1
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
2
|
Xu J, Wang X, Xu W, Zhang Y, Pan L, Gao J. The protective effect of S-adenosylmethionine on chronic adolescent stress-induced depression-like behaviors by regulating gut microbiota. Eur J Pharmacol 2024; 982:176939. [PMID: 39182548 DOI: 10.1016/j.ejphar.2024.176939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The efficacy and tolerability of current antidepressants for adolescent depression are inadequate. S-adenosylmethionine (SAMe), known for its effectiveness and minimal side effects in adult depression, remains unstudied in adolescents. This study explored the potential of SAMe to address depression-like behaviors in juvenile rats induced by chronic unpredictable mild stress (CUMS), with a focus on gut microbiome interactions. Adolescent male Wistar rats were subjected to a 4-week CUMS regimen and received daily intraperitoneal injections of 300 mg/kg SAMe. Behavioral assessments included the sucrose preference test, elevated plus maze test, open field test, and Y-maze test. Histopathological changes of the hippocampus and colon were observed by Nissl staining and hematoxylin and eosin staining, respectively. Gut microbiome composition was analyzed using Accurate 16S absolute quantification sequencing. The results showed that SAMe significantly improved behavioral outcomes, reduced histopathological damages in hippocampal neurons and colon tissues, and modulated the gut microbiota of depressed rats. It favorably altered the ratio of Bacteroidetes to Firmicutes, decreased the absolute abundance of Deferribacteres, and adjusted levels of key microbial genera associated with depression-like behaviors. These results suggested that SAMe could effectively counter depression-like behaviors in CUMS-exposed adolescent rats by mitigating hippocampal neuronal and colon damage and modulating the gut microbiota. This supports SAMe as a viable and tolerable treatment option for adolescent depression, highlighting the importance of the gut-brain axis in therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Xinqi Wang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Wangwang Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Yang Zhang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China
| | - Liangke Pan
- Qingdao No.9 High School, Shandong Province, Qingdao, Shandong, 266000, China
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| |
Collapse
|
3
|
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12:e1356. [PMID: 39073297 PMCID: PMC11284964 DOI: 10.1002/iid3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.
Collapse
Affiliation(s)
- Luping Chen
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Linfang Zhang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Hua Hua
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Li Liu
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Yuejian Mao
- Global R&D Innovation CenterInner Mongolia Mengniu Dairy (Group) Co. Ltd.HohhotInner MongoliaChina
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
4
|
Zou Y, Wang Y, Zhou W, Pei J. Banxia Xiexin decoction combined with 5-ASA protects against CPT-11-induced intestinal dysfunction in rats via inhibiting TLR4/NF-κB signaling pathway. Immun Inflamm Dis 2024; 12:e1208. [PMID: 38860759 PMCID: PMC11165681 DOI: 10.1002/iid3.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/24/2023] [Accepted: 02/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Banxia Xiexin decoction (BXD) can control irinotecan (CPT-11)-caused delayed diarrhea, but the corresponding mechanism remains undefined. AIMS This paper aimed to uncover the mechanism of BXD in regulating CPT-11-caused delayed diarrhea. MATERIALS & METHODS Sprague-Dawley (SD) rats were assigned into the control, model, BXD low-dose (BXD-L, 5 g/kg), BXD medium-dose (BXD-M, 10 g/kg), BXD high-dose (BXD-H, 15 g/kg), 5-aminosalicylic acid (5-ASA, 10 mL/kg), and BXD-M + 5-ASA groups. Rats were injected intraperitoneally with 150 mg/kg CPT-11 at Day 4 and Day 5 to induce delayed diarrhea, and later treated with various doses (low, medium, and high) of BXD and 5-ASA for 9 days, except for rats in control group. The body weight of rats was measured. The rat colon tissue injury, inflammatory cytokine levels, and the activation of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway were detected. RESULTS BXD (5, 10, or 15 g/kg) or 5-ASA (10 mL/kg) alleviated body weight loss and colon tissue injury, decreased levels of inflammatory cytokines, and inactivated TLR4/NF-κB signaling pathway in CPT-11-induced model rats. BXD at 10 g/kg (the optimal concentration) could better treat CPT-11-induced intestinal dysfunction, as evidenced by the resulting approximately 50% reduction on injury score of model rats. Moreover, BXD-M (10 g/kg) synergistic with 5-ASA (10 mL/kg) further strengthened the inhibition on rat body weight loss, colon tissue injury, inflammatory cytokine levels, and TLR4/NF-κB signaling pathway. CONCLUSION To sum up, BXD has a protective effect against CPT-11-induced intestinal dysfunction by inhibiting inflammation through inactivation TLR4/NF-κB signaling pathway. In particular, the combined use of BXD and 5-ASA holds great promise for treating CPT-11-induced delayed diarrhea.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Yakun Wang
