1
|
Wang H, Yang TC, Zheng H, Jiang Z, Yang CM, Lai NC. Identification of true active sites in N-doped carbon-supported Fe 2P nanoparticles toward oxygen reduction reaction. J Colloid Interface Sci 2025; 678:806-817. [PMID: 39217696 DOI: 10.1016/j.jcis.2024.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tsung-Cheng Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Feng J, Wei L, Li H, Shen J. Evaluation of individual metal contribution on active sites tailoring in multimetallic oxygen evolution catalytic system. J Colloid Interface Sci 2025; 678:176-185. [PMID: 39186897 DOI: 10.1016/j.jcis.2024.08.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Synergistic effects among different metals have positioned multimetallic electrocatalysts as promising facilitators for enhancing the oxygen evolution reaction (OER), though understanding their precise mechanisms has remained elusive. Delving into the unique contributions of individual metals is crucial for comprehending the complex synergy within multimetallic systems. In this study, we employed quinary (Co, Ce, Fe, Cu, and Mn) molybdates as a model to systematically investigate the role of each metal species in tailoring active sites. Our systematic analyses unveiled the presence of crucial oxygen vacancies, which can be considered as the active sites in OER. Comparative analyses of the top-performing quinary molybdates and their quaternary counterparts highlighted distinct electronic interactions and varying densities of oxygen vacancies, indicative of the diverse electron and vacancy engineering capabilities inherent to different metals. Mott-schottky plots demonstrated the predominant contribution of Mn to specific catalytic activity, followed by Ce, Fe, Cu, and Co. Leveraging an in-situ methanol probing method, it was found that the introduction of Cu, Ce, Fe, and Mn weakened intermediate adsorption, with Mn and Ce having the most significant effects, whereas Co strengthened adsorption. This work can advance our comprehension of the role played by individual metals within multimetallic catalysts, thereby promoting a more profound understanding of synergistic effects.
Collapse
Affiliation(s)
- Jiejie Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liling Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Huayi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Jianquan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| |
Collapse
|
3
|
Dai Y, Chen XH, Fu HC, Zhang Q, Li T, Li NB, Luo HQ. In-situ revealed inhibition of W 2C to excessive oxidation of CoOOH for high-efficiency alkaline overall water splitting. J Colloid Interface Sci 2024; 676:425-434. [PMID: 39033677 DOI: 10.1016/j.jcis.2024.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The design of low-cost, efficient, and stable multifunctional basic catalysts to replace the high-cost noble metal catalysts remains a challenge. In this work, we report a dual-component Co-W2C catalytic system which achieves excellent properties of hydrogen evolution reaction (HER, η10 = 63 mV), oxygen evolution reaction (OER, η10 = 259 mV) and overall water splitting (η10 = 1.53 V) by adjusting the interfacial electronic structure of the material. Further density functional theory (DFT) calculations indicate that the efficient electronic modulation at the W2C/Co interface leads to the generation of favorable hydroxyl and hydrogen species energetics on the hybrid surface. The results of the in-situ Raman spectra show that W2C can suppress the excessive oxidation of the active site during the OER process, and the existence of core-shell structure also protects the W2C substrate. The stable and efficient catalytic performance of Co-W2C is attributed to the common advantages of structural and interface manipulation.
Collapse
Affiliation(s)
- Yu Dai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Li Q, Huang J, Lin L, Fan G. Regulating cobalt-nitrogen function centers via Cu incorporation enhances ciprofloxacin destruction through peroxymonosulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124683. [PMID: 39111527 DOI: 10.1016/j.envpol.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Metal-nitrogen (M-N) coupling has shown promise as a catalytic active component for various reactions. However, the regulation of heterogeneous catalytic materials with M-N coupling for peroxymonosulfate (PMS) activation to enhance the degradation efficiency and reusability of antibiotics remains a challenge. In this study, an efficient modulation of M-N coupling was achieved through the incorporation of Cu into Co4N to form a Cu-Co4N composite with sea urchin-like morphology assembled by numerous nano-needles using hydrothermal and nitriding processes. This modulation led to enhanced PMS activation for ciprofloxacin (CIP) degradation. The Cu-Co4N/PMS system demonstrated exceptional removal efficiency with a degradation rate of 95.85% within 30 min and can be reused for five time without obvious loss of its initial activity. Additionally, the catalyst displayed a high capacity for degrading various challenging organic pollutants, as well as remarkable stability, resistance to interferences, and adaptability to pH changes. The synergistic effect between Co and Cu facilitated multiple redox cycles, resulting in the generation of reactive oxidized species. The primary active species involved in the catalytic degradation process included 1O2, SO4•-, O2•-, •OH, and e-, with 1O2 and SO4•- playing the most significant roles. The degradation pathways and toxicity of the intermediates for CIP were unveiled. This study offers valuable insights into the regulation of M-N centers for degrading antibiotics through PMS activation.
Collapse
Affiliation(s)
- Qiulin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jieling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Lan Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
5
|
Qin S, Liang J, Luo S, Feng J, Xu P, Liu K, Li J. Rational designing NiVO 3@CoNi-MOF heterostructures on activated carbon cloth for high-performance asymmetric supercapacitors and oxygen evolution reaction. J Colloid Interface Sci 2024; 673:321-332. [PMID: 38878367 DOI: 10.1016/j.jcis.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/26/2024]
Abstract
Binder-free self-supported carbon cloth electrode provides novel strategies for the preparation of MOFs, effectively improving the conductivity and promoting charge transfer. Combining MOFs with vanadate to form a unique heterogeneous structure provides a large specific surface area and more active sites, further enhancing the kinetics of MOFs. Herein, a self-supported carbon cloth electrode is prepared by in-situ growth of CoNi-MOFs on activated carbon cloth (AC) and coating with NiVO3. The heterostructure increases the specific surface area and exposes more active sites to promote the adsorption and diffusion of ions, thus enhancing the kinetic activity and optimizing charge storage behavior. As expected, the NiVO3@CoNi-MOF/AC exhibits a specific capacitance of up to 19.20 F/cm2 at 1 mA/cm2. The asymmetric supercapacitors (ASCs) assembled by NiVO3@CoNi-MOF/AC and annealed activated carbon cloth achieve an energy density of 1.27 mWh/cm2 at a power density of 4 mW/cm2 and have a capacitance retention of 96.43 % after 10,000 cycles. In addition, the NiVO3@CoNi-MOF/AC as electrocatalyst has an overpotential of 370 mV at 10 mA/cm2 and a Tafel slope of 208 mV dec-1, demonstrating remarkable electrocatalytic oxygen evolution reaction performance. These unique heterostructures endow the electrode with more electrochemical selectivity and provide new key insights for designing multifunctional materials.
