heliyon.2024.e33360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal oxides like ZnO nanostructures are pivotal in various scientific and technological fields due to their chemical stability, high electrochemical coupling efficiency, and broad radiation absorption spectrum. This study offers an in-depth examination of ZnO nanostructures synthesized via the green route using Piper Longum L, emphasizing their photocatalytic efficacy in degrading organic pollutants such as Sulphanilamide and Chromium. The ZnO nanostructures with a rod-like morphology exhibited an average crystallite size of 26 nm and an optical bandgap of 2.8 eV. Solid state structure of ZnO was investigated by Fourier Transform Infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD). Zinc in the synthesized organo zinc complex and zinc oxide was estimated to 324.325 and 133.02 ppm, respectively. The saturation magnetization obtained from Superconducting Quantum Interference Device-Vibrating Sample Magnetometer (SQUID-VSM) for organo zinc complex and ZnO is 2.1 × 10-3 and 1.7 × 10-3 emu/g, respectively. These nanostructures achieved 99 and 93 % degradation of chromium (VI) ions present in solutions of two different concentrations in about 30 and 80 min, respectively, under UV and visible radiation, a remarkable achievement. Almost the same efficiency was maintained during three consecutive runs and then deactivation of the catalyst was observed. Additionally, a rapid 84 % degradation of Sulphanilamide was observed in 42 min, underscoring the potential of ZnO nanostructures as efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Daphne Mary John
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Nilesh S. Pillai
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Akshay Sivan
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Lasya P
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Archana P
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
- Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - K.M. Sreekanth
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Sivasubramanian G
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
- Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Sreedhar K.M
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India, 690525
| |
Collapse
|
2
|
Verma N, Kaushal P, Sidhu AK. Harnessing biological synthesis: Zinc oxide nanoparticles for plant biotic stress management. Front Chem 2024; 12:1432469. [PMID: 39055042 PMCID: PMC11269107 DOI: 10.3389/fchem.2024.1432469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Crop growth and yield are negatively impacted by increased biotic stress in the agricultural sector due to increasing global warming and changing climatic patterns. The host plant's machinery is exploited by biotic stress, which is caused by organisms like bacteria, fungi, viruses, insects, nematodes, and mites. This results in nutrient deprivation, increased reactive oxygen species and disturbances in physiological, morphological, and molecular processes. Although used widely, conventional disease management strategies like breeding, intercropping, and chemical fertilizers have drawbacks in terms of time commitment and environmental impact. An environmentally beneficial substitute is offered by the developing field of nanotechnology, where nanoparticles such as zinc oxide are gaining popularity due to their potential applications as antimicrobials and nano-fertilizers. This review delves into the biological synthesis of ZnO nanoparticles employing plants and microbes, function of ZnO nanoparticles in biotic stress mitigation, elucidating their effectiveness and toxicological implications in agricultural. This study supports a cautious approach, stressing the prudent application of ZnO nanoparticles to avoid possible toxicity, in line with the larger global agenda to end hunger, guarantee food security, and advance sustainable agriculture.
Collapse
Affiliation(s)
- Naveen Verma
- Department of Biotechnology, Khalsa College, Amritsar, India
| | - Priya Kaushal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
3
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
4
|
Gnanasekaran L, Ramalingam G, Suresh R, Nangan S, Zielińska-Jurek A, Chen WH, Soto-Moscoso M. Coastal aquatic pollutants degradation using ZnCo 2O 4 nanorods. ENVIRONMENTAL RESEARCH 2024; 258:119441. [PMID: 38901813 DOI: 10.1016/j.envres.2024.119441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Water pollution has caused problems in coastal areas, rivers, lakes, and other important water sources around the world as a result of inappropriate waste management. Meanwhile, these pollutants are harmful to humans and aquatic life. Textile dye effluent methyl orange (MO) was used in this work for dye degradation studies employing nanocomposites. As a result, the importance of synthesizing pure ZnO and Co3O4 nanoparticles with composites of ZnCo2O4 (zinc cobaltite) nanorods in three various proportions (90:10, 75:25, and 50:50) is emphasized in this study. Many advanced approaches were used to assess the various features of these materials, including size and shape. Fourier transform infrared (FT-IR) spectroscopy was used to determine the vibrational modes of the materials. The absorption measurements were then carried out using UV-vis spectroscopic techniques, and the photocatalytic breakdown of MO was done under visible light irradiation. The findings revealed that pure materials were inadequate for visible light activity, resulting in decreased degradation efficiencies. Spinel cobaltite structures have potential degradation efficiency under visible light, while ZnCo2O4 (50:50) catalyst has superior degradation efficiency of 59.8% over MO. The crystallite size, morphology, functional group, absorption wavelength, and band gap all play important roles in enhancing the material's photocatalytic activity under visible light. Meanwhile, ZnCo2O4 spinel structures are crucial for increasing charge carriers and reducing electron-hole recombination. As a result, zinc cobaltite minerals are widely used in industrial dye degradation applications.