- Department of Critical Care MedicineHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenying Zhou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Jingbo Pei
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| |
Collapse
|
5
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Xu D, Peng Z, Li Y, Hou Q, Peng Y, Liu X. Progress and Clinical Applications of Crohn's Disease Exclusion Diet in Crohn's Disease. Gut Liver 2024; 18:404-413. [PMID: 37842728 PMCID: PMC11096903 DOI: 10.5009/gnl230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 10/17/2023] Open
Abstract
Crohn's disease is a chronic intestinal inflammatory disorder of unknown etiology. Although the pharmacotherapies for Crohn's disease are constantly updating, nutritional support and adjuvant therapies have recently gained more attention. Due to advancements in clinical nutrition, various clinical nutritional therapies are used to treat Crohn's disease. Doctors treating inflammatory bowel disease can now offer several diets with more flexibility than ever. The Crohn's disease exclusion diet is a widely used diet for patients with active Crohn's disease. The Crohn's disease exclusion diet requires both exclusion and inclusion. Periodic exclusion of harmful foods and inclusion of wholesome foods gradually improves a patient's nutritional status. This article reviews the Crohn's disease exclusion diet, including its structure, mechanisms, research findings, and clinical applications.
Collapse
Affiliation(s)
- Duo Xu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Ziheng Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Yong Li
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Qian Hou
- Departments of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, China
| | - Yu Peng
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Xiaowei Liu
- Departments of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
7
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
8
|
Sun Y, Zhang S, Nie Q, He H, Tan H, Geng F, Ji H, Hu J, Nie S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr 2023; 63:12073-12088. [PMID: 35822206 DOI: 10.1080/10408398.2022.2098249] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human gut. Accumulating evidence suggests that dietary fiber plays a crucial role in host health, yet most studies have focused on how the dietary fiber affects health through gut Bacteroides. More recently, gut Firmicutes have been found to possess many genes responsible for fermenting dietary fiber, and could also interact with the intestinal mucosa and thereby contribute to homeostasis. Consequently, the relationship between dietary fiber and Firmicutes is of interest, as well as the role of Firmicutes in host health. In this review, we summarize the current knowledge regarding the molecular mechanism of dietary fiber degradation by gut Firmicutes and explain the communication pathway of the dietary fiber-Firmicutes-host axis, and the beneficial effects of dietary fiber-induced Firmicutes and their metabolites on health. A better understanding of the dialogue sustained by the dietary fiber-Firmicutes axis and the host could provide new insights into probiotic therapy and novel dietary interventions aimed at increasing the abundance of Firmicutes (such as Faecalibacterium, Lactobacillus, and Roseburia) to promote health.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Xu J, Xu X, Hua D, Yuan Z, Bai M, Song H, Yang L, Li J, Zhu D, Liu H. Defatted hempseed meal altered the metabolic profile of fermented yogurt and enhanced the ability to alleviate constipation in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4778-4791. [PMID: 36971462 DOI: 10.1002/jsfa.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hempseeds (Cannabis sativa L.) are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber and are of high nutritional value. Probiotics have been found to relieve constipation, which solves a health problem that constantly troubles a lot of people. Therefore, the changes in the metabolites of fermented yogurt with or without 10% defatted hempseed meal (10% SHY or 0% SHY respectively) were studied and their laxative effects were examined through animal experiments. RESULTS Amino acids and peptides, terpene glycosides, carbohydrates, lineolic acids, and fatty acids were found to be the major contributors to the discrimination of the metabolic profile between 0% SHY and 10% SHY. The differentially accumulated metabolites may lead to the discrepancy in the yogurt's functionality. Animal experiments showed that the 10% SHY treatment prevented constipation by increasing feces number, fecal water content, and small intestinal transit rate and reducing inