1
|
Sakurai A, Kawaguchi K, Watanabe M, Okajima S, Furukawa S, Koga K, Oh-Hashi K, Hirata Y, Furuta K, Takemori H. Melanosomal localization is required for GIF-2115/2250 to inhibit melanogenesis in B16F10 melanoma cells. Int J Cosmet Sci 2024; 46:668-679. [PMID: 38327040 DOI: 10.1111/ics.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Tyrosinase inhibitors suppress melanogenesis in melanocytes. During a screening for tyrosinase inhibitors, however, we noticed some discrepancies in inhibitory efficacies between melanocytes and in vitro assays. The compound (S)-N-{3-[4-(dimethylamino)phenyl]propyl}-N-methyl-indan-1-amine (GIF-2115) exerts antioxidative stress activity upon accumulation in late endosomes and lysosomes. GIF-2115 was also identified as a potent antimelanogenic reagent in B16F10 mouse melanoma cells. GIF-2115 inhibited the activity of mushroom tyrosinase and the lysates of B16F10 cells. However, structure-activity relationship studies indicated that GIF-2238, which lacks the benzene ring in the aminoindan structure of GIF-2115, inhibited tyrosinase activity in vitro but did not inhibit melanogenesis in B16F10 cells. The aim of the present study is to show the importance of the intracellular distribution of tyrosinase inhibitors in exerting their antimelanogenic activity in melanocytes. METHODS The intracellular distribution of compounds was monitored by linking with the fluorescent group of 7-nitro-2,1,3-benzoxadiazole (NBD). To mislocalize GIF-2115 to mitochondria, the mitochondria-preferring fluoroprobe ATTO565 was used. RESULTS We reconfirmed the localization of GIF-2250 (GIF-2115-NBD) not only to matured but also to early-stage melanosomes. Although GIF-2286 (GIF-2238-NBD) maintained tyrosinase inhibitory activity, it did not show specific intracellular localization. Moreover, when GIF-2115 was linked with ATTO565, the resultant compound GIF-2265 did not inhibit melanogenesis in B16F10 cells, despite its strong tyrosinase inhibitory activity. CONCLUSION These results suggest that melanosomal localization is essential for the antimelanogenic activity of GIF-2115, and GIF-2115 derivatives may be new guides for drugs to endosomes and lysosomes as well as melanosomes.
Collapse
Affiliation(s)
- Ayumi Sakurai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Sayaka Okajima
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Saho Furukawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, Gifu, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences of Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Peng F, Ai X, Bu X, Zhao Z, Gao B. Visualizing Mitochondrial Membrane Potential with FRET Probes: Integrating Fluorescence Intensity Ratio and Lifetime Imaging. J Fluoresc 2024:10.1007/s10895-024-03929-w. [PMID: 39320633 DOI: 10.1007/s10895-024-03929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China.
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Xiaoyu Bu
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Zixuan Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Ferraboschi I, Ovčar J, Vygranenko KV, Yu S, Minervino A, Wrzosek A, Szewczyk A, Rozza R, Magistrato A, Belfield KD, Gryko DT, Grisanti L, Sissa C. Neutral rhodol-based dyes expressing localization in mitochondria. Org Biomol Chem 2024; 22:5886-5890. [PMID: 38804835 DOI: 10.1039/d4ob00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neutral rhodol-based red emitters are shown to efficiently localize in mitochondria, as demonstrated by confocal microscopy and co-localization studies. A simple model is proposed to explain the localization mechanism of neutral molecules. The model takes into account the strong coupling between the molecular dipole moment and the electric field of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Juraj Ovčar
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Kateryna V Vygranenko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Alfonso Minervino
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Riccardo Rozza
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Luca Grisanti
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
5
|
Xu S, Yan KC, Xu ZH, Wang Y, James TD. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications. Chem Soc Rev 2024; 53:7590-7631. [PMID: 38904177 DOI: 10.1039/d3cs00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Golgi apparatus is an essential organelle constructed by the stacking of flattened vesicles, that is widely distributed in eukaryotic cells and is dynamically regulated during cell cycles. It is a central station which is responsible for collecting, processing, sorting, transporting, and secreting some important proteins/enzymes from the endoplasmic reticulum to intra- and extra-cellular destinations. Golgi-specific fluorescent probes provide powerful non-invasive tools for the real-time and in situ visualization of the temporal and spatial fluctuations of bioactive species. Over recent years, more and more Golgi-targeting probes have been developed, which are essential for the evaluation of diseases including cancer. However, when compared with systems that target other important organelles (e.g. lysosomes and mitochondria), Golgi-targeting strategies are still in their infancy, therefore it is important to develop more Golgi-targeting probes. This review systematically summarizes the currently reported Golgi-specific fluorescent probes, and highlights the design strategies, mechanisms, and biological uses of these probes, we have structured the review based on the different targeting groups. In addition, we highlight the future challenges and opportunities in the development of Golgi-specific imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Silin Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, P. R. China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
6
|
Wang C, Wang Y, Feng M, Yuan R, Chen G. A thiol-anchored solvatochromic and fluorogenic molecular rotor for covalent protein labeling in SDS-PAGE and mitochondria specific fluorescence imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3684-3691. [PMID: 38804857 DOI: 10.1039/d4ay00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fluorescent labeling is a widely used method for protein detection and fluorescence imaging. A solvatochromic and fluorogenic molecular rotor DASPBCl was developed for covalent protein labeling in solution and SDS-PAGE, and also for stable mitochondria labeling and fluorescence imaging. The dye DASPBCl consisted of a 4-(N,N-dimethylamino)phenyl moiety as the electron donor and a positively charged N-benzylpyridinium moiety as the electron acceptor. A benzyl chloride group was introduced into the pyridine moiety for covalent labeling of thiol in proteins. When the fluorescent dye DASPBCl is covalently labeled to the thiol of proteins, significantly enhanced fluorescence was obtained, which is attributed to the polarity sensitivity caused solvatochromic effect from the hydrophobic protein structure and the viscosity sensitivity caused fluorogenic effect from the restriction of single bond rotation. DASPBCl exhibits high sensitivity and good linear response for protein detection in SDS-PAGE analysis with both the pre-staining method and post-staining method. DASPBCl was also successfully used for covalently protein-anchored fluorescence imaging of mitochondria in living cells.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yujie Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Mengxiang Feng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rongrong Yuan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Peng F, Ai X, Sun J, Yang L, Gao B. Recent advances in FRET probes for mitochondrial imaging and sensing. Chem Commun (Camb) 2024; 60:2994-3007. [PMID: 38381520 DOI: 10.1039/d4cc00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Mitochondria, as essential organelles in cells, play a crucial role in cellular growth and apoptosis. Monitoring mitochondria is of great importance, as mitochondrial dysfunction is often considered a hallmark event of cell apoptosis. Traditional fluorescence probes used for mitochondrial imaging and sensing are mostly intensity-based and are susceptible to factors such as concentration, the probe environment, and fluorescence intensity. Probes based on fluorescence resonance energy transfer (FRET) can effectively overcome external interference and achieve high-contrast imaging of mitochondria as well as quantitative monitoring of mitochondrial microenvironments. This review focuses on recent advances in the application of FRET-based probes for mitochondrial structure imaging and microenvironment sensing.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Jing Sun
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Linshuai Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
9
|
Agrawal H, Giri PS, Meena P, Rath SN, Mishra AK. A Neutral Flavin-Triphenylamine Probe for Mitochondrial Bioimaging under Different Microenvironments. ACS Med Chem Lett 2023; 14:1857-1862. [PMID: 38116415 PMCID: PMC10726442 DOI: 10.1021/acsmedchemlett.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
A bioinspired design built around a neutral flavin-triphenylamine core has been investigated for selective mitochondrial bioimaging capabilities in different microenvironments. Significant advantages with respect to long-term tracking, faster internalization, penetrability within the spheroid structures, and strong emission signal under induced hypoxia conditions have been observed, which could offer an alternative to the existing mitotrackers for hypoxia-related biological events.