Collapse
Affiliation(s)
| | - Gomathi Ramalingam
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641407, India
| | - R Suresh
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore - 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore - 641021, Tamil Nadu, India
| | - Senthilkumar Nangan
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Thailand
| | - Anna Zielińska-Jurek
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | | |
Collapse
|
5
|
Ohiduzzaman M, Khan M, Khan K, Paul B. Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon 2024; 10:e25520. [PMID: 38327438 PMCID: PMC10848009 DOI: 10.1016/j.heliyon.2024.e25520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Here, green banana pulp extract (PE) has been used as a bio-reducing agent for the reduction of silver ions to silver nanoparticles (AgNPs). Bio-synthesized AgNPs were characterized by using UV, XRD, FEEM, TEM, and FTIR analysis. The face-centered cubic structures of AgNPs were formed with an average crystallite size of 31.26 nm and an average particle size of 42.97 nm. In this report, the electrical activities of green synthesized AgNPs have been evaluated along with the antibacterial activities. The antibacterial activities of AgNPs were evaluated against two pathogenic bacteria: Escherichia coli (gram-negative) and Staphylococcus epidermidis (gram-positive). AgNPs were added to the electrochemical cell and results demonstrated the improvement of power of the electrochemical cell. Green synthesized AgNPs showed excellent antibacterial activities against both gram-positive and negative bacteria and most importantly the NPs played an important role as an effective catalyst to enhance the electrical performance of bio-electrochemical cells. These significant findings may help in the advancement of nanotechnology in biomedical applications as well as in the creation of cheap and eco-friendly power generation devices.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - M.N.I. Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K.A. Khan
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
6
|
El Nahhal IM, Almutairi HH, Salim JK, Kodeh FS, Idais RH. ZnO-NPs/AC composite antibacterial agents with N-halamine glycinate functionalized silica-mesoporous silica coating for water disinfection. Heliyon 2024; 10:e24343. [PMID: 38298671 PMCID: PMC10828659 DOI: 10.1016/j.heliyon.2024.e24343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
This work deals with the synthesis, structural characterization and applications of N-halamine glycinate functionalized silica-mesoporous silica coated ZnO-NPs/AC composite for water disinfection. Several nanocomposite materials were obtained: ZnO-NPs/AC, ZnO-NPs/AC@SiO2, ZnO-NPs/AC@SiO2@mSiO2, ZnO-NPs@SiO2@mSiO2-Gly and ZnO-NPs@SiO2@mSiO2-N-halamine-Gly. These nanocomposite materials were fully characterized via different physiochemical techniques including: FTIR, TGA, XPS, XRD, SEM, TEM and BET. XRD indicated a predominance of crystalline pattern of ZnO-NPs impregnated into activated carbon (AC) and their silica and m-mesoporous silica coating precursors. The FTIR spectra confirmed an immense combination between ZnO-NPs and AC of ZnO-NPs/AC nanocomposite as well as its interactions with coated silica precursors. SEM, TEM images illustrated that the fabricated ZnO-NPs/AC nanocomposites are well coated with silica-mesoporous silica functionalized N-halamine. The distinctive surface area has decreased from 800 m2/g for pristine AC to 772 m2/g for ZnO-NPs/AC and to 282 m2/g for ZnO-NPs/AC@SiO2 and to 139 m2/g for ZnO-NPs/AC@SiO2@mSiO2 and to 15.4 m2/g for ZnO-NPs@SiO2@mSiO2-N-Gly. All those nanocomposites showed good efficacy against all four bacterial species, with higher inhibition zones for the 2 g-positive bacteria than that of the 2 g-negative ones. The ZnO@SiO2@mSiO2-N-halamine-Gly exhibited the high zone inhibition against all tested bacteria except for E. Coli.
Collapse
Affiliation(s)
- Issa M. El Nahhal
- Department of Chemistry, Al-Azhar University-Gaza, P O Box 1277, Gaza, Palestine
| | - Hayfa H Almutairi
- Department of Chemistry, College of Science. King Faisal University, AlAhsa, PO Box 380, Hofuf, 31982, Saudi Arabia
| | - Jamil K Salim
- Department of Chemistry, Al-Azhar University-Gaza, P O Box 1277, Gaza, Palestine
| | - Fawzi S Kodeh
- Department of Chemistry, Al-Azhar University-Gaza, P O Box 1277, Gaza, Palestine
| | - Rana H Idais
- Department of Chemistry, Al-Azhar University-Gaza, P O Box 1277, Gaza, Palestine
| |
Collapse
|
7
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
8
|
Dalei G, Jena D, Das BR, Das S. Bio-valorization of Tagetes floral waste extract in fabrication of self-healing Schiff-base nanocomposite hydrogels for colon cancer remedy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4330-4347. [PMID: 38097839 DOI: 10.1007/s11356-023-31392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
The drastic boom in floriculture and social events in religious and recreational places has inevitably led to generation of tremendous floral waste across the globe. Marigold (Tagetes erecta) is one of the most common loose flowers offered for the same. Generally discarded, these Tagetes floral wastes could be valorized for biogenic syntheses. In this study, we have utilized the floral extract towards green synthesis of nano ZnO, the formation of which was affirmed from different analytical techniques. Bionanocomposite Schiff-base hydrogel composed of chitosan and dialdehyde pectin was fabricated by the facile strategy of in situ polymer cross-linking, and the ZnO nanoparticles were embedded in the hydrogel matrix. The hydrogel exhibited remarkable self-healing ability. The antioxidant and anti-inflammatory activities were enhanced owing to nano ZnO. Furthermore, it was hemocompatible and biodegradable. A controlled release drug profile for 5-fluorouracil from the hydrogel was accomplished in the colorectum. The exposure of the drug-loaded nanocomposite hydrogel demonstrated improved anticancer effects in HT-29 colon cancer cells. The findings of this study altogether put forth the successful biovalorization of Tagetes floral waste extract for colon cancer remedy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Debasish Jena
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India.