Collapse
Affiliation(s)
- Shumin Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jianying Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Shuang Luo
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong, China
| | - Jinglv Feng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Pengfei Xu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Kang Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jien Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Chen M, Liu FM, Zhao MY, Qian X, Liu L, Wan R, Yuan ZY, Li CS, Niu QY. Rational Synthesis of Spongy Fe 3N@N-Doped Carbon Nanorods with Controlled Topography and Porosity for Enhanced Energy Storage Anodes in Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39468400 DOI: 10.1021/acs.langmuir.4c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Iron nitrides with the merits of high theoretical capacities, cost-effectiveness, and good electronic/ionic conductivity have been recognized as attractive anode candidates for lithium-ion batteries (LIBs). Carbon compositing, pore engineering, and nanostructure construction have proved to be effective strategies to prepare high-performance metal nitride anodes for LIBs. Herein, we synthesized a series of Fe3N-embedded and N-doped carbon nanorods (Fe3N@NCNR) with a hierarchical porous system and controllable topography by metal-catalyzed graphitization-nitridization of the Fe(III)-triazole framework (Fe-MOF) and thermal evaporation of the triblock copolymer F127 template assembled in Fe-MOF via hydrogen bonding interaction, followed by the air oxidation and urea-assisted ammonolysis processes. The Fe3N@NCNR as anodes for LIBs display extraordinary lithium storage capabilities with a high reversible capacity of 830 mA h g-1 at 0.1 C, a good rate performance of 576 mAh g-1 at 5 C, and a long-term cycling stability of 742 mA h g-1 over 600 cycles at 1 C. Such outstanding performance benefits from the spongy carbon nanorods with rich macropores for rapid electronic/ionic transport and effective accommodation of electrode volume expansion, abundant N-doped meso-/microporous carbon for the additional storage of Li+ via capacitive effect, and the efficient utilization of Fe3N nanoparticles uniformly distributed through carbon nanorods. Importantly, this work introduces an effective strategy to construct superior performance nitride anodes from MOF surfactants based on hydrogen bonding-driven interface self-assembly and provides insight into the preparation of highly efficient nanoarchitectures for Li+ storage.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Feng-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ming-Yang Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xing Qian
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rong Wan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chun-Sheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qing-Yuan Niu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
7
|
Li T, Du T, Xu S, Zhang L, Peng Y, Zhao X, Zhou X, Yan C, Qian T. Weakening O-Intermediates Adsorption Strength Over the Pd Metallene via Lewis-Acidic Site Modulation for Enhanced Oxygen Reduction. Inorg Chem 2024; 63:19450-19457. [PMID: 39333885 DOI: 10.1021/acs.inorgchem.4c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The reasonable design and modulation of the electronic properties of Pd metallene are acknowledged as a promising avenue for enhancing the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs), yet they remain a formidable challenge. Herein, a thin-sheet structure of Zr-doped Pd metallene (PdZr metallene) with abundant defects is proposed using a facile wet-chemical approach for efficient and highly durable ORR electrocatalysis. Multiple microstructural analyses uncover that orchestrated electronic and oxophilic regulation of PdZr metallene via Lewis-acidic Zr site modulation could concurrently optimize the electronic configuration of Pd, downshift the d-band center of Pd, and, thus, promote the intrinsic activity. Benefiting from the unique two-dimensional morphology and electronic structure optimization facilitated by the Zr coupling effect, the resultant PdZr metallene demonstrates significantly enhanced ORR electrocatalytic performance in basic solutions, with a high half-wave potential (E1/2) of 0.87 V and commendable stability for 30 000 s, surpassing those of Pd metallene and various advanced Pd-based catalysts reported in the literature. Encouragingly, the PdZr metallene-based AEMFC achieves an increased maximum power density (90.4 mW cm-2) and impressive robustness over 12 h in an alkaline environment, manifesting the practical application of PdZr metallene in AEMFCs. This study showcases the applicability of PdZr metallene via Lewis acid site regulation for fabricating highly active electrocatalysts for high-performance AEMFCs.
Collapse
Affiliation(s)
- Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuya Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yukun Peng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xianzhe Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Panetti GB, Kim J, Myong MS, Bird MJ, Scholes GD, Chirik PJ. Photodriven Ammonia Synthesis from Manganese Nitrides: Photophysics and Mechanistic Investigations. J Am Chem Soc 2024; 146:27610-27621. [PMID: 39330978 DOI: 10.1021/jacs.4c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Ammonia synthesis from N,N,O,O-supported manganese(V) nitrides and 9,10-dihydroacridine using proton-coupled electron transfer and visible light irradiation in the absence of precious metal photocatalysts is described. While the reactivity of the nitride correlated with increased absorption of blue light, excited-state lifetimes determined by transient absorption were on the order of picoseconds. This eliminated excited-state manganese nitrides as responsible for bimolecular N-H bond formation. Spectroscopic measurements on the hydrogen source, dihydroacridine, demonstrated that photooxidation of 9,10-dihydroacridine was necessary for productive ammonia synthesis. Transient absorption and pulse radiolysis data for dihydroacridine provided evidence for the presence of intermediates with weak E-H bonds, including the dihydroacridinium radical cation and both isomers of the monohydroacridine radical, but notably these intermediates were unreactive toward hydrogen atom transfer and net N-H bond formation. Additional optimization of the reaction conditions using higher photon flux resulted in higher rates of the ammonia production from the manganese(V) nitrides due to increased activation of the dihydroacridine.
Collapse
Affiliation(s)
- Grace B Panetti
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Michele S Myong
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory D Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Long X, Xie Y, Li Q, Zhu S, Chen Y, Luo F, Yang Z. Built-in Electric Field in 1D/2D Heterostructure Boosts Zinc Air Battery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52364-52372. [PMID: 39295081 DOI: 10.1021/acsami.4c10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The realization of a rechargeable zinc-air battery (ZAB) is hindered by the low intrinsic oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) activities. In this work, an abundant built-in electric field is noticed in a 1D/2D CoO/CoS2 heterostructure, triggering electron transfer from CoO to CoS2 associated with a downshifted d band center of the Co atom mitigating the strong electrochemical adsorption of *OH species on active sites; thereby, boosted OER and ORR performance are achieved. Namely, the OER specific activity of CoO/CoS2 is enhanced by 3.8- and 2.2-fold compared to the counterpart of CoO and CoS2, respectively. Furthermore, the kinetic current density of CoO/CoS2, a fingerprint of intrinsic ORR activity, is promoted by 46 and 6.6 times relative to CoO and CoS2. The rechargeable ZAB performance attains 215.6 mW cm-2, 1.6-times better than Pt/C-IrO2. Moreover, the superior performance remained for 600 h. Besides, the battery performance of the all-solid-state ZAB reaches 83.8 mW cm-2, revealing its promising application in wearable device.