Collapse
Affiliation(s)
- Harsha
Gopal Agrawal
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Pravin Shankar Giri
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Poonam Meena
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Subha Narayan Rath
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Ashutosh Kumar Mishra
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| |
Collapse
|
10
|
Zheng YL, Yu R, Li M, Fan C, Liu L, Zhang H, Kang W, Shi R, Li C, Li Y, Wang J, Zheng X. A dual-channel fluorescence probe for simultaneously visualizing cysteine and viscosity during drug-induced hepatotoxicity. Heliyon 2023; 9:e22276. [PMID: 38053901 PMCID: PMC10694328 DOI: 10.1016/j.heliyon.2023.e22276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Cysteine (Cys), one of the important participants in protecting cells from oxidative stress, is closely associated with the occurrence and development of various diseases. Moreover, cell viscosity as a pivotal microenvironmental parameter has recently attracted increasing attention due to its dominant role in governing intracellular signal transduction and diffusion of reactive metabolites. Thus, simultaneous detection of Cys and viscosity is imperative for investigating their pathophysiological functions and cross-link. Herein we present a mitochondria-targetable dual-channel fluorescence probe ABDSP by grafting the acrylate modified pyridinium unit to dimethylaminobenzene. Whilst the probe is a seemingly simple, it could simultaneously discriminate Cys and viscosity in a fashion of distinguishable signals. Furthermore, the probe was successfully employed for visualizing mitochondrial Cys and viscosity, and probe into their cross-link during acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Long Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruixue Yu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Mengbo Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Cailian Fan
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Li Liu
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huijie Zhang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Wenqian Kang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Run Shi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Changzhi Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yarui Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiaqi Wang
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| |
Collapse
|
11
|
Tam LKB, Lo PC, Cheung PCK, Ng DKP. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe. Chem Asian J 2023; 18:e202300562. [PMID: 37489571 DOI: 10.1002/asia.202300562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
A water-soluble 1,2,4,5-tetrazine-substituted carbon-dipyrromethene (C-DIPY) was synthesized from the previously reported carbonyl pyrrole dimer through a two-step procedure. Owing to the presence of a tetrazine moiety, the fluorescence emission of this compound was largely quenched in phosphate-buffered saline at pH 7.4. Upon addition of a bicyclo[6.1.0]non-4-yne (BCN) derivative, the tetrazine-based quenching component of the compound was disrupted through the inverse electron-demand Diels-Alder reaction to restore the fluorescence in up to 6.6-fold. This bioorthogonal activation was also demonstrated using U-87 MG human glioblastoma cells, in which the fluorescence intensity of this C-DIPY could be enhanced by 8.7-fold upon post-incubation with the BCN derivative. The results showed that this tetrazine-caged C-DIPY can serve as a bioorthogonally activatable fluorescent probe for bioimaging. The compound, however, was found to reside preferentially in the lysosomes instead of the mitochondria of the cells as predicted based on its cationic character, which could be attributed to its energy-dependent endocytic cellular uptake pathway, for which lysosomes are the end station.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
12
|
Li Y, Lei J, Qin X, Li G, Zhou Q, Yang Z. A mitochondria-targeted dual-response sensor for monitoring viscosity and peroxynitrite in living cells with distinct fluorescence signals. Bioorg Chem 2023; 138:106603. [PMID: 37210825 DOI: 10.1016/j.bioorg.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Viscosity and peroxynitrite (ONOO-) are two significant indicators to affect and evaluate the mitochondrial functional status, which are nearly relational with pathophysiological process in many diseases. Developing suitable analytical methods for monitoring mitochondrial viscosity changes and ONOO- is thus of great importance. In this research, a new mitochondria-targeted sensor DCVP-NO2 for the dual determination of viscosity and ONOO- was exploited based on the coumarin skeleton. DCVP-NO2 displayed a red fluorescence "turn-on" response toward viscosity along with about 30-fold intensity increase. Meanwhile, it could be used as ratiometric probe for detection of ONOO- with excellent sensitivity and extraordinary selectivity for ONOO- over other chemical and biological species. Moreover, thanks to its good photostability, low cytotoxicity and ideal mitochondrion-targeting capability, DCVP-NO2 was successfully utilized for fluorescence imaging of viscosity variations and ONOO- in mitochondria of living cells through different channels. In addition, the results of cell imaging revealed that ONOO- would lead to the increase of viscosity. Taken together, this work provides a potential molecular tool for researching biological functions and interactions of viscosity and ONOO- in mitochondria.
Collapse
Affiliation(s)
- Yaqian Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| | - Jieni Lei
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xin Qin
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Guangyi Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Qiulan Zhou
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Zi Yang
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
13
|
Jiao S, Dong X, Zhao W. Meso pyridinium BODIPY-based long wavelength infrared mitochondria-targeting fluorescent probe with high photostability. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3149-3155. [PMID: 37334656 DOI: 10.1039/d3ay00660c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mito-tracker deep red (MTDR) as a commercially available mitochondria-targeting probe was easily bleached upon imaging. We designed and synthesized a family of meso-pyridinium BODIPY and introduced lipophilic methyl or benzyl as the head moiety to develop a mitochondria-targeting deep red probe. Moreover, we changed the substitution of the 3,5-phenyl moieties with the methoxy or methoxyethoxyethyl group to balance hydrophilicity. The designed BODIPY dyes possessed long absorption and good fluorescence emission. Among them, meso ortho-pyridinium BODIPYs with benzyl head and glycol substitution on phenyl moiety (3h) with favorable Stokes shift were found to have the best mitochondrial targeting performance. 3h was easily uptaken by cells and was less toxic and more photostable than MTDR. An immobilizable probe (3i) was further developed, and nice mitochondria targeting properties under the damaging condition of mitochondria membrane potential were maintained. BODIPY 3h or 3i may become alternative long-wavelength mitochondria targeting probes apart from MTDR and be suitable for long-term mitochondrial tracking studies.