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India.
| |
Collapse
|
9
|
El Golli A, Contreras S, Dridi C. Bio-synthesized ZnO nanoparticles and sunlight-driven photocatalysis for environmentally-friendly and sustainable route of synthetic petroleum refinery wastewater treatment. Sci Rep 2023; 13:20809. [PMID: 38012203 PMCID: PMC10682493 DOI: 10.1038/s41598-023-47554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
The design of a green photocatalytic system that harnesses renewable and eco-friendly constituents holds the potential to offer valuable insights into alternative strategies for treating toxic multi-components in refinery water effluents. A significant challenge in implementing a practical and viable approach is the utilization of solar energy-an abundant, natural, and cost-effective resource-for photochemical processes within advanced oxidation processes. In this study, we explored the use of zinc oxide nanoparticles (ZnO NPs) as photocatalyst prepared via an environmentally friendly synthesis approach, resulting in the formation of crystalline wurtzite nanoparticles, with an average size of about 14 nm relatively spherical in shape. Notably, the extract derived from Moringa oleifera was employed in this investigation. These nanoparticles were characterized and validated using various characterization techniques, including X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. For comparison, conventionally synthesized ZnO NPs were also included in the evaluations. The findings reveal that, under illumination, biosynthesized ZnO nanoparticles (NPs) exhibit photocatalytic performance in effectively breaking down the organic compounds present in synthetic petroleum wastewater. Photochemical analysis further illustrates the degradation efficiency of Green-ZnO, which, within 180 min of irradiation resulted in 51%, 52%, 88%, and 93% of removal for Phenol, O-Cresol. Under optimal loading conditions, NPs produced via the green synthesis approach perform better when compared to chemically synthesized ZnO. This significant improvement in photocatalytic activity underscores the potential of eco-friendly synthesis methods in achieving enhanced water treatment efficiency.
Collapse
Affiliation(s)
- A El Golli
- Center of Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE Laboratory LR16CRMN01, Technopole of Sousse, B.P. 334, Sousse, Tunisia
- High School of Sciences and Technology of Hammam Sousse, University of Sousse, Sousse, Tunisia
| | - S Contreras
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007, Tarragona, Spain.
| | - C Dridi
- Center of Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE Laboratory LR16CRMN01, Technopole of Sousse, B.P. 334, Sousse, Tunisia.
| |
Collapse
|
10
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
11
|
Sivagami M, Asharani IV. Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles. Photochem Photobiol Sci 2023; 22:2445-2462. [PMID: 37493919 DOI: 10.1007/s43630-023-00462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m2/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H2O2) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H2O2, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.
Collapse
Affiliation(s)
- M Sivagami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
12
|
Mashentseva AA, Seitzhapar N, Barsbay M, Aimanova NA, Alimkhanova AN, Zheltov DA, Zhumabayev AM, Temirgaziev BS, Almanov AA, Sadyrbekov DT. Adsorption isotherms and kinetics for Pb(ii) ion removal from aqueous solutions with biogenic metal oxide nanoparticles. RSC Adv 2023; 13:26839-26850. [PMID: 37692348 PMCID: PMC10483273 DOI: 10.1039/d3ra05347d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
This study investigates the sorption removal of lead(ii) ions using zinc oxide (ZnO) and copper(ii) oxide (CuO) nanoparticles synthesized through a wet burning method with the aid of plant extract from Serratula coronata L. The effect of plant collection time on polyphenol content was investigated and optimal conditions were determined. The structural and chemical properties of the nanoparticles were studied by scanning electron microscopy, energy dispersive analysis, X-ray phase analysis, and X-ray photoelectron spectroscopy. A comparative analysis of lead ion sorption on the surface of synthesized nanoparticles was conducted. The kinetic study revealed that the sorption process follows a pseudo-second-order mechanism, and the Freundlich sorption model provides a better fit for the experimental data. ZnO and CuO nanoparticles exhibited significant sorption capacities, with values of 163.6 and 153.8 mg g-1, respectively.
Collapse
Affiliation(s)
- Anastassiya A Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Nurzhigit Seitzhapar
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Nurgulim A Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Assel N Alimkhanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Dmitriy A Zheltov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Alisher M Zhumabayev
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | | - Alimzhan A Almanov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | |
Collapse
|
13
|
Khamis M, Gouda GA, Nagiub AM. Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities. BMC Chem 2023; 17:99. [PMID: 37587477 PMCID: PMC10428629 DOI: 10.1186/s13065-023-01012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
In this study, phosphorus (PO43--P) is removed from water samples using zinc oxide nanoparticles (ZnO NPs). These nanoparticles are produced easily, quickly, and sustainably using Onion extracts (Allium cepa) at an average crystallite size of 8.13 nm using the Debye-Scherrer equation in the hexagonal wurtzite phase. The characterization and investigation of bio-synthesis ZnO NPs were carried out. With an initial concentration of 250 mg/L of P, the effects of the adsorbent dose, pH, contact time, and temperature were examined. At pH = 3 and T = 300 K, ZnO NPs achieved the optimum sorption capacity of 84 mg/g, which was superior to many other adsorbents. The isothermal study was found to fit the Langmuir model at a monolayer capacity of 89.8 mg/g, and the kinetic study was found to follow the pseudo-second-order model. The adsorption process was verified to be endothermic and spontaneous by thermodynamic characteristics. As a result of their low cost as an adsorbent and their high metal absorption, ZnO NPs were found to be the most promising sorbent in this investigation and have the potential to be used as effective sorbents for the removal of P from aqueous solutions. The antimicrobial activity results showed that ZnO NPs concentration had greater antibacterial activity than conventional Cefotaxime, which was utilized as a positive control in the inhibitory zone. However, no inhibitory zone was visible in the controlled wells that had been supplemented with onion extract and DMSO.