Collapse
Affiliation(s)
- Xue Long
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Yuhua Xie
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Qing Li
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Shiao Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Yazhou Chen
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Fang Luo
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| |
Collapse
|
10
|
Liu Y, Chen Y, Li Q, Shi J, Liu B. Electrocatalysis of Co/Co xO y nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction. J Colloid Interface Sci 2024; 679:253-261. [PMID: 39362150 DOI: 10.1016/j.jcis.2024.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yumei Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianchao Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, PR China.
| |
Collapse
|
11
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
12
|
Glauber JP, Lorenz J, Liu J, Müller B, Bragulla S, Kostka A, Rogalla D, Wark M, Nolan M, Harms C, Devi A. A sustainable CVD approach for ZrN as a potential catalyst for nitrogen reduction reaction. Dalton Trans 2024; 53:15451-15464. [PMID: 39037344 DOI: 10.1039/d4dt01252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In pursuit of developing alternatives for the highly polluting Haber-Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal-organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas ab initio molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O2, yielding a Zr-O-N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.
Collapse
Affiliation(s)
- Jean-Pierre Glauber
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Julian Lorenz
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Ji Liu
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Björn Müller
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Sebastian Bragulla
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
- Institute of Building Energetics, Thermal Engineering and Energy Storage, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
| | - Aleksander Kostka
- Center for Interface Dominated Materials (ZGH), Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Detlef Rogalla
- RUBION, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Michael Wark
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Corinna Harms
- Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
| | - Anjana Devi
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
- Chair of Materials Chemistry, Bergstr. 66, 01069, Dresden, Germany
| |
Collapse
|
13
|
Zeng R, Li H, Shi Z, Xu L, Meng J, Xu W, Wang H, Li Q, Pollock CJ, Lian T, Mavrikakis M, Muller DA, Abruña HD. Origins of enhanced oxygen reduction activity of transition metal nitrides. NATURE MATERIALS 2024:10.1038/s41563-024-01998-7. [PMID: 39227466 DOI: 10.1038/s41563-024-01998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Transition metal nitride (TMN-) based materials have recently emerged as promising non-precious-metal-containing electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. However, the lack of fundamental understanding of the oxide surface has limited insights into structure-(re)activity relationships and rational catalyst design. Here we demonstrate how a well-defined TMN can dictate/control the as-formed oxide surface and the resulting ORR electrocatalytic activity. Structural characterization of MnN nanocuboids revealed that an electrocatalytically active Mn3O4 shell grew epitaxially on the MnN core, with an expansive strain along the [010] direction to the surface Mn3O4. The strained Mn3O4 shell on the MnN core exhibited an intrinsic activity that was over 300% higher than that of pure Mn3O4. A combined electrochemical and computational investigation indicated/suggested that the enhancement probably originates from a more hydroxylated oxide surface resulting from the expansive strain. This work establishes a clear and definitive atomistic picture of the nitride/oxide interface and provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TMNs, critical for other catalytic interfaces for different electrochemical processes.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Lang Xu
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Qihao Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
15
|
Pramoda K, Chithaiah P, Rao CNR. Rhombohedrally stacked layered transition metal dichalcogenides and their electrocatalytic applications. NANOSCALE 2024; 16:15909-15927. [PMID: 39145442 DOI: 10.1039/d4nr02021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Layered transition metal dichalcogenides (TMDCs) are extensively investigated as catalyst materials for a wide range of electrochemical applications due to their high surface area and versatile electronic and chemical properties. Bulk TMDCs are van der Waals solids that possess strong in-plane bonding and weak inter-layer interactions. In the few-layer 2D TMDCs, several polymorphic structures have been reported as each individual layer can either retain octahedral or trigonal prismatic coordination. Among them, 1T (tetragonal), 2H (hexagonal) and 3R (rhombohedral) phases are very common. These polymorphs can display discrepancies in their catalytic activity as their electronic structure diverges due to different d orbital filling states. The broken inversion symmetry and large exposed edge sites of some of the 3R-phase TMDCS such as MoS2, NbS2 and TaS2 appear to be advantageous for electrocatalytic water reduction and battery applications. We describe recent studies in phase engineering of 2D TMDCs, particularly aiming at the 3R polytype and their electrocatalytic properties. Redox ability primarily depends on a distinct polymorphic phase in which TMDCs are isolated, and hence, with rich polymorphic structures being reported, numerous new catalytic applications can be realized. Phase conversion from 2H to 3R phase in some TMDCs enhances structural integrity and establishes robustness under harsh chemical conditions.
Collapse
Affiliation(s)
- K Pramoda
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Pallellappa Chithaiah
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| | - C N R Rao
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| |
Collapse
|
16
|
Li J, Yin C, Wang S, Zhang B, Feng L. Built-in electrophilic/nucleophilic domain of nitrogen-doped carbon nanofiber-confined Ni 2P/Ni 3N nanoparticles for efficient urea-containing water-splitting reactions. Chem Sci 2024; 15:13659-13667. [PMID: 39211499 PMCID: PMC11351610 DOI: 10.1039/d4sc01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transferring urea-containing waste water to clean hydrogen energy has received increasing attention, while challenges are still faced in the sluggish catalytic kinetics of urea oxidation. Herein, a novel hybrid catalyst of Ni2P/Ni3N embedded in nitrogen-doped carbon nanofiber (Ni2P/Ni3N/NCNF) is developed for energy-relevant urea-containing water-splitting reactions. The built-in electrophilic/nucleophilic domain resulting from the electron transfer from Ni2P to Ni3N accelerates the formation of high-valent active Ni species and promotes favourable urea molecule adsorption. A spectral study and theoretical analysis reveal that the negatively shifted Ni d-band centre in Ni2P/Ni3N/NCNF weakens the adsorption of intermediate CO2 and facilitates its desorption, thereby improving the urea oxidation reaction kinetics. The overall reaction process is also optimized by minimizing the energy barrier of the rate-determining step. Following the stability test, the surface reconstruction of the pre-catalyst is discussed, where an amorphous layer of NiOOH as the real active phase is formed on the surface/interface of Ni2P/Ni3N for urea oxidation. Benefiting from these characteristics, a high current density of 151.11 mA cm-2 at 1.54 V vs. RHE is obtained for urea oxidation catalysed by Ni2P/Ni3N/NCNF, exceeding that of most of the similar catalysts. A low cell voltage of 1.39 V is required to reach 10 mA cm-2 for urea electrolysis, which is about 200 mV less than that of the general water electrolysis. The current work will be helpful for the development of advanced catalysts and their application in the urea-containing waste water transfer to clean hydrogen energy.