Collapse
Affiliation(s)
- Shenghe Jiao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
14
|
Wang Y, Wang P, Li C. Fluorescence microscopic platforms imaging mitochondrial abnormalities in neurodegenerative diseases. Adv Drug Deliv Rev 2023; 197:114841. [PMID: 37088402 DOI: 10.1016/j.addr.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Neurodegenerative diseases (NDs) are progressive disorders that cause the degeneration of neurons. Mitochondrial dysfunction is a common symptom in NDs and plays a crucial role in neuronal loss. Mitochondrial abnormalities can be observed in the early stages of NDs and evolve throughout disease progression. Visualizing mitochondrial abnormalities can help understand ND progression and develop new therapeutic strategies. Fluorescence microscopy is a powerful tool for dynamically imaging mitochondria due to its high sensitivity and spatiotemporal resolution. This review discusses the relationship between mitochondrial dysfunction and ND progression, potential biomarkers for imaging dysfunctional mitochondria, advances in fluorescence microscopy for detecting organelles, the performance of fluorescence probes in visualizing ND-associated mitochondria, and the challenges and opportunities for developing new generations of fluorescence imaging platforms for monitoring mitochondria in NDs.
Collapse
Affiliation(s)
- Yicheng Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengwei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy; Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai 201203, China.
| |
Collapse
|
15
|
Huang Y, Liang J, Fan Z. A review: Small organic molecule dual/multi-organelle-targeted fluorescent probes. Talanta 2023; 259:124529. [PMID: 37084606 DOI: 10.1016/j.talanta.2023.124529] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
In recent years, the dual/multi-organelle-targeted fluorescent probe based on small organic molecules has good biocompatibility and can visualize the interaction between different organelles, which has attracted much attention. In addition, these probes can also be used to detect small molecules in the organelle environment, such as active sulfur species (RSS), reactive oxygen species (ROS), pH, viscosity and so on. However, the review of dual/multi-organelle-targeted fluorescent probe for small organic molecules lacks a systematic summary, which may hinder the development of this field. In this review, we will focus on the design strategies and bioimaging applications of dual/multi-organelle-targeted fluorescent probe, and classify them into six classes according to different organelles targeted. The first class probe targeted mitochondria and lysosome. The second class probe targeted endoplasmic reticulum and lysosome. The third class probe targeted mitochondria and lipid droplets. The fourth class probe targeted endoplasmic reticulum and lipid droplets. The fifth class probe targeted lysosome and lipid droplets. The sixth class multi-targeted probe. The mechanism of these probes targeting organelles and the visualization of the interaction between different organelles are emphasized, and the prospect and future development direction of this research field are prospected. This will provide a systematic idea for the development and functional research of dual/multi-organelle-targeted fluorescent probe, and promote its research in related physiological and pathological medicine field in the future.
Collapse
Affiliation(s)
- Yongfei Huang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China
| | - Junping Liang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China
| | - Zhefeng Fan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China.
| |
Collapse
|
16
|
P CAS, Raveendran AV, Sivakrishna N, Nandi RP. Triarylborane-triphenylamine based luminophore for the mitochondria targeted live cell imaging and colorimetric detection of aqueous fluoride. Dalton Trans 2022; 51:15339-15353. [PMID: 36135598 DOI: 10.1039/d2dt01887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioimaging of subcellular organelles such as mitochondria is crucial for detecting physiological abnormalities induced by fluctuations in the levels of various analytes. Herein, we report the design and synthesis of two novel water-soluble cationic Lewis acid triarylborane-triarylamine conjugates 1 and 2. The optical characteristics of 1 and 2 and their precursor compounds BTPA-NMe2 and BTPA-2NMe2 were evaluated, which show similar absorption and fluorescence spectra, with 1 and 2 exhibiting higher quantum yields of 0.73 and 0.64, respectively, than those of the precursors BTPA-NMe2 and BTPA-2NMe2, indicating the partial disruption of the ICT process and the activation of alternative emission bands in 1 and 2. The live cell imaging ability of compound 2 was examined in HeLa cells using a confocal microscope. Moreover, mitochondrial internalisation using compound 2 was effective and it was found to have high photostability under UV light conditions. Furthermore, compound 2 demonstrated an evident colorimetric response with a colour change to dark yellow in aqueous environments, indicating that it could be used for anion sensing. The spectral changes were observed in UV-visible and fluorescence titration experiments, which were strongly supported by DFT calculations. In short, compound 2 synthesized by us can be exclusively utilized for the selective localization of mitochondria with less cytotoxicity and shows excellent colorimetric response to aqueous inorganic fluoride at levels as low as 0.1 ppm with high selectivity.
Collapse
Affiliation(s)
- Chinna Ayya Swamy P
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Archana V Raveendran
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Narra Sivakrishna
- Humanities & Sciences, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India-500090
| | - Rajendra Prasad Nandi
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
17
|
Liu C, Zhu H, Zhang Y, Su M, Liu M, Zhang X, Wang X, Rong X, Wang K, Li X, Zhu B. Recent advances in Golgi-targeted small-molecule fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Li M, Huang Y, Song S, Shuang S, Dong C. Piperazine-Based Mitochondria-Immobilized pH Fluorescent Probe for Imaging Endogenous ONOO – and Real-Time Tracking of Mitophagy. ACS APPLIED BIO MATERIALS 2022; 5:2777-2785. [DOI: 10.1021/acsabm.2c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minglu Li
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yue Huang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
19
|
Ma X, Shi L, Zhang B, Liu L, Fu Y, Zhang X. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 2022; 414:4551-4573. [PMID: 35359180 DOI: 10.1007/s00216-022-03995-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.
Collapse
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| | - Buyue Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Xiufeng Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
20
|
Yang X, Zhang D, Ye Y, Zhao Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214336] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Cai S, Guo R, Liu Q, Gong X, Li X, Yang Y, Lin W. A novel mitochondria-targeted fluorescent probe for detecting viscosity in living cells and zebrafishes†. NEW J CHEM 2022. [DOI: 10.1039/d2nj00402j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the twisted intramolecular charge transfer (TICT) mechanism, a new mitochondria-targeted fluorescent probe CSS-1 for detection of viscosity variations was developed. The probe featured in a strong response to...