Collapse
Affiliation(s)
- Mona Khamis
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
14
|
El-Fakharany EM, El-Gendi H, El-Maradny YA, Abu-Serie MM, Abdel-Wahhab KG, Shabana ME, Ashry M. Inhibitory effect of lactoferrin-coated zinc nanoparticles on SARS-CoV-2 replication and entry along with improvement of lung fibrosis induced in adult male albino rats. Int J Biol Macromol 2023; 245:125552. [PMID: 37356684 PMCID: PMC10290166 DOI: 10.1016/j.ijbiomac.2023.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Severe acute respiratory syndrome 2019-new coronavirus (SARS-CoV-2) is a major global challenge caused by a pandemic disease, named 'COVID-19' with no effective and selective therapy available so far. COVID-19-associated mortality is directly related to the inability to suppress the viral infection and the uncontrolled inflammatory response. So, we investigated the antiviral efficiency of the nanofabricated and well-characterized lactoferrin-coated zinc nanoparticles (Lf-Zn-NPs) on SARS-CoV-2 replication and entry into host cells. Lf-Zn-NPs showed potent inhibition of the entry of SARS-CoV-2 into the host cells by inhibition of ACE2, the SARS-CoV-2 receptor. This inhibitory activity of Lf-Zn-NPs to target the interaction between the SARS-CoV-2 spike protein and the ACE2 receptor offers potent protection against COVID-19 outbreaks. Moreover, the administration of Lf-Zn-NPs markedly improved lung fibrosis disorders, as supported by histopathological findings and monitored by the significant reduction in the values of CRP, LDH, ferritin, and D-dimer, with a remarkable rise in CD4+, lung SOD, GPx, GSH, and CAT levels. Lf-Zn-NPs revealed therapeutic efficiency against lung fibrosis owing to their anti-inflammatory, antioxidant, and ACE2-inhibiting activities. These findings suggest a promising nanomedicine agent against COVID-19 and its complications, with improved antiviral and immunomodulatory properties as well as a safer mode of action.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab City 21934, Alexandria, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein 51718, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | | | | | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
15
|
Azmal Zaid EH, Sin JC, Lam SM, Mohamed AR. Fabrication of La, Ce co-doped ZnO nanorods for improving photodegradation of methylene blue. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Kulis-Kapuscinska A, Kwoka M, Borysiewicz MA, Wojciechowski T, Licciardello N, Sgarzi M, Cuniberti G. Photocatalytic degradation of methylene blue at nanostructured ZnO thin films. NANOTECHNOLOGY 2023; 34:155702. [PMID: 36595265 DOI: 10.1088/1361-6528/aca910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The photocatalytic degradation of the wastewater dye pollutant methylene blue (MB) at ZnO nanostructured porous thin films, deposited by direct current reactive magnetron sputtering on Si substrates, was studied. It was observed that over 4 photocatalytic cycles (0.3 mg · l-1MB solution, 540 minUV irradiation), the rate constantkof MB degradation decreased by ∼50%, varying in the range (1.54 ÷ 0.78) · 10-9(mol·l-1·min-1). For a deeper analysis of the photodegradation mechanism, detailed information on the nanostructured ZnO surface morphology and local surface and subsurface chemistry (nonstoichiometry) were obtained by using scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) as complementary analytical methods. The SEM studies revealed that at the surface of the nanostructured ZnO thin films a coral reef structure containing polycrystalline coral dendrites is present, and that, after the photocatalytic experiments, the sizes of individual crystallites increased, varying in the range 43 ÷ 76 nm for the longer axis, and in the range 28 ÷ 58 nm for the shorter axis. In turn, the XPS studies showed a slight non-stoichiometry, mainly defined by the relative [O]/[Zn] concentration of ca. 1.4, whereas [C]/[Zn] was ca. 1.2, both before and after the photocatalytic experiments. This phenomenon was directly related to the presence of superficial ZnO lattice oxygen atoms that can participate in the oxidation of the adsorbed MB molecules, as well as to the presence of surface hydroxyl groups acting as hole-acceptors to produce OH· radicals, which can be responsible for the generation of superoxide ions. In addition, after experiments, the XPS measurements revealed the presence of carboxyl and carbonyl functional groups, ascribable to the oxidation by-products formed during the photodegradation of MB.
Collapse
Affiliation(s)
- Anna Kulis-Kapuscinska
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Monika Kwoka
- Department of Cybernetics, Nanotechnology and Data Processing, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Michal Adam Borysiewicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Tomasz Wojciechowski
- International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Nadia Licciardello
- Institute for Materials Science, Max Bergmann Centre of Biomaterials and Dresden Center for Nanoanalysis, TU Dresden, D-01062, Dresden, Germany
| | - Massimo Sgarzi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venezia Mestre, Italy
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Centre of Biomaterials and Dresden Center for Nanoanalysis, TU Dresden, D-01062, Dresden, Germany
| |
Collapse
|
17
|
The Biosynthesized Zinc Oxide Nanoparticles' Antiviral Activity in Combination with Pelargonium zonale Extract against the Human Corona 229E Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238362. [PMID: 36500468 PMCID: PMC9736980 DOI: 10.3390/molecules27238362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).
Collapse
|
18
|
Şendal K, Üstün Özgür M, Gülen J. Biosynthesis of ZnO photocatalyst and its application in photo catalytic degradation of methylene blue dyestuff. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Kaan Şendal
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Mahmure Üstün Özgür
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Jale Gülen
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Mashentseva AA, Aimanova NA, Parmanbek N, Temirgaziyev BS, Barsbay M, Zdorovets MV. Serratula coronata L. Mediated Synthesis of ZnO Nanoparticles and Their Application for the Removal of Alizarin Yellow R by Photocatalytic Degradation and Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193293. [PMID: 36234421 PMCID: PMC9565845 DOI: 10.3390/nano12193293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method using the plant extract of Serratula coronata L. as a reducing and stabilizing agent and characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. Photocatalytic degradation of AY was monitored by UV-visible spectroscopy and the effects of parameters, such as light source type (UV-, visible- and sunlight), incubation time, pH, catalyst dosage and temperature on degradation were investigated. It was demonstrated that the source of light plays an important role in the efficiency of the reaction and the UV-assisted degradation of AY was the most effective, compared to the others. The degradation reaction of AY was found to follow the Langmuir-Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of AY accelerated with increasing temperature, and the lowest activation energy (Ea) was calculated as 3.4 kJ/mol for the UV-light irradiation system, while the Ea values were 4.18 and 7.37 kJ/mol for visible light and sunlight, respectively. The dye removal by the adsorption process was also affected by several parameters, such as pH, sorbent amount and contact time. The data obtained in the kinetics study fit the pseudo-second-order equation best model and the rate constant was calculated as 0.001 g/mg·min. The isotherm analysis indicated that the equilibrium data fit well with the Freundlich isotherm model. The maximum adsorption capacity of AY on biogenic ZnO NPs was 5.34 mg/g.