Collapse
Affiliation(s)
- Jiaxin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Chun Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Ligang Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
17
|
Li Q, Zhao J, Li P, Xu Z, Feng J, Chen B, Liu R. Coembedding Fe Single Atom-Coupled MoC Nanoparticles in N-Doped Hierarchically Porous Carbon Cubes for Oxygen Electroreduction. ACS NANO 2024; 18:21975-21984. [PMID: 39115423 DOI: 10.1021/acsnano.4c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Promotion of oxygen reduction reaction (ORR) kinetics, to a large extent, depends on the rational modulation of the electronic structure and mass diffusion of electrocatalysts. Herein, a ferrocene (Fc)-assisted strategy is developed to prepare Fc-trapped ZnMo-hybrid zeolitic imidazolate framework (Fc@ZnMo-HZIF-50) and the derived Fe single atom coupling with MoC nanoparticles, coembedded in hierarchically porous N-doped carbon cubes (MoC@FeNC-50). The introduced Fc is utilized not only as an iron source for single atoms but also as a morphology regulator for generating a hierarchically porous structure. The redistribution of electrons between Fe single atoms and MoC nanoparticles effectively promotes the adsorption of O2 and the formation of *OOH intermediates during the ORR process. Along with a 3D hierarchically porous architecture for enhanced mass transport, the as-fabricated MoC@FeNC-50 presents excellent activity (E1/2 = 0.83 V) and durability (only 9.5% decay in current after 40000 s). This work could inspire valuable insights into the construction of efficient electrocatalysts through electron configuration and kinetics engineering.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jing Zhao
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Peng Li
- Diamond Light Source, Harwell Campus, Oxfordshire OX11 0DE, U.K
| | - Zhengrong Xu
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jie Feng
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bo Chen
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Rui Liu
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
18
|
Jiang L, Wu D, Huang Z, Chen F, Chen K, Ibragimov AB, Gao J. In Situ Pyrolysis of ZIF-67 to Construct Co 2N 0.67@ZIF-67 for Photocatalytic CO 2 Cycloaddition Reaction. Inorg Chem 2024; 63:14761-14769. [PMID: 39056170 DOI: 10.1021/acs.inorgchem.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The development of heterogeneous catalysts with abundant active sites is pivotal for enhancing the efficiency of photothermal CO2 conversion. Herein, we report the construction of Co2N0.67@ZIF-67 through the in situ pyrolysis of ZIF-67 under low-temperature pyrolysis conditions. During the pyrolysis process, the crystal structure of ZIF-67 is predominantly preserved concurrently with the formation of Co2N0.67 nanoparticles (NPs) within the ZIF-67 pores. The optimal catalyst Co2N0.67@ZIF-67(450,2) not only possesses high photothermal efficiency but also can efficiently activate CO2. Benefiting from these characteristics, Co2N0.67@ZIF-67(450,2) exhibited significant catalytic activity in the photocatalytic cycloaddition of CO2 and epichlorohydrin. The yield of (chloromethyl)ethylene carbonate reached 95%, which is more than 4 times higher than that of ZIF-67 under visible light irradiation (300 W·m2 Xe lamp, 3 h). This study could offer an alternative approach to enhance the photocatalytic activity of MOFs through low-temperature pyrolysis.
Collapse
Affiliation(s)
- Lingjing Jiang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dengqi Wu
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zishan Huang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Kai Chen
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | | | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
19
|
Liu Q, Mu X, Kang F, Xie S, Yan CH, Tang Y. Simultaneous Interface Engineering and Phase Tuning of CeO 2-Decorated Catalysts for Boosted Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402726. [PMID: 38651509 DOI: 10.1002/smll.202402726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.
Collapse
Affiliation(s)
- Qingyi Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fuyun Kang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shiyu Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
20
|
Shi J, Yang ZX, Nie J, Huang T, Huang GF, Huang WQ. Regioselective super-assembly of Prussian blue analogue. J Colloid Interface Sci 2024; 667:44-53. [PMID: 38615622 DOI: 10.1016/j.jcis.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The construction of high-asymmetrical structures demonstrates significant potential in improving the functionality and distinctness of nanomaterials, but remains a considerable challenge. Herein, we develop a one-pot method to fabricate regioselective super-assembly of Prussian blue analogue (PBA) -- a PBA anisotropic structure (PBA-AS) decorated with epitaxial modules--using a step-by-step epitaxial growth on a rapidly self-assembled cubic substrate guided by thiocyanuric acid (TCA) molecules. The epitaxial growth units manifest as diverse geometric shapes, which are predominantly concentrated on the {100}, {111}, or {100}+{111} crystal plane of the cubic substrate. The crystal plane and morphology of epitaxial module can be regulated by changing the TCA concentration and reaction temperature, enabling a high level of controllability over specific assembly sites and structures. To illustrate the advantage of the asymmetrical structure, phosphated PBA-AS demonstrates improved performance in the oxygen evolution reaction compared to simple phosphated PBA nanocube. This method offers valuable insights for designing asymmetrical nanomaterials with intricate architectures and versatile functionalities.
Collapse
Affiliation(s)
- Jinghui Shi
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Zi-Xuan Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Jianhang Nie
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Tao Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China.
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
21
|
Feng H, Han Y, Wang Y, Chai DF, Ran J, Zhang W, Zhang Z, Dong G, Qi M, Guo D. Advancing overall water splitting via phase-engineered amorphous/crystalline interface: A novel strategy to accelerate proton-coupled electron transfer. J Colloid Interface Sci 2024; 667:237-248. [PMID: 38636225 DOI: 10.1016/j.jcis.2024.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Traditional phase engineering enhances conductivity or activity by fully converting electrocatalytic materials into either a crystalline or an amorphous state, but this approach often faces limitations. Thus, a practical solution entails balancing the dynamic attributes of both phases to maximize an electrocatalyst's functionality is urgently needed. Herein, in this work, Co/Co2C crystals have been assembled on the amorphous N, S co-doped porous carbon (NSPC) through hydrothermal and calcination processes. The stable biphase structure and amorphous/crystalline (A/C) interface enhance conductivity and intrinsic activity. Moreover, the adsorption ability of water molecules and intermediates is improved significantly attributed to the rich oxygen-containing groups, unsaturated bonds, and defect sites of NSPC, which accelerates proton-coupled electron transfer (PCET) and overall water splitting. Consequently, A/C-Co/Co2C/NSPC (Co/Co2C/NSPC with amorphous/crystalline interface) exhibits outstanding behavior for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), requiring the overpotential of 240.0 mV and 70.0 mV to achieve 10 mA cm-2. Moreover, an electrolyzer assembled by A/C-Co/Co2C/NSPC-3 (anode) and A/C-Co/Co2C/NSPC-2 (cathode) demonstrates a low drive voltage of 1.54 V during overall water splitting process. Overall, this work has pioneered the coexistence of crystalline/amorphous phases in electrocatalysts and provided new insights into phase engineering.
Collapse
Affiliation(s)
- Hui Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yue Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yutong Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jianxin Ran
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Zhuanfang Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Meili Qi
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China.
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
22
|
Yu J, Huang C, Usoltsev O, Black AP, Gupta K, Spadaro MC, Pinto-Huguet I, Botifoll M, Li C, Herrero-Martín J, Zhou J, Ponrouch A, Zhao R, Balcells L, Zhang CY, Cabot A, Arbiol J. Promoting Polysulfide Redox Reactions through Electronic Spin Manipulation. ACS NANO 2024; 18:19268-19282. [PMID: 38981060 PMCID: PMC11271176 DOI: 10.1021/acsnano.4c05278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.
Collapse
Affiliation(s)
- Jing Yu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
| | - Chen Huang
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Oleg Usoltsev
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Ashley P. Black
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Kapil Gupta
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Maria Chiara Spadaro
- Department
of Physics and Astronomy “Ettore Majorana”, University of Catania, via S. Sofia 64, 95123 Catania, Italy
- CNR-IMM, via S. Sofia
64, 95123 Catania, Italy
| | - Ivan Pinto-Huguet
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Marc Botifoll
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Canhuang Li
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | | | - Jinyuan Zhou
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Alexandre Ponrouch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ruirui Zhao
- School
of Chemistry, South China Normal University, 510006 Guangzhou, China
| | - Lluís Balcells
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Andreu Cabot
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Hu H, Xu Z, Zhang Z, Yan X, Zhu Y, Attfield JP, Yang M. Electrocatalytic Oxygen Reduction Using Metastable Zirconium Suboxide. Angew Chem Int Ed Engl 2024; 63:e202404374. [PMID: 38726699 DOI: 10.1002/anie.202404374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 06/19/2024]
Abstract
Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC=nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, 116024, China
| |
Collapse
|
24
|
Zhou T, Wu X, Liu S, Wang A, Liu Y, Zhou W, Sun K, Li S, Zhou J, Li B, Jiang J. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202301779. [PMID: 38416074 DOI: 10.1002/cssc.202301779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuqi Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| |
Collapse
|
25
|
Iqbal A, Skulason E, Abghoui Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. Chemphyschem 2024; 25:e202300991. [PMID: 38568155 DOI: 10.1002/cphc.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Indexed: 05/15/2024]
Abstract
We conducted Density Functional Theory calculations to investigate a class of materials with the goal of enabling nitrogen activation and electrochemical ammonia production under ambient conditions. The source of protons at the anode could originate from either water splitting or H2, but our specific focus was on the cathode reaction, where nitrogen is reduced into ammonia. We examined the conventional associative mechanism, dissociative mechanism, and Mars-van Krevelen mechanism on the (111) facets of the NaCl-type structure found in early transition metal carbonitrides, including Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Sc, Y, and W. We explored the catalytic activity by calculating the free energy of all intermediates along the reaction pathway and constructing free energy diagrams to identify the steps that determine the reaction's feasibility. Additionally, we closely examined the potential for catalyst poisoning within the electrochemical environment, considering the bias required to drive the reaction. Furthermore, we assessed the likelihood of catalyst decomposition and the potential for catalyst regeneration among the most intriguing carbonitrides. Our findings revealed that the only carbonitride catalyst considered here exhibiting both activity and stability, capable of self-regeneration and nitrogen-to-ammonia activation, is NbCN with a low potential-determining step energy of 0.58 eV. This material can facilitate ammonia formation via a mixed associative-MvK mechanism. In contrast, other carbonitrides of this crystallographic orientation are likely to undergo decomposition, reverting to their parent metals under operational conditions.
Collapse
Affiliation(s)
- Atef Iqbal
- Science Institute of the University of Iceland
| | - Egill Skulason
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland
| | | |
Collapse
|
26
|
Fang Y, Li L, Gan Y, Gu J, Zhang W, Liu J, Zhang D, Liu Q. Ultrafast and Durable Sodium-Ion Storage of Pseudocapacitive VN@C Hybrid Nanorods from Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309783. [PMID: 38295009 DOI: 10.1002/smll.202309783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Vanadium nitride (VN) is a promising electrode material for sodium-ion storage due to its multivalent states and high electrical conductivity. However, its electrochemical performance has not been fully explored and the storage mechanism remains to be clarified up to date. Here, the possibility of VN/carbon hybrid nanorods synthesized from a metal-organic framework for ultrafast and durable sodium-ion storage is demonstrated. The VN/carbon electrode delivers a high specific capacity (352 mA h g-1), fast-charging capability (within 47.5 s), and ultralong cycling stability (10 000 cycles) for sodium-ion storage. In situ XRD characterization and density functional theory (DFT) calculations reveal that surface-redox reactions at vanadium sites are the dominant sodium-ion storage mechanism. An energy-power balanced hybrid capacitor device is verified by assembling the VN/carbon anode and active carbon cathode, and it shows a maximum energy density of 103 Wh kg-1 at a power density of 113 W kg-1.
Collapse
Affiliation(s)
- Yan Fang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Gan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Sharma NK, Rana A, Panwar O, Rana AS. Nanomechanical inhomogeneities in CVA-deposited titanium nitride thin films: Nanoindentation and finite element method investigations. Heliyon 2024; 10:e33239. [PMID: 39022080 PMCID: PMC11252795 DOI: 10.1016/j.heliyon.2024.e33239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Refractory metals that can withstand at high temperatures and harsh conditions are of utmost importance for solar-thermal and energy storage applications. Thin films of TiN have been deposited using cathodic vacuum arc deposition at relatively low temperatures ∼300 °C using the substrate bias ∼ -60 V. The nanomechanical properties of these films were investigated using nanoindentation and the spatial fluctuations were observed. The nanoindentation results were simulated using finite element method through Johnson-Cook model. A parametric study was conducted, and 16 different models were simulated to predict the hardening modulus, hardening exponent, and yield stress of the deposited film. The predicted values of elastic modulus, yield stress, hardening modulus and hardening exponent as 246 GPa, 2500 MPa, 25000 MPa and 0.1 respectively are found to satisfactorily explain the experimental load-indentation curves. We have found the local nitridation plays an important role on nanomechanical properties of TiN thin films and confirms that the nitrogen deficient regions are ductile with low yield stress and hardening modulus. This study further opens the opportunities of modelling the nanoscale system using FEM analysis.
Collapse
Affiliation(s)
- Neeraj Kumar Sharma
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - Anchal Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - O.S. Panwar
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - Abhimanyu Singh Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| |
Collapse
|
28
|
Zhang ST, Meng Y, Hou PX, Liu C, Wu F, Li JC. Multiscale nanoengineering fabrication of air electrode catalysts in rechargeable Zn-air batteries. J Colloid Interface Sci 2024; 664:1012-1020. [PMID: 38508029 DOI: 10.1016/j.jcis.2024.03.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The development of cost-effective, high-activity and stable catalysts to accelerate the sluggish kinetics of cathodic oxygen reduction/evolution reactions (ORR/OER) plays a critical part in commercialization application of rechargeable Zn-air batteries (RZABs). Herein, a multiscale nanoengineering strategy is developed to simultaneously stabilize Co-doped Fe nanoparticles originated from metal-organic framework-derived approach and atomic Fe/Co sites derived from metal nanoparticle-atomized way on N-doped hierarchically tubular porous carbon substrate. Thereinto, metal nanoparticles and single atoms are respectively used to expedite the OER and ORR. Consequently, the final material is acted as an oxygen electrode catalyst, displaying 0.684 V of OER/ORR potential gap, 260 mW cm-2 of peak power density for liquid-state RZAB, 110 mW cm-2 of peak power density for solid-state RZAB, and 1000 charge-discharge cycles without decay, which confirms great potential for energy storage and conversion applications.
Collapse
Affiliation(s)
- Shu-Tai Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Meng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feng Wu
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
29
|
Han X, Mou T, Islam A, Kang S, Chang Q, Xie Z, Zhao X, Sasaki K, Rodriguez JA, Liu P, Chen JG. Theoretical Prediction and Experimental Verification of IrO x Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024. [PMID: 38859684 DOI: 10.1021/jacs.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.
Collapse
Affiliation(s)
- Xue Han
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianyou Mou
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qiaowan Chang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Xiong Y, Jiang J, Liu Y, Ji X, Chen C, Wang K. Boosting 5-Hydroxymethylfurfural Electrooxidation by Porous Biochar via Loading Numerous Surface-Exposed Cobalt Phosphonates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11450-11459. [PMID: 38777791 DOI: 10.1021/acs.langmuir.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The electrooxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) demonstrated its unique superiority, not only in reducing overpotential and improving energy conversion efficiency for green hydrogen production but also in utilizing abundant biomass resources and producing high-value-added chemicals. However, designing highly efficient electrocatalysts for HMF electrooxidation (HMF-EOR) with low cost and high performance for large-scale production remained a huge challenge. Herein, we introduced an easy one-step activation process to produce P-doped porous biochar loaded with multiple crystal surfaces exposed to CoP2O6 catalysts (CoP2O6@PC), which exhibited outstanding electrooxidation performance. To achieve a current density of 50 mA cm-2, only a low overpotential of 200 mV was needed for the electrooxidation of HMF in 1.0 M KOH + 10 mM HMF. This performance far surpassed that of other similar materials. CoP2O6@PC exhibited outstanding HMF-EOR performance with high conversion (nearly 100%), selectivity (97.1%), faradaic efficiency (95.3%), and robust stability. This work represents a promising strategy to fabricate macroscale and low-cost HMF-EOR electrocatalysts and achieve potential industrial applications of HMF-EOR.
Collapse
Affiliation(s)
- Yongzhi Xiong
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianchun Jiang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Yajun Liu
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xialin Ji
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Changzhou Chen
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kui Wang
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Institute of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| |
Collapse
|
31
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
32
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
33
|
Lv D, Yin D, Yang Y, Shao H, Li D, Wang T, Ma Q, Li F, Yu W, Han C, Dong X. Self-supporting multi-channel Janus carbon fibers: A new strategy to achieve an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 663:270-279. [PMID: 38401447 DOI: 10.1016/j.jcis.2024.02.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
A new type of self-supporting multi-channel Janus carbon fibers with efficient water splitting has been successfully manufactured using a specially designed parallel spinneret through electrospinning technology and subsequent carbonization technique. Every single Janus fiber composes of a half side of Mo2C and the other half side of Ni components as Mo2C, Ni embedded in N-doped multi-channel Janus carbon fibers ([Mo2C/C]//[Ni/C]-NMCFs) for overall water splitting. Under optimized condition, the hydrogen evolution reaction overpotential of [Mo2C/C]//[Ni/C]-NMCFs (62 mV) is just 24 mV higher than 20 wt% Pt/C (38 mV) at a current density of 10 mA cm-2. Furthermore, it achieves current density of 10 mA cm-2 to require an overpotential of 324 mV for oxygen evolution reaction. Additionally, the cell assembled by the identical [Mo2C/C]//[Ni/C]-NMCFs catalyst as both the cathode and anode needs only 1.607 V at a current density of 10 mA cm-2, which is only 0.022 V higher than that of Pt/C-IrO2 electrodes. Moreover, [Mo2C/C]//[Ni/C]-NMCFs catalyst also exhibits a long-term stability. The synergistic effect and unique heterostructure of Mo2C and Ni enhance the catalytic activity.
Collapse
Affiliation(s)
- Dongxue Lv
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Duanduan Yin
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China.
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Feng Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China.
| |
Collapse
|
34
|
Qian S, Dai T, Feng K, Li Z, Sun X, Chen Y, Nie K, Yan B, Cheng Y. Design Principle of Molybdenum-Based Metal Nitrides for Lattice Nitrogen-Mediated Ammonia Production. JACS AU 2024; 4:1975-1985. [PMID: 38818058 PMCID: PMC11134358 DOI: 10.1021/jacsau.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Chemical looping ammonia synthesis (CLAS) is a promising technology for reducing the high energy consumption of the conventional ammonia synthesis process. However, the comprehensive understanding of reaction mechanisms and rational design of novel nitrogen carriers has not been achieved due to the high complexity of catalyst structures and the unrevealed relationship between electronic structure and intrinsic activity. Herein, we propose a multistage strategy to establish the connection between catalyst intrinsic activity and microscopic electronic structure fingerprints using density functional theory computational energetics as bridges and apply it to the rational design of metal nitride catalysts for lattice nitrogen-mediated ammonia production. Molybdenum-based nitride catalysts with well-defined structures are employed as prototypes to elucidate the decoupled effects of electronic and geometrical features. The electron-transfer and spin polarization characteristics of the magnetic metals are constructed as descriptors to disclose the atomic-scale causes of intrinsic activity. Based on this design strategy, it is demonstrated that Ni3Mo3N catalysts possess the highest lattice nitrogen-mediated ammonia synthesis activity. This work reveals the structure-activity relationship of metal nitrides for CLAS and provides a multistage perspective on catalyst rational design.
Collapse
Affiliation(s)
- Shuairen Qian
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Tianying Dai
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Feng
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zhengwen Li
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohang Sun
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuxin Chen
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaiqi Nie
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Binhang Yan
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yi Cheng
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
35
|
Fu Y, Cao C, Song W, Li B, Sun XZ, Wang ZX, Fan L, Chen J. Self-Assembly Strategy for Constructing Porous Boron and Nitrogen Co-Doped Carbon as an Efficient ORR Electrocatalyst toward Zinc-Air Battery. Chemistry 2024; 30:e202400252. [PMID: 38486419 DOI: 10.1002/chem.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Carbon nanomaterials doped with N and B could activate nearby carbon atoms to promote charge polarization through the synergistic coupling effect between N and B atoms, thus facilitating adsorption of O2 and weakening O-O bond to enhance oxygen reduction reaction. Herein, a simple and controllable self-assembly strategy is applied to synthesize porous B, N co-doped carbon-based catalysts (BCN-P), which employs the macrocyclic molecule cucurbit[7]uril (CB7) as nitrogen source, and 3D aromatic-like closo-[B12H12]2- as boron source. In addition, polystyrene microspheres are added to help introduce porous structure to expose more active sites. Benefitting from porous structures and the synergistic coupling effect between N and B atoms, BCN-P has a high onset potential (Eonset=0.846 V) and half-wave potential (E1/2=0.74 V) in alkaline media. The zinc-air battery assembled with BCN-P shows high operating voltage (1.42 V), peak power density (128.7 mW cm-2) and stable charge/discharge cycles, which is even comparable with Pt/C.
Collapse
Affiliation(s)
- Yuying Fu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Cancan Cao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Wenrui Song
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Xuzhuo Z Sun
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Zhengxi X Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Liuqing Fan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Jing Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| |
Collapse
|
36
|
Yang L, Zhang L, Li Y, Lee BH, Kim J, Lee HS, Bok J, Ma Y, Zhou W, Yuan D, Wang AL, Bootharaju MS, Zhang H, Hyeon T, Chen J. Cation Exchange in Colloidal Transition Metal Nitride Nanocrystals. J Am Chem Soc 2024; 146:12556-12564. [PMID: 38660792 DOI: 10.1021/jacs.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liping Zhang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02481, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon Seok Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsol Bok
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yanbo Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wansheng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan 410004, P. R. China
| | - An-Liang Wang
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hemin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
37
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
38
|
Wang X, Hu H, Yan X, Zhang Z, Yang M. Activating Interfacial Electron Redistribution in Lattice-Matched Biphasic Ni 3N-Co 3N for Energy-Efficient Electrocatalytic Hydrogen Production via Coupled Hydrazine Degradation. Angew Chem Int Ed Engl 2024; 63:e202401364. [PMID: 38465572 DOI: 10.1002/anie.202401364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/12/2024]
Abstract
The development of high-purity and high-energy-density green hydrogen through water electrolysis holds immense promise, but issues such as electrocatalyst costs and power consumption have hampered its practical application. In this study, we present a promising solution to these challenges through the use of a high-performance bifunctional electrocatalyst for energy-efficient hydrogen production via coupled hydrazine degradation. The biphasic metal nitrides with highly lattice-matched structures are deliberately constructed, forming an enhanced local electric field between the electron-rich Ni3N and electron-deficient Co3N. Additionally, Mn is introduced as an electric field engine to further activate electron redistribution. Our Mn@Ni3N-Co3N/NF bifunctional electrocatalyst achieves industrial-grade current densities of 500 mA cm-2 at 0.49 V without degradation, saving at least 53.3 % energy consumption compared to conventional alkaline water electrolysis. This work will stimulate the further development of metal nitride electrocatalysts and also provide new perspectives on low-cost hydrogen production and environmental protection.
Collapse
Affiliation(s)
- Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
39
|
Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X. Interlayer Engineering of Layered Materials for Efficient Ion Separation and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311141. [PMID: 38306408 DOI: 10.1002/adma.202311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.
Collapse
Affiliation(s)
- Jinlin Yang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yanzeng Ge
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Si Tang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
40
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
41
|
Ranjan B, Kaur D. Pseudocapacitive Storage in Molybdenum Oxynitride Nanostructures Reactively Sputtered on Stainless-Steel Mesh Towards an All-Solid-State Flexible Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307723. [PMID: 38100301 DOI: 10.1002/smll.202307723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Exploiting pseudocapacitance in rationally engineered nanomaterials offers greater energy storage capacities at faster rates. The present research reports a high-performance Molybdenum Oxynitride (MoON) nanostructured material deposited directly over stainless-steel mesh (SSM) via reactive magnetron sputtering technique for flexible symmetric supercapacitor (FSSC) application. The MoON/SSM flexible electrode manifests remarkable Na+-ion pseudocapacitive kinetics, delivering exceptional ≈881.83 F g-1 capacitance, thanks to the synergistically coupled interfaces and junctions between nanostructures of Mo2N, MoO2, and MoO3 co-existing phases, resulting in enhanced specific surface area, increased electroactive sites, improved ionic and electronic conductivity. Employing 3D Bode plots, b-value, and Dunn's analysis, a comprehensive insight into the charge-storage mechanism has been presented, revealing the superiority of surface-controlled capacitive and pseudocapacitive kinetics. Utilizing PVA-Na2SO4 gel electrolyte, the assembled all-solid-state FSSC (MoON/SSM||MoON/SSM) exhibits impressive cell capacitance of 30.7 mF cm-2 (438.59 F g-1) at 0.125 mA cm-2. Moreover, the FSSC device outputs a superior energy density of 4.26 µWh cm-2 (60.92 Wh kg-1) and high power density of 2.5 mW cm-2 (35.71 kW kg-1). The device manifests remarkable flexibility and excellent electrochemical cyclability of ≈91.94% over 10,000 continuous charge-discharge cycles. These intriguing pseudocapacitive performances combined with lightweight, cost-effective, industry-feasible, and environmentally sustainable attributes make the present MoON-based FSSC a potential candidate for energy-storage applications in flexible electronics.
Collapse
Affiliation(s)
- Bhanu Ranjan
- Functional Nanomaterials Research Laboratory (FNRL), Department of Physics, Indian Institute of Technology Roorkee (IIT Roorkee), Roorkee, Uttarakhand, 247667, India
| | - Davinder Kaur
- Functional Nanomaterials Research Laboratory (FNRL), Department of Physics, Indian Institute of Technology Roorkee (IIT Roorkee), Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
42
|
Zheng L, Xu L, Gu P, Chen Y. Lattice engineering of noble metal-based nanomaterials via metal-nonmetal interactions for catalytic applications. NANOSCALE 2024; 16:7841-7861. [PMID: 38563756 DOI: 10.1039/d4nr00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Noble metal-based nanomaterials possess outstanding catalytic properties in various chemical reactions. However, the increasing cost of noble metals severely hinders their large-scale applications. A cost-effective strategy is incorporating noble metals with light nonmetal elements (e.g., H, B, C, N, P and S) to form noble metal-based nanocompounds, which can not only reduce the noble metal content, but also promote their catalytic performances by tuning their crystal lattices and introducing additional active sites. In this review, we present a concise overview of the recent advancements in the preparation and application of various kinds of noble metal-light nonmetal binary nanocompounds. Besides introducing synthetic strategies, we focus on the effects of introducing light nonmetal elements on the lattice structures of noble metals and highlight notable progress in the lattice strain engineering of representative core-shell nanostructures derived from these nanocompounds. In the meantime, the catalytic applications of the light element-incorporated noble metal-based nanomaterials are discussed. Finally, we discuss current challenges and future perspectives in the development of noble metal-nonmetal based nanomaterials.
Collapse
Affiliation(s)
- Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping Gu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
44
|
Prabhu P, Do VH, Yoshida T, Zhou Y, Ariga-Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis. ACS NANO 2024; 18:9942-9957. [PMID: 38552006 DOI: 10.1021/acsnano.3c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.