Collapse
|
22
|
Musib D, Ramu V, Raza MK, Upadhyay A, Pal M, Kunwar A, Roy M. La(iii)–curcumin-functionalized gold nanocomposite as a red light-activatable mitochondria-targeting PDT agent. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01045j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of La(iii)–curcumin to gold nanoparticles resulted in remarkable red-shifted UV-visible absorption and exhibited remarkable differential photodynamic ability towards cancer cells upon red-light activation.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| | - Vanitha Ramu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, India
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhaba Atomic Research Centre, Anushaktinagar, Mumbai-400094, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India
| |
Collapse
|
23
|
Rong X, Liu C, Li M, Zhu H, Zhang Y, Su M, Wang X, Li X, Wang K, Yu M, Sheng W, Zhu B. An Integrated Fluorescent Probe for Ratiometric Detection of Glutathione in the Golgi Apparatus and Activated Organelle-Targeted Therapy. Anal Chem 2021; 93:16105-16112. [PMID: 34797641 DOI: 10.1021/acs.analchem.1c03836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a serious threat to human health, and there is an urgent need to develop new treatment methods to overcome it. Organelle targeting therapy, as a highly effective and less toxic side effect treatment strategy, has great research significance and development prospects. Being an essential organelle, the Golgi apparatus plays a particularly major role in the growth of cancer cells. Acting as an indispensable and highly expressed antioxidant in cancer cells, glutathione (GSH) also contributes greatly during the Golgi oxidative stress. Therefore, it counts for much to track the changes of GSH concentration in Golgi for monitoring the occurrence and development of tumor cells, and exploring Golgi-targeted therapy is also extremely important for effective treatment of cancer. In this work, we designed and synthesized a simple Golgi-targeting fluorescent probe GT-GSH for accurately detecting GSH. The probe GT-GSH reacting with GSH decomposes toxic substances to Golgi, thereby killing cancer cells. At the same time, the ratiometric fluorescent probe can detect the concentration changes of GSH in Golgi stress with high sensitivity and selectivity in living cells. Therefore, such a GSH-responsive fluorescent probe with a Golgi-targeted therapy effect gives a new method for accurate treatment of cancer.
Collapse
Affiliation(s)
- Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mingzhu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
24
|
Bertman KA, Abeywickrama CS, Pang Y. A NIR Emitting Cyanine with Large Stokes' Shift for Mitochondria and Identification of their Membrane Potential Disruption. Chembiochem 2021; 23:e202100516. [PMID: 34783144 DOI: 10.1002/cbic.202100516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Indexed: 12/11/2022]
Abstract
An NIR emitting (λem ≈730 nm) cyanine probe ExCy was synthesized in good yields by extending the π-conjugation length (i. e., with furan moiety) to the donor-accepter system. ExCy exhibited a large Stokes' shift (Δλ≈100 nm) due to strong intramolecular charge transfer (ICT), and high fluorescence quantum yield (Φfl ≈0.47 in DCM). Due to its low fluorescence in an aqueous environment (Φfl ≈0.007 in H2 O), the probe exhibited the potential of achieving a large fluorescence turn-on upon entering a hydrophobic cellular environment. Fluorescence confocal microscopy studies revealed that ExCy was readily excitable with a far-red laser line (i. e., 640 nm) while the corresponding emission was collected in the NIR region. ExCy exhibited excellent selectivity towards live cell mitochondria according to the co-localization studies. The probe also exhibited high photostability, long-term imaging ability and wash-free staining ability, when being applied to live cells. Our studies indicated that the mitochondrial localization of ExCy was dependent on the membrane potential of the mitochondria. ExCy was successfully utilized as a mitochondrial membrane potential dysfunction indicator to visually identify cells with mitochondrial dysfunction via fluorescence confocal microscopy. ExCy was further examined for potential in vivo imaging of zebrafish.
Collapse
Affiliation(s)
- Keti A Bertman
- Department of Chemistry, University of Akron, Akron, Ohio, 44325, USA
| | | | - Yi Pang
- Department of Chemistry, University of Akron, Akron, Ohio, 44325, USA.,Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, 44325, USA
| |
Collapse
|
25
|
Tung CH, Han MS, Shen Z, Gray BD, Pak KY, Wang J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021; 6:3657-3666. [PMID: 34549942 DOI: 10.1021/acssensors.1c01370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surgical resection of cancerous tissues is a critical procedure for solid tumor treatment. During the operation, the surgeon mostly identifies the cancerous tissues by naked-eye visualization under white light without aid, therefore, the outcome heavily relies on the surgeon's experience. A near-infrared pH-responsive fluorogenic dye, CypH-11, was designed to be used as a sensitive cancer spray to highlight cancerous tissues during surgical operations, minimizing the surgeon's subjective judgment. CypH-11, pKa 6.0, emits almost no fluorescence at neutral pH but fluoresces brightly in an acidic environment, a ubiquitous consequence of cancer cell proliferation. After topical application, CypH-11 was absorbed quickly, and its fluorescence signal in the cancerous tissue was developed within a minute. The signal-to-background ratio was 1.3 and 1.5 at 1 and 10 min, respectively. The fluorogenic property and near-instant signal development capability enable the "spray-and-see" concept. This fast-acting CypH-11 spray could be a handy and effective tool for fluorescence-guided surgery, identifying small cancerous lesions in real time for optimal resection without systemic toxicity.