Collapse
Affiliation(s)
- Anastassiya A. Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Correspondence:
| | - Nurgulim A. Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
| | - Nursanat Parmanbek
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan
| | | | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkiye
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
| |
Collapse
|
20
|
Visible-light-driven reduction of chromium (VI) by green synthesised cuprous oxide nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Phyco-Synthesized Zinc Oxide Nanoparticles Using Marine Macroalgae, Ulva fasciata Delile, Characterization, Antibacterial Activity, Photocatalysis, and Tanning Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of 50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light at a pH of 7 and a temperature of 35 °C. This percentage was decreased to 53.4 ± 0.7% under the dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2% after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and 91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.
Collapse
|
22
|
Synthesis of ZnO nanoparticles mediated by natural products of Acanthus sennii leaf extract for electrochemical sensing and photocatalytic applications: a comparative study of volume ratios. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wary RR, Baglari S, Brahma D, Gautam UK, Kalita P, Baruah MB. Synthesis, characterization, and photocatalytic activity of ZnO nanoparticles using water extract of waste coconut husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42837-42848. [PMID: 35091950 DOI: 10.1007/s11356-022-18832-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The present work reports the use of natural alkaline extract from coconut husk ash as a precipitating agent for metal oxide nanoparticles synthesis. The abundance of K2O and K2CO3 in it makes the extract highly basic and could be the alternative source of basic media in the laboratory. In this study, highly photoactive zinc oxide nanoparticles have been synthesized using water extract of waste coconut husk ash in a green approach which is considered as replacement of homogeneous base like NaOH and KOH. The formation of zinc oxide nanoparticles at different pH of the solution of coconut husk ash was confirmed through powder XRD, BET, SEM-EDX, UV-Vis, FTIR, and photoluminescence spectroscopy. The photocatalytic performance of the samples was evaluated through the degradation of methylene blue (MB) and methyl orange (MO) under solar irradiation which undergo degradation around 97% and 68% within 120 min, respectively. The high photocatalytic activity and rate constant could be attributed to the large surface area due to small particle size that could provide quicker photon absorption and reduction of charge carrier recombination. This current work introduces a new method to reduce energy consumption for the synthesis of highly photoactive low-cost zinc oxide nanoparticles.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Sanjib Baglari
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Knowledge City, Sector 81, SAS Nagar, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India.
| |
Collapse
|
24
|
Assessment of antimicrobial, cytotoxicity, and antiviral impact of a green zinc oxide/activated carbon nanocomposite. Sci Rep 2022; 12:8774. [PMID: 35610244 PMCID: PMC9130513 DOI: 10.1038/s41598-022-12648-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
This work deals with the synthesis of zinc oxide nanoparticles/activated carbon (ZnO NPs/AC) nanocomposites with different weight ratios (3:1, 1:1, and 1:3), where the antimicrobial, antiviral, and cytotoxicity impact of the formulated nanocomposites were evaluated versus the crude ZnO and AC samples. The formula (3:1; designated Z3C1) exhibited the utmost bactericidal effect against Gram positive group, unicellular and filamentous fungi. Regarding Gram negative group, the sample (Z3C1) was remarkably effective against Klebsiella pneumonia, unlike the case of Escherichia coli. Moreover, the whole samples showed negligible cytotoxicity against the human WI38 cell line, where the most brutality (4%) was exerted by 1000 µg/mL of the formula (Z1C3). Whilst, the formula (Z3C1) exerted the apical inhibition impact against Herpes simplex (HSV1) virus. Consequently, the synthesized (Z3C1) nanocomposite was sorted out to be fully characterized via different physicochemical techniques including FTIR, XRD, SEM, TEM, Zeta potential, TGA, and BET. XRD indicated a predominance of the crystalline pattern of ZnO NPs over the amorphous AC, while the FTIR chart confirmed an immense combination between the ZnO NPs and AC. SEM, TEM, and size distribution images illustrated that the fabricated ZnO NPs/AC was in the nanoscale size swung from 30 to 70 nm. The distinctive surface area of composite material, recording 66.27 m2/g, clearly disclosed its bioactivity toward different bacterial, fungal, and virus species.
Collapse
|
25
|
Enhanced Photo Catalytic Activity of ZnO Nano Particles Co-doped with Rare Earth Elements (Nd and Sm) Under UV Light Illumination. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
López-López J, Tejeda-Ochoa A, López-Beltrán A, Herrera-Ramírez J, Méndez-Herrera P. Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules 2021; 27:6. [PMID: 35011237 PMCID: PMC8746174 DOI: 10.3390/molecules27010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
In this work, the assessment of Azadirachta indica, Tagetes erecta, Chrysanthemum morifolium, and Lentinula edodes extracts as catalysts for the green synthesis of zinc oxide nanoparticles (ZnO NPs) was performed. The photocatalytic properties of ZnO NPs were investigated by the photodegradation of methylene blue (MB) dye under sunlight irradiation. UV-visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Brunauer-Emmett-Teller analysis (BET) were used for the characterization of samples. The XRD results indicate that all synthesized nanoparticles have a hexagonal wurtzite crystalline structure, which was confirmed by TEM. Further, TEM analysis proved the formation of spherical and hemispherical nanoparticles of ZnO with a size in the range of 14-32 nm, which were found in aggregate shape; such a size was well below the size of the particles synthesized with no extract (~43 nm). ZnO NPs produced with Tagetes erecta and Lentinula edodes showed the best photocatalytic activity, matching with the maximum adsorbed MB molecules (45.41 and 58.73%, respectively). MB was completely degraded in 45 min using Tagetes erecta and 120 min using Lentinula edodes when subjected to solar irradiation.
Collapse
Affiliation(s)
- Juan López-López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, Culiacan 80000, Sinaloa, Mexico; (J.L.-L.); (A.L.-B.)
| | - Armando Tejeda-Ochoa
- Centro de Investigación en Materiales Avanzados, Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua 31136, Chih, Mexico;
| | - Ana López-Beltrán
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, Culiacan 80000, Sinaloa, Mexico; (J.L.-L.); (A.L.-B.)
| | - José Herrera-Ramírez
- Centro de Investigación en Materiales Avanzados, Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua 31136, Chih, Mexico;
| | - Perla Méndez-Herrera
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, Culiacan 80000, Sinaloa, Mexico; (J.L.-L.); (A.L.-B.)
| |
Collapse
|
27
|
Arumugam J, Thambidurai S, Suresh S, Selvapandiyan M, Kandasamy M, Pugazhenthiran N, Karthick Kumar S, Muneeswaran T, Quero F. Green synthesis of zinc oxide nanoparticles using Ficus carica leaf extract and their bactericidal and photocatalytic performance evaluation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
29
|
Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. BIOLOGY 2021; 10:1075. [PMID: 34827068 PMCID: PMC8614830 DOI: 10.3390/biology10111075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box. 2097, Jazan, Saudi Arabia;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| |
Collapse
|
30
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
31
|
D’Souza JN, Nagaraja G, Meghana Navada K, Kouser S, Nityasree B, Manasa D. An ensuing repercussion of solvent alteration on biological and photocatalytic efficacy of Emilia sonchifolia (L.) phytochemicals capped zinc oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Green synthesis and characterization of Ud-SnO2-ZnO using Urtica dioica leaf extract: A nanocomposite photocatalyst for degradation of Rhodamine B dye. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04546-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Mulu M, RamaDevi D, Belachew N, Basavaiah K. Hydrothermal green synthesis of MoS 2 nanosheets for pollution abatement and antifungal applications. RSC Adv 2021; 11:24536-24542. [PMID: 35481050 PMCID: PMC9036892 DOI: 10.1039/d1ra03815j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we report a green synthesis of MoS2 nanosheets (NSs) using a facile hydrothermal technique in the presence of l-cysteine. l-Cysteine can serve as a greener source of sulfur as well as a capping agent to help the growth of MoS2 nanosheets. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), electron transmission microscopy (TEM), X-ray photoelectron microscopy (XPS), and Brunauer, Emmett, and Teller (BET) analysis. The results showed that MoS2 NSs are of high crystallinity with a lattice spacing of 0.61 nm. The optical bandgap of MoS2 NSs nanosheets prepared using l-cysteine as a source of sulfur was found to be 1.79 eV. The photocatalytic degradation of MoS2 NSs towards methylene orange (MO) and rhodamine blue (RB) dyes under sunlight was found to be promising for practical applications. The fast kinetics of degradation of MO and RhB was observed over a wide range of pH range. Moreover, MoS2 NSs showed excellent antifungal activities against Trichophyton mentagrophytes and Penicillium chrysogenum fungus.
Collapse
Affiliation(s)
- Mengistu Mulu
- Department of Inorganic and Analytical Chemistry, Andhra University Visakhapatnam-530003 India
| | - Dharmasoth RamaDevi
- A.U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530003 India
| | - Neway Belachew
- Department of Chemistry, Debre Birhan University Debre Berhan Ethiopia
| | - K Basavaiah
- Department of Inorganic and Analytical Chemistry, Andhra University Visakhapatnam-530003 India
| |
Collapse
|
34
|
Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Curr Pharm Biotechnol 2021; 22:823-847. [PMID: 33397235 DOI: 10.2174/1389201022666210104122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
Collapse
Affiliation(s)
- Paolo N Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499 (1650), San Martin, Argentina
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, S.K. Porwal College, Kamptee 441001, India
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| |
Collapse
|
35
|
Prasad AR, Williams L, Garvasis J, Shamsheera K, Basheer SM, Kuruvilla M, Joseph A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zinatloo-Ajabshir S, Baladi M, Salavati-Niasari M. Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO 4 nanostructure fabricated by a new, simple and green sonochemical approach. ULTRASONICS SONOCHEMISTRY 2021; 72:105420. [PMID: 33385636 PMCID: PMC7803816 DOI: 10.1016/j.ultsonch.2020.105420] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Water contamination has turned into a critical global concern that menaces the entire biosphere and has a notable effect on the lives of living beings and humans. As a proper and environmentally friendly solution, visible-light photocatalysis technology has been offered for water contamination removal. There is a strong interest in the design of the efficient catalytic materials that are photoactive with the aid of visible light. Herein, to fabricate a highly efficient photocatalyst for removal of organic pollution in water, a facile and swift sonochemical route employed for creation of the spindle shaped PbWO4 nanostructure with the aid of an environmentally friendly capping agent (maltose) for the first time. To optimize the efficiency, dimension and structure of lead tungstate, various effective factors such as time, dose of precursors, power of ultrasound waves and kind of capping agents were altered. The attributes of PbWO4 samples were examined with the aid of diverse identification techniques. The produced lead tungstate samples in role of visible-light photocatalyst were applied to remove organic pollution in water. The kinds of pollutants, dose and type of catalyst were examined as notable factors in the capability to eliminate contaminants. Very favorable catalytic yield and durability were demonstrated by spindle-shaped PbWO4 nanostructure (produced at power of 60 W for 10 min and with usage of maltose). Usage of ultrasonic irradiation could bring to improvement of catalytic yield of PbWO4 to 93%. Overall, the outcomes could introduce the spindle-shaped PbWO4 nanostructure as an efficient substance for eliminating water contamination under visible light.
Collapse
Affiliation(s)
| | - Mahin Baladi
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, IR, Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, IR, Iran.
| |
Collapse
|
37
|
Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/6629180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, nanoparticles synthesis by green synthesis has gained extensive attention as a facile, inexpensive, and environmentally friendly method compared with chemical and physical synthesis methods. This review covered the biosynthesis of zinc oxide nanoparticles (ZnO NPs), including the procedure and mechanism. Factors affecting the formation of ZnO NPs are discussed. The presence of active bioorganic molecules in plant extract played a vital role in the formation of ZnO NPs as a natural green medium in the metallic ion reduction processes. ZnO NPs exhibit attractive photocatalysis properties due to electrochemical stability, high electron mobility, and large surface area. In this review, the procedure and mechanism of the ZnO photocatalysis process are studied. The effects of dyes amount, catalysts, and light on photodegradation efficiency are also considered. This review provides useful information for researchers who are dealing with green synthesis of ZnO NPs. Moreover, it can provide investigators with different perceptions towards the efficiency of biosynthesized ZnO NPs on dyes degradation and its restrictions.
Collapse
|
38
|
Rahman A, Harunsani MH, Tan AL, Khan MM. Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 2021; 44:1333-1372. [PMID: 33661388 DOI: 10.1007/s00449-021-02530-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
39
|
Rashid M, Ikram M, Haider A, Naz S, Haider J, Ul-Hamid A, Shahzadi A, Aqeel M. Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis. Dalton Trans 2021; 49:8314-8330. [PMID: 32515772 DOI: 10.1039/d0dt01397h] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructures of Cu-doped ZnO (Cu:ZnO) were prepared with the chemical precipitation technique with an aim to enhance the photocatalytic and antibacterial properties of ZnO. Phase constitution, the presence of functional groups, optical properties, elemental composition, surface morphology and microstructure were evaluated using an X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HR-TEM), respectively. Emission spectra were obtained with a photoluminescence (PL) spectroscope whereas interlayer d-spacing was estimated through HR-TEM. ZnO consisted of a hexagonal wurtzite structure. The crystallinity of the sample was observed to increase with increasing doping concentration. The addition of Cu to ZnO served to transform nanoclusters into nanorods as revealed during SEM analysis. Catalytic activity enhanced due to the formation of nanorods, and UV-Vis absorption spectra showed that methylene blue (MB) degraded more efficiently with ZnO nanoclusters compared to the NaBH4 reagent. In addition, the doped NPs showed enhanced bacterial efficiency for G +ve. Finally, a molecular docking study was undertaken to highlight the importance of the binding interactions of the Cu-doped ZnO nanorods with β-lactamase and beta-ketoacyl-acyl carrier protein synthase III (FabH) as possible enzyme targets. This research indicates that Cu-doped Zn nanorods are a highly efficient photocatalyst and can be aptly employed for wastewater treatment and antibacterial applications.
Collapse
Affiliation(s)
- Mehak Rashid
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Antony D, Yadav R, Kalimuthu R. Accumulation of Phyto-mediated nano-CeO2 and selenium doped CeO2 on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Tadesse A, Hagos M, Belachew N, Murthy HCA, Basavaiah K. Enhanced photocatalytic degradation of Rhodamine B, antibacterial and antioxidant activities of green synthesised ZnO/N doped carbon quantum dot nanocomposites. NEW J CHEM 2021. [DOI: 10.1039/d1nj04036g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to explore an alternative photocatalyst for environmental remediation, we report a two-step process for the synthesis of zinc oxide/nitrogen doped carbon quantum dot nanocomposites (ZnO@NCQD NCs).
Collapse
Affiliation(s)
- Aschalew Tadesse
- Department of Applied Chemistry, Adama Science and Technology University, Adama-1888, Ethiopia
| | - Mebrahtu Hagos
- Faculty of Natural and Computational Sciences, Woldia University, Woldia-400, Ethiopia
| | - Neway Belachew
- Department of Chemistry, Debre Berhan University, Debre Berhan, Ethiopia
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, Adama Science and Technology University, Adama-1888, Ethiopia
| | - K. Basavaiah
- Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam-530003, India
| |
Collapse
|
42
|
Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report the photocatalytic and fluorescence sensing applications of manganese-doped zinc oxide nanostructures synthesized by a solution combustion technique, using zinc nitrate as an oxidizer and urea as a fuel. The synthesized Mn-doped ZnO nanostructures have been analyzed in terms of their surface morphology, phase composition, elemental analysis, and optical properties with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and UV-Visible (UV-Vis) spectroscopy. A careful observation of the SEM micrograph reveals that the synthesized material was porous and grown in very high density. Due to a well-defined porous structure, the Mn-doped ZnO nanostructures can be used for the detection of ciprofloxacin, which was found to exhibit a significantly low limit of detection (LOD) value i.e., 10.05 µM. The synthesized Mn-doped ZnO nanostructures have been further analyzed for interfering studies, which reveals that the synthesized sensor material possesses very good selectivity toward ciprofloxacin, as it detects selectively even in the presence of other molecules. The synthesized Mn-doped ZnO nanostructures have been further analyzed for the photodegradation of methyl orange (MO) dye. The experimental results reveal that Mn-doped ZnO behaves as an efficient photocatalyst. The 85% degradation of MO has been achieved in 75 min using 0.15 g of Mn-doped ZnO nanostructures. The observed results clearly confirmed that the synthesized Mn-dopedZnO nanostructures are a potential scaffold for the fabrication of sensitive and robust chemical sensors as well as an efficient photocatalyst.