Collapse
Affiliation(s)
- P Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Hiroko Ariga-Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
45
|
Mo Q, Meng Y, Qin L, Shi C, Zhang HB, Yu X, Rong J, Hou PX, Liu C, Cheng HM, Li JC. Universal Sublimation Strategy to Stabilize Single-Metal Sites on Flexible Single-Wall Carbon-Nanotube Films with Strain-Enhanced Activities for Zinc-Air Batteries and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16164-16174. [PMID: 38514249 DOI: 10.1021/acsami.3c19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Qian Mo
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Meng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Qin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hong-Bo Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
46
|
Zhou Q, Min M, Song M, Cui S, Ding N, Wang M, Lei S, Xiong C, Peng X. In Situ Construction of Zinc-Mediated Fe, N-Codoped Hollow Carbon Nanocages with Boosted Oxygen Reduction for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307943. [PMID: 38037480 DOI: 10.1002/smll.202307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
The rational design of bifunctional oxygen electrocatalysts with unique morphology and luxuriant porous structure is significant but challenging for accelerating the reaction kinetics of rechargeable Zn-air batteries (ZABs). Herein, zinc-mediated Fe, N-codoped carbon nanocages (Zn-FeNCNs) are synthesized by pyrolyzing the polymerized iron-doped polydopamine on the surface of the ZIF-8 crystal polyhedron. The formation of the chelate between polydopamine and Fe serves as the covering layer to prevent the porous carbon nanocages from collapsing and boosts enough exposure and utilization of metal-based active species during carbonization. Furthermore, both the theoretical calculation and experimental results show that the strong interaction between polyhedron and polydopamine facilitates the evolution of high-activity zinc-modulated FeNx sites and electron transportation and then stimulates the excellent bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). As expected, the Zn-air battery with Zn-FeNCNs as an air cathode displays a superior power density (256 mW cm-2) and a high specific capacity (813.3 mA h gZn-1), as well as long-term stability over 1000 h. Besides, when this catalyst is applied to the solid-state battery, the device exhibited outstanding mechanical stability and a high round-trip efficiency under different bending angles.
Collapse
Affiliation(s)
- Qiusheng Zhou
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Min Min
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Minmin Song
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Shiqiang Cui
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Nan Ding
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shuangying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Chuanyin Xiong
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Shaanxi, 710021, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
47
|
Wang M, Ma W, Tan C, Qiu Z, Hu L, Lv X, Li Q, Dang J. Designing Efficient Non-Precious Metal Electrocatalysts for High-Performance Hydrogen Production: A Comprehensive Evaluation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306631. [PMID: 37988645 DOI: 10.1002/smll.202306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Developing abundant Earth-element and high-efficient electrocatalysts for hydrogen production is crucial in effectively reducing the cost of green hydrogen production. Herein, a strategy by comprehensively considering the computational chemical indicators for H* adsorption/desorption and dehydrogenation kinetics to evaluate the hydrogen evolution performance of electrocatalysts is proposed. Guided by the proposed strategy, a series of catalysts are constructed through a dual transition metal doping strategy. Density Functional Theory (DFT) calculations and experimental chemistry demonstrate that cobalt-vanadium co-doped Ni3N is an exceptionally ideal catalyst for hydrogen production from electrolyzed alkaline water. Specifically, Co,V-Ni3N requires only 10 and 41 mV in alkaline electrolytes and alkaline seawater, respectively, to achieve a hydrogen evolution current density of 10 mA cm-2. Moreover, it can operate steadily at a large industrial current density of 500 mA cm-2 for extended periods. Importantly, this evaluation strategy is extended to single-metal-doped Ni3N and found that it still exhibits significant universality. This study not only presents an efficient non-precious metal-based electrocatalyst for water/seawater electrolysis but also provides a significant strategy for the design of high-performance catalysts of electrolyzed water.
Collapse
Affiliation(s)
- Meng Wang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Wansen Ma
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Chaowen Tan
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Zeming Qiu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Liwen Hu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuewei Lv
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Qian Li
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
48
|
Wang H, Zhu C, Yan X, Zhang Z, Hu H, Xu M, Liang Y, Yang M. Cu-Pt/CrN Fuel Cell Gas Sensor Achieves ppb-Level H 2S Detection at Room Temperature. ACS Sens 2024; 9:1331-1338. [PMID: 38377515 DOI: 10.1021/acssensors.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Fuel cell gas sensors have emerged as promising advanced sensing devices owing to their advantageous features of low power consumption and cost-effectiveness. However, commercially available Pt/C electrodes pose significant challenges in terms of stability and accurate detection of low concentrations of target gases. Here, we introduce an efficient Cu-Pt/CrN-based fuel cell gas sensor, designed specifically for the ultrasensitive detection of hydrogen sulfide (H2S) at room temperature. Compared to the commercial Pt/C sensor, the Cu-Pt/CrN sensor exhibits excellent sensitivity (0.26 μA/ppm), with an increase in the selectivity by a factor of 2.5, and demonstrates good stability over a 2 month period. The enhanced sensing performance can be attributed to the modulation of the electronic arrangement of Pt by Cu, resulting in an augmentation of H2S adsorption. The Cu-Pt/CrN fuel cell gas sensor provides an opportunity for detecting parts per billion-level H2S in various applications.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chonghui Zhu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Yan
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mengmeng Xu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Liang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
49
|
Sun Y, Li X, Wang Z, Jiang L, Mei B, Fan W, Wang J, Zhu J, Lee JM. Biomimetic Design of a Dynamic M-O-V Pyramid Electron Bridge for Enhanced Nitrogen Electroreduction. J Am Chem Soc 2024; 146:7752-7762. [PMID: 38447176 DOI: 10.1021/jacs.3c14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Electrochemical nitrogen reduction reaction (eNRR) offers a sustainable route for ammonia synthesis; however, current electrocatalysts are limited in achieving optimal performance within narrow potential windows. Herein, inspired by the heliotropism of sunflowers, we present a biomimetic design of Ru-VOH electrocatalyst, featuring a dynamic Ru-O-V pyramid electron bridge for eNRR within a wide potential range. In situ spectroscopy and theoretical investigations unravel the fact that the electrons are donated from Ru to V at lower overpotentials and retrieved at higher overpotentials, maintaining a delicate balance between N2 activation and proton hydrogenation. Moreover, N2 adsorption and activation were found to be enhanced by the Ru-O-V moiety. The catalyst showcases an outstanding Faradaic efficiency of 51.48% at -0.2 V (vs RHE) with an NH3 yield rate exceeding 115 μg h-1 mg-1 across the range of -0.2 to -0.4 V (vs RHE), along with impressive durability of over 100 cycles. This dynamic M-O-V pyramid electron bridge is also applicable to other metals (M = Pt, Rh, and Pd).
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiqi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lili Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
50
|
Demura M, Nagao M, Lee CH, Goto Y, Nambu Y, Avdeev M, Masubuchi Y, Mitsudome T, Sun W, Tadanaga K, Miura A. Nitrogen-Rich Molybdenum Nitride Synthesized in a Crucible under Air. Inorg Chem 2024; 63:4989-4996. [PMID: 38440851 DOI: 10.1021/acs.inorgchem.3c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry.
Collapse
Affiliation(s)
- Momoka Demura
- Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido 060-8628, Japan
| | - Masanori Nagao
- Center for Crystal Science and Technology, University of Yamanashi, Kofu 400-0021, Japan
| | - Chul-Ho Lee
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Yosuke Goto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Yusuke Nambu
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Maxim Avdeev
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuji Masubuchi
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Wenhao Sun
- Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kiyoharu Tadanaga
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Akira Miura
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|