Collapse
Affiliation(s)
- Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Zhenhua Shen
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, United States
| | - Jianguang Wang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
26
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
27
|
Rizvi SFA, Ali A, Ahmad M, Mu S, Zhang H. Multifunctional self-assembled peptide nanoparticles for multimodal imaging-guided enhanced theranostic applications against glioblastoma multiforme. NANOSCALE ADVANCES 2021; 3:5959-5967. [PMID: 36132681 PMCID: PMC9419261 DOI: 10.1039/d1na00597a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 05/15/2023]
Abstract
The synthesis of self-assembled peptide nanoparticles using a facile one-pot synthesis approach is gaining increasing attention, allowing therapy in combination with diagnosis. Their drawback is limited diagnostic potential, which can be improved after necessary modifications and efficacious functionalization. Herein, a cyclic heptapeptide having the Arg-Gly-Asp-Lys-Leu-Ala-Lys sequence was modified by conjugation of the ε-amino group of the terminal lysine residue with diethylenetriamine pentaacetic acid (DTPA) as a bifunctional chelating agent (BFC) for radiolabeling with a γ-emitting radionuclide (99mTc, half-life 6.01 h; energy 140 keV). Further, the free amino group of the middle lysine residue was successfully conjugated with near-infrared fluorescence (NIRF) dye Cyanine5.5 N-succinimidyl ester (Ex/Em = 670/701 nm) by a co-assembly method to form newly designed novel NIRF dye conjugated self-assembled peptide-DTPA (Cy5.5@SAPD) nanoparticles. The fluorescent nanoparticle formation was confirmed by using a fluorescence spectrophotometer (Ex/Em = 650/701 nm), and the transmission electron microscope (TEM) images showed a size of ∼ 40 nm with a lattice fringe distance of 0.294 nm. Cytotoxicity and confocal laser scanning microscopy (CLSM) studies showed that these nanoparticles possess a high affinity for the αvβ3-integrin receptor overexpressed on brain tumor glioblastoma with an EC50 = 20 μM. Moreover, these nanoparticles were observed to have potential to internalize into U87MG cells more prominently than HEK-293 cancer cells and induce apoptosis. The apoptosis assay showed 79.5% apoptotic cells after 24 h treatment of Cy5.5@SAPD nanoparticles. Additionally, these nanoparticles were also radiolabeled with 99mTc for the single photon emission computed tomography (SPECT) imaging study in tumor-bearing female Balb/c mice. The excellent imaging feature of Cy5.5@SAPD-99mTc nanoparticles as a multimodal (SPECT/NIRF) diagnostic probe, as well as noteworthy therapeutic potential was observed. The results suggested that our newly designed novel dual-targeting dual-imaging nanoparticles may serve as an admirable theranostic probe to treat brain tumor glioblastoma multiforme.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Lahore-54000 Punjab Pakistan
| | - Azam Ali
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| | - Munir Ahmad
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Lahore-54000 Punjab Pakistan
| | - Shuai Mu
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou-730000 Gansu Province P. R. China +86-931-8912058 +86-931-8912582
| |
Collapse
|
28
|
Dahal D, Ojha KR, Pokhrel S, Paruchuri S, Konopka M, Liu Q, Pang Y. NIR-emitting styryl dyes with large Stokes' shifts for imaging application: From cellular plasma membrane, mitochondria to Zebrafish neuromast. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 194:109629. [PMID: 34366501 PMCID: PMC8345024 DOI: 10.1016/j.dyepig.2021.109629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) emitting probes with very large Stokes' shifts play a crucial role in bioimaging applications, as the optical signals in this region exhibit high signal to background ratio and allow deeper tissue penetration. Herein we illustrate NIR-emitting probe 2 with very large Stokes' shifts (Δλ ≈ 260 - 272 nm) by integrating the excited-state intramolecular proton transfer (ESIPT) unit 2-(2'-hydroxyphenyl)benzoxazole (HBO) into a pyridinium derived cyanine. The ESIPT not only enhances the Stokes' shifts but also improves the quantum efficiency of the probe 2 (фfl = 0.27 - 0.40 in DCM). The application of 2 in live cells imaging reveals that compound 2 stains mitochondria in eukaryotic cells, normal human lungs fibroblast (NHLF), Zebrafish's neuromast hair cells, and support cells, and inner plasma membrane in prokaryotic cells, Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Krishna R Ojha
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sabita Pokhrel
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Michael Konopka
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Qin Liu
- Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
29
|
Yu H, Guo Y, Zhu W, Havener K, Zheng X. Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Rizvi SFA, Shahid S, Mu S, Zhang H. Hybridization of tumor homing and mitochondria-targeting peptide domains to design novel dual-imaging self-assembled peptide nanoparticles for theranostic applications. Drug Deliv Transl Res 2021; 12:1774-1785. [PMID: 34535874 DOI: 10.1007/s13346-021-01066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/05/2023]
Abstract
A novel hybridized dual-targeting peptide-based nanoprobe was successfully designed by using the cyclic heptapeptide. This peptide has Arg-Gly-Asp-Lys-Leu-Ala-Lys sequence, in which the RGD homing motif and KALK mitochondria-targeting motif were linked via amide bond. The designed peptide probe was further modified through covalent linkage to induce dual-imaging functionality, and self-assembled to form spherical nanoparticles. The novel Cy5.5-SAPD-99mTc nanoparticles were tested for in vitro cytotoxicity, cellular uptake, and apoptosis-inducing functionalities. The cellular internalization, enhanced cytotoxicity and selective receptor binding capabilities against U87MG cells, excellent dual-imaging potential, improved apoptosis-inducing feature by damaging mitochondria, and in vivo preclinical investigations suggested that our newly designed novel hybridized peptide-based dual-imaging nanoparticles may serve as an admirable theranostic probe to treat brain tumor glioblastoma multiforme. This study describes the development of dual-targeting self-assembled peptide nanoparticles followed by modifications using NIRF dye and radiolabeled with 99mTc for dual-imaging and enhanced therapeutic efficacy against brain tumor.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- College of Chemistry and Chemical Engineering, Gansu Province, Lanzhou University, Lanzhou-730000, People's Republic of China
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore-54000, Punjab, Pakistan
| | - Shuai Mu
- College of Chemistry and Chemical Engineering, Gansu Province, Lanzhou University, Lanzhou-730000, People's Republic of China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Gansu Province, Lanzhou University, Lanzhou-730000, People's Republic of China.
| |
Collapse
|
31
|
Dai L, Ren M, Lin W. Development of a novel NIR viscosity fluorescent probe for visualizing the kidneys in diabetic mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119627. [PMID: 33714915 DOI: 10.1016/j.saa.2021.119627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Viscosity is an important parameter for evaluating cell health, and abnormal viscosity can cause a variety of intracellular organelle function disorders. The mitochondria are a key organelle in cells, and the viscosity of the mitochondria determines the state of the cell. In this work, we report a novel near-infrared fluorescent probe, referred to as NI-VD, that has a large Stokes-shift and a satisfactory response multiple. NI-VD can sensitively detect changes in cell viscosity in cells and tissues, and it can effectively avoid interference from the overlap of excitation and emission light. The fluorescence spectrum shows that NI-VD has maximum emission peaks at 730 nm, and the fluorescence intensity is amplified with an increase in the solution viscosity. The response from pure PBS solution to glycerol changes by 13-fold. After confirmation in a variety of cell and biological models, NI-VD can detect the changes in viscosity in mitochondria. Most importantly, this study is the first to visualize the differences between the kidneys of diabetic mice and normal mice. This approach is a new solution for the diagnosis and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lixuan Dai
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China; State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
32
|
Fernández Casafuz AB, De Rossi MC, Bruno L. Intracellular motor-driven transport of rodlike smooth organelles along microtubules. Phys Rev E 2021; 101:062416. [PMID: 32688554 DOI: 10.1103/physreve.101.062416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.
Collapse
Affiliation(s)
- A B Fernández Casafuz
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - M C De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - L Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
33
|
Yu B, Zhou Y, Dou L, Li Y, Huang Z. A Xanthene Dye-based Sensor for Viscosity and Cell Imaging. J Fluoresc 2021; 31:719-725. [PMID: 33609213 DOI: 10.1007/s10895-021-02705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
A new xanthene dye, namely ImX, has been facilely prepared by reaction of 4-(1H-Imidazol-1-yl)benzaldehyde with N, N-diethyl-3-aminophenol in concentrated propionic acid, and then treated by p-chloranil. ImX presents the maximum absorption and emission band centered at 562 nm and 583 nm in water, respectively. Fluorescent spectra investigations demonstrate that ImX shows viscosity-selective fluorescent response and emission enhancement when the solvent viscosity increases from 1.1 cp. (water) to 1248 cp. (98 % glycerol). In addition, this viscosity-selective fluorescence response covers a wide pH range from 2.5 to 10.0. More significantly, ImX demonstrates low cytotoxicity and can be employed as tracer for the detection of Monensin-triggered viscosity enhancement by cell imaging.
Collapse
Affiliation(s)
- Bo Yu
- College of Resources and Environmental Engineering, Mianyang Normal University, Mianyang, 621000, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, 621000, Mianyang, Sichuan, China
| | - Ying Zhou
- Library of City College, Southwest University of Science and technology, 621000, Sichuan, China
| | - Lihua Dou
- College of Resources and Environmental Engineering, Mianyang Normal University, Mianyang, 621000, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, 621000, Mianyang, Sichuan, China
| | - Yunyun Li
- College of Resources and Environmental Engineering, Mianyang Normal University, Mianyang, 621000, Sichuan, China
| | - Zhengwen Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
34
|
Huang Z, Li N, Zhang X, Xiao Y. Mitochondria-Anchored Molecular Thermometer Quantitatively Monitoring Cellular Inflammations. Anal Chem 2021; 93:5081-5088. [PMID: 33729754 DOI: 10.1021/acs.analchem.0c04547] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Temperature in mitochondria can be a critical indicator of cell metabolism. Given the highly dynamic and inhomogeneous nature of mitochondria, it remains a big challenge to quantitatively monitor the local temperature changes during different cellular processes. To implement this task, we extend our strategy on mitochondria-anchored thermometers from "on-off" probe Mito-TEM to a ratiometric probe Mito-TEM 2.0 based on the Förster resonance energy transfer mechanism. Mito-TEM 2.0 exhibits not only a sensitive response to temperature through the ratiometric changes of dual emissions but also the specific immobilization in mitochondria via covalent bonds. Both characters support accurate and reliable detection of local temperature for a long time, even in malfunctioning mitochondria. By applying Mito-TEM 2.0 in fluorescence ratiometric imaging of cells and zebrafishes, we make a breakthrough in the quantitative visualization of mitochondrial temperature rises in different inflammation states.
Collapse
Affiliation(s)
- Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ning Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
35
|
Xiao H, Li P, Tang B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021; 27:6880-6898. [DOI: 10.1002/chem.202004888] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
36
|
Zhu N, Xu G, Wang R, Zhu T, Tan J, Gu X, Zhao C. Precise imaging of mitochondria in cancer cells by real-time monitoring of nitroreductase activity with a targetable and activatable fluorescent probe. Chem Commun (Camb) 2021; 56:7761-7764. [PMID: 32613955 DOI: 10.1039/d0cc00494d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An activatable and mitochondrial-targetable fluorescent probe was developed. This designed probe showed ratiometric fluorescence and light-up near-infrared emission responsiveness to nitroreductase, achieving precise imaging of mitochondria in cancer cells by real-time monitoring of nitroreductase activity.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ge Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiahui Tan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
37
|
Carloni R, Sanz Del Olmo N, Canonico B, Montanari M, Ciacci C, Ambrosi G, de la Mata FJ, Ottaviani MF, García-Gallego S. Elaborated study of Cu(II) carbosilane metallodendrimers bearing substituted iminopyridine moieties as antitumor agents. Eur J Med Chem 2021; 215:113292. [PMID: 33631696 DOI: 10.1016/j.ejmech.2021.113292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Iminopyridine-decorated carbosilane metallodendrimers have recently emerged as a promising strategy in the treatment of cancer diseases. Their unique features such as the nanometric size, the multivalent nature and the structural perfection offer an extraordinary platform to explore structure-to-property relationships. Herein, we showcase the outstanding impact on the antitumor activity of a parameter not explored before: the iminopyridine substituents in meta position. New Cu(II) carbosilane metallodendrimers, bearing methyl or methoxy substituents in the pyridine ring, were synthesized and thoroughly characterized. Electron Paramagnetic Resonance (EPR) was exploited to unveil the properties of the metallodendrimers. This study confirmed the presence of different coordination modes of the Cu(II) ion (Cu-N2O2, Cu-N4 and Cu-O4), whose ratios were determined by the structural features of the dendritic molecules. These metallodendrimers exhibited IC50 values in the low micromolar range (<6 μM) in tumor cell lines such as HeLa and MCF-7. The subsequent in vitro assays on both healthy (PBMC) and tumor (U937) myeloid cells revealed two key facts which improved the cytotoxicity and selectivity of the metallodrug: First, maximizing the Cu-N2O2 coordination mode; second, adequately selecting the pair ring-substituent/metal-counterion. The most promising candidates, G1(-CH3)Cl (8) and G1(-OCH3)NO3(17), exhibited a substantial increase in the antitumor activity in U937 tumor cells, compared to the non-substituted counterparts, probably through two different ROS-production pathways.
Collapse
Affiliation(s)
- Riccardo Carloni
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", 61029, Urbino, Italy
| | - Natalia Sanz Del Olmo
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain
| | - Barbara Canonico
- Department of Biomolecular Science (DiSB), University of Urbino "Carlo Bo", Urbino, 61029, Italy
| | - Mariele Montanari
- Department of Biomolecular Science (DiSB), University of Urbino "Carlo Bo", Urbino, 61029, Italy
| | - Caterina Ciacci
- Department of Biomolecular Science (DiSB), University of Urbino "Carlo Bo", Urbino, 61029, Italy
| | - Gianluca Ambrosi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", 61029, Urbino, Italy
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS), 28034, Madrid, Spain.
| | | | - Sandra García-Gallego
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain; Institute Ramón y Cajal for Health Research (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
38
|
Wang X, Fan L, Wang S, Zhang Y, Li F, Zan Q, Lu W, Shuang S, Dong C. Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe. Anal Chem 2021; 93:3241-3249. [PMID: 33539094 DOI: 10.1021/acs.analchem.0c04826] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off-on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Lu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
39
|
Fang Y, Dehaen W. Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives. Molecules 2021; 26:E363. [PMID: 33445736 PMCID: PMC7828187 DOI: 10.3390/molecules26020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) have been implicated in numerous pathological processes and their homeostasis facilitates the dynamic balance of intracellular redox states. Among ROS, hypobromous acid (HOBr) has a high similarity to hypochlorous acid (HOCl) in both chemical and physical properties, whereas it has received relatively little attention. Meanwhile, selective recognition of endogenous HOBr suffers great challenges due to the fact that the concentration of this molecule is much lower than that of HOCl. Fluorescence-based detection systems have emerged as very important tools to monitor biomolecules in living cells and organisms owing to distinct advantages, particularly the temporal and spatial sampling for in vivo imaging applications. To date, the development of HOBr-specific fluorescent probes is still proceeding quite slowly, and the research related to this area has not been systematically summarized. In this review, we are the first to review the progress made so far in fluorescent probes for selective recognition and detection of HOBr. The molecular structures, sensing mechanisms, and their successful applications of these probes as bioimaging agents are discussed here in detail. Importantly, we hope this review will call for more attention to this rising field, and that this could stimulate new future achievements.
Collapse
Affiliation(s)
- Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium
| |
Collapse
|
40
|
Zhang S, Chen H, Wang L, Liu C, Liu L, Sun Y, Shen XC. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. J Mater Chem B 2021; 9:1089-1095. [PMID: 33427258 DOI: 10.1039/d0tb02674c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Near-infrared fluorophores are emerging as promising molecular tools for cancer theranostics because of their inherent biodegradability, low toxicity, and synthetic flexibility. However, they still suffer from several limitations, such as poor photostability and insufficient organelle-targeting stability during photothermal therapy. In this work, we introduce an "aldehyde functionalization" strategy for simultaneously enhancing photostability and mitochondria-immobilization of near-infrared fluorophores for the first time. Based on the proposed strategy, representative near-infrared organic molecules, namely AF-Cy, were rationally designed and synthesized. Upon aldehyde modification, the AF-Cy dyes displayed both remarkable photostability and mitochondrial-targeting stability. The strong absorption in the near-infrared region confers the AF-Cy dyes with outstanding fluorescent/photoacoustic imaging and photothermal therapy capabilities. Finally, in vitro and in vivo studies revealed the enhanced performance in inhibiting the growth of breast tumors under NIR laser radiation, and these results suggested the strong potential of AF-Cy dyes as efficient multimodal imaging-guided photothermal therapy agents, further highlighting the value of this simple strategy in the design high performance near-infrared fluorophores for tumor theranostics.
Collapse
Affiliation(s)
- Shuping Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ramesh M, Rajasekhar K, Gupta K, Babagond V, Saini DK, Govindaraju T. A matrix targeted fluorescent probe to monitor mitochondrial dynamics. Org Biomol Chem 2021; 19:801-808. [PMID: 33410855 DOI: 10.1039/d0ob02128h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondria are an indispensable organelle for energy production and regulation of cellular metabolism. The structural and functional alterations to mitochondria instigate pathological conditions of cancer, and aging-associated and neurodegenerative disorders. The normal functioning of mitochondria is maintained by quality control mechanisms involving dynamic fission, fusion, biogenesis and mitophagy. Under conditions of mitophagy and neurodegenerative diseases, mitochondria are exposed to different acidic environments and high levels of reactive oxygen species (ROS). Therefore stable molecular tools and methods are required to monitor the pathways linked to mitochondrial dysfunction and disease conditions. Herein, we report a far-red fluorescent probe (Mito-TG) with excellent biocompatibility, biostability, photostability, chemical stability and turn on emission for selective targeting of the mitochondrial matrix in different live cells. The probe was successfully employed for monitoring dynamic processes of mitophagy and amyloid beta (Aβ) induced mitochondrial structural changes.
Collapse
Affiliation(s)
- Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kolla Rajasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Vardhaman Babagond
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India.
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Thimmaiah Govindaraju
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064 Karnataka, India. and VNIR Biotechnologies Pvt. Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
42
|
Zhou J, Del Rosal B, Jaque D, Uchiyama S, Jin D. Advances and challenges for fluorescence nanothermometry. Nat Methods 2020; 17:967-980. [PMID: 32989319 DOI: 10.1038/s41592-020-0957-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Fluorescent nanothermometers can probe changes in local temperature in living cells and in vivo and reveal fundamental insights into biological properties. This field has attracted global efforts in developing both temperature-responsive materials and detection procedures to achieve sub-degree temperature resolution in biosystems. Recent generations of nanothermometers show superior performance to earlier ones and also offer multifunctionality, enabling state-of-the-art functional imaging with improved spatial, temporal and temperature resolutions for monitoring the metabolism of intracellular organelles and internal organs. Although progress in this field has been rapid, it has not been without controversy, as recent studies have shown possible biased sensing during fluorescence-based detection. Here, we introduce the design principles and advances in fluorescence nanothermometry, highlight application achievements, discuss scenarios that may lead to biased sensing, analyze the challenges ahead in terms of both fundamental issues and practical implementations, and point to new directions for improving this interdisciplinary field.
Collapse
Affiliation(s)
- Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Australia
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain. .,Fluorescence Imaging Group, Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.,Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, China
| |
Collapse
|
43
|
Wu MY, Liu L, Zou Q, Leung JK, Wang JL, Chou TY, Feng S. Simple synthesis of multifunctional photosensitizers for mitochondrial and bacterial imaging and photodynamic anticancer and antibacterial therapy. J Mater Chem B 2020; 8:9035-9042. [PMID: 32959039 DOI: 10.1039/d0tb01669a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensitizers (PSs), a critical drug administered for successful photodynamic therapy (PDT), have been well researched regarding their anticancer or bactericidal capability with high precision and low invasiveness. Although traditional PSs have been explored either in photodynamic anticancer or in antibiosis, they usually require synthesis with multiple steps, harsh synthetic conditions, and a complicated purification process for a single targeted product. Therefore, developing new multifunctional PSs with a simple synthesis and reactant flexibility which combine mitochondrial and bacterial imaging, efficient photodynamic anticancer and antibacterial effects is of the utmost urgency and of great importance for clinical applications. Herein, a large structural investigation of isoquinolinium-based PSs synthesized by a simple Rh-catalysed annulation reaction with high yields is presented. These lipophilic cationic PSs have a tunable photophysical property. LIQ-6 was found to perform not only as an ideal mitochondria targeting probe but also an effective cancer cell killing PS, and moreover, a tracker for bacterial imaging and ablation. LIQ-6 can be used to image a wide range of cancer cells and to monitor the photo-induced cell apoptosis, and simultaneously, it can also image and be a photodynamic germicide for both Gram-positive and Gram-negative bacteria. Furthermore, LIQ-6 shows great effectiveness in the wound healing process, showing its ability to be an ideal PS in vivo as well. This contribution is believed to offer a new platform for the construction of a theragnostic system for future practical applications in biology and biomedicine.