Collapse
|
43
|
Enhanced catalytic activity of bio-fabricated ZnO NPs prepared by ultrasound-assisted route for the synthesis of tetraketone and benzylidenemalonitrile in hydrotropic aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04233-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Lavakusa B, Rama Devi D, Belachew N, Basavaiah K. Selective synthesis of visible light active γ-bismuth molybdate nanoparticles for efficient photocatalytic degradation of methylene blue, reduction of 4-nitrophenol, and antimicrobial activity. RSC Adv 2020; 10:36636-36643. [PMID: 35517965 PMCID: PMC9057020 DOI: 10.1039/d0ra07459d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we have reported selective synthesis of bismuth molybdate (γ-Bi2M2O6) nanoparticles (NPs) under different pH conditions for photocatalytic degradation of methylene blue (MB), reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and antimicrobial activities. The synthesis of pure phase γ-Bi2M2O6 at pH = 3 was confirmed by X-ray diffraction (XRD) and Raman analysis. A single hexagonal morphology was obtained at pH = 3 which shows the formation of the pure phase γ-Bi2M2O6 NPs. The mixed morphologies (hexagonal and spherical) were observed at different pH values other than pH = 3. The bandgap energy of all the synthesized Bi2M2O6 NPs is found in the visible region (2.48-2.59 eV). The photocatalytic activity of bismuth molybdate (BM) NPs was examined by the degradation of MB under visible light irradiation. Results show that 95.44% degradation efficiency was achieved by pure γ-Bi2M2O6 NPs compared to mixed phases (γ-Bi2M2O6, α-Bi2M2O6 and β-Bi2M2O6) synthesized at pH = 1.5 and 5. Moreover, the degradation efficiency of γ-Bi2M2O6 was enhanced to 98.89% by the addition of H2O2. The effective catalytic activity of γ-Bi2M2O6 was observed during the reduction of 4-NP to 4-AP by NaBH4. Potential antibacterial and antifungal activity of γ-Bi2M2O6 was observed, which gives a basis for further study in the development of antibiotics.
Collapse
Affiliation(s)
- B Lavakusa
- VKR College Buddhavaram Gannavaram-521101 India
| | - Dharmaoth Rama Devi
- A. U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530003 India
| | - Neway Belachew
- Department of Chemistry, Debre Berhan University Debre Berhan Ethiopia /
| | - K Basavaiah
- Department of Inorganic and Analytical Chemistry, Andhra University Visakhapatnam India-53000
| |
Collapse
|
45
|
Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01729-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Ali M, Ikram M, Ijaz M, Ul-Hamid A, Avais M, Anjum AA. Green synthesis and evaluation of n-type ZnO nanoparticles doped with plant extract for use as alternative antibacterials. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01451-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Krishnan BR, Ramesh M, Selvakumar M, Karthick S, Sasikumar A, Geerthi DV, Senthilkumar N. A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Kahsay MH, Belachew N, Tadesse A, Basavaiah K. Magnetite nanoparticle decorated reduced graphene oxide for adsorptive removal of crystal violet and antifungal activities. RSC Adv 2020; 10:34916-34927. [PMID: 35514406 PMCID: PMC9056840 DOI: 10.1039/d0ra07061k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023] Open
Abstract
This work reports the synthesis and application of magnetic rGO/Fe3O4 NCs using a pod extract of Dolichos lablab L. as areducing agent. GO was synthesized by a modified Hummers method, however GO was reduced using the plant extract to produce rGO. The as-synthesized rGO/Fe3O4 NCs were characterized by UV-vis spectrophotometer, Fourier transform infrared (FT-IR) spectroscopy, FT-Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy supported with energy dispersed X-ray spectroscopy (FESEM-EDX), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The synthesis of magnetic rGO/Fe3O4 NCs was confirmed from characterization results of FT-Raman, TEM and VSM. The FT-Raman results showed the D and G bands at 1306.92 cm−1 and 1591 cm−1 due to rGO and a peak at around 589 cm−1 due to Fe3O4 NPs that were anchored on rGO sheets; TEM results showed the synthesis of Fe3O4 with an average particle size of 8.86 nm anchored on the surface of rGO sheets. The VSM result confirmed the superparamagnetic properties of the rGO/Fe3O4 NCs with a saturation magnetization of 42 emu g−1. The adsorption capacity of rGO/Fe3O4 NCs towards crystal violet (CV) dye was calculated to be 62 mg g−1. The dye removal behavior fitted well with the Freundlich isotherm and the pseudo-second-order kinetic model implies possible chemisorption. Besides, rGO/Fe3O4 NCs showed antifungal activities against Trichophyton mentagrophytes and Candida albicans by agar-well diffusion method with a zone inhibition of 24 mm and 21 mm, respectively. Therefore, rGO/Fe3O4 NCs can be used as an excellent adsorbent to remove organic dye pollutants and kill pathogens. This work reports synthesis of magnetic rGO/Fe3O4 NCs using pod extract of Dolichos lablab L. as a reducing agent and its applications.![]()
Collapse
Affiliation(s)
| | - Neway Belachew
- Department of Chemistry
- Debre Berhan University
- Debre Berhan
- Ethiopia
| | - Aschalew Tadesse
- Department of Applied Chemistry
- Adama Science and Technology University
- Adama
- Ethiopia
| | - K. Basavaiah
- Department of Inorganic and Analytical Chemistry
- Andhra University
- Visakhapatnam
- India
| |
Collapse
|