Collapse
Affiliation(s)
- Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Li Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qian Zou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jong-Kai Leung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Jia-Li Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
44
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
45
|
Tang W, Gao H, Li J, Wang X, Zhou Z, Gai L, Feng XJ, Tian J, Lu H, Guo Z. A General Strategy for the Construction of NIR-emitting Si-rhodamines and Their Application for Mitochondrial Temperature Visualization. Chem Asian J 2020; 15:2724-2730. [PMID: 32666700 DOI: 10.1002/asia.202000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Indexed: 11/07/2022]
Abstract
Si-rhodamine (SiR) is an ideal fluorophore because it possesses bright emission in the NIR region and can be implemented flexibly in living cells. Currently, several promising approaches for synthesizing SiR are being developed. However, challenges remain in the construction of SiR containing functional groups for bioimaging application. Herein, we introduce a general and simple approach by a condensation reaction of diarylsilylether and arylaldehyde in o-dichlorobenzene to synthesize a series of SiRs bearing various functional substituents. These SiRs have moderate to high quantum efficiency, tolerance to photobleaching, and high water solubility as well as NIR emitting, and their NIR fluorescence properties can be controlled through the photoinduced electron transfer (PET) mechanism. Fluorescence OFF-ON switching effect is observed for SiR 9 in the presence of acid, which is rationalized by DFT/TDDFT calculations. Moreover, reversible stimuli response toward temperature is achieved. Since positive charge enables mitochondrial targeting ability and chloromethyl unit can covalently immobilize the dyes onto the mitochondrial via click reaction between the benzyl choride and protein sulfhydryls, SiR 8 is identified as a valuable fluorescent marker to visualize the morphology and monitor the temperature change of mitochondria with high photostability.
Collapse
Affiliation(s)
- Weiguo Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Han Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jiaxin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xianhui Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xin Jiang Feng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
46
|
Yang XZ, Xu B, Shen L, Sun R, Xu YJ, Song YL, Ge JF. Series of Mitochondria/Lysosomes Self-Targetable Near-Infrared Hemicyanine Dyes for Viscosity Detection. Anal Chem 2020; 92:3517-3521. [PMID: 32066230 DOI: 10.1021/acs.analchem.0c00054] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Six mitochondria/lysosomes self-targetable and viscosity-sensitive dyes (1a-1f) were developed via simple structure modification on cyanine-derived dyes. They all showed remarkable OFF-ON fluorescent response to viscosity in the near-infrared region (652-690 nm) and exhibited good linear relationship with solution viscosity. The transient absorption spectra were used to evaluate the excited-state lifetime of dye 1a in different viscosity environments. Furthermore, cellular imaging assays indicated that different derivatives (1a-1f) with the same chromophore core exhibited different organelle-targeting abilities. Among them, dyes 1a-1c could sense lysosomal viscosity fluctuations while dyes 1d-1f could be applied in mitochondrial viscosity detections.
Collapse
Affiliation(s)
- Xiu-Zhi Yang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Bing Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Lei Shen
- Department of Physics, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ying-Lin Song
- Department of Physics, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.,Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
47
|
Hou MX, Liu LY, Wang KN, Chao XJ, Liu RX, Mao ZW. A molecular rotor sensor for detecting mitochondrial viscosity in apoptotic cells by two-photon fluorescence lifetime imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02108c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A two-photon fluorescent probe was developed for detecting mitochondrial viscosity during apoptosis of living cells by two-photon microscopy (TPM) and fluorescence lifetime imaging microscopy (FLIM) with good selectivity and highly biocompatible.
Collapse
Affiliation(s)
- Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Kang-Nan Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde)
- Foshan
- P. R. China
| | - Xi-Juan Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Rong-Xue Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
48
|
Liu C, Zhao T, He S, Zhao L, Zeng X. A lysosome-targeting viscosity-sensitive fluorescent probe based on a novel functionalised near-infrared xanthene-indolium dye and its application in living cells. J Mater Chem B 2020; 8:8838-8844. [DOI: 10.1039/d0tb01329c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The viscosity of lysosomes plays a significant role in modulating biological processes and reflects the status and function of this kind of organelle, e.g., locations, morphologies, and components.
Collapse
Affiliation(s)
- Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Tong Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
49
|
Miao W, Yu C, Hao E, Jiao L. Functionalized BODIPYs as Fluorescent Molecular Rotors for Viscosity Detection. Front Chem 2019; 7:825. [PMID: 31850314 PMCID: PMC6901978 DOI: 10.3389/fchem.2019.00825] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Abnormal changes of intracellular microviscosity are associated with a series of pathologies and diseases. Therefore, monitoring viscosity at cellular and subcellular levels is important for pathological research. Fluorescent molecular rotors (FMRs) have recently been developed to detect viscosity through a linear correlation between fluorescence intensity or lifetime and viscosity. Recently, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (boron dipyrrins or BODIPY) derivatives have been widely used to build FMRs for viscosity probes due to their high rotational ability of the rotor and potentially high brightness. In this minireview, functionalized BODIPYs as FMRs for viscosity detection were collected, analyzed and summarized.
Collapse
Affiliation(s)
| | | | | | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
50
|
Dahal D, McDonald L, Pokhrel S, Paruchuri S, Konopka M, Pang Y. A NIR-emitting cyanine with large Stokes shifts for live cell imaging: large impact of the phenol group on emission. Chem Commun (Camb) 2019; 55:13223-13226. [PMID: 31595909 PMCID: PMC6918678 DOI: 10.1039/c9cc06831g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are a limited number of near-infrared (NIR) emitting (λem = 700-900 nm) molecular probes for imaging applications. A NIR-emitting probe that exhibits emission at ∼800 nm with a large Stokes shift was synthesized and found to exhibit excellent selectivity towards mitochondria for live-cell imaging. The photophysical properties were attributed to an excited "cyanine structure" via intramolecular charge transfer (ICT) involving a phenol group.
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Lucas McDonald
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Sabita Pokhrel
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Michael Konopka
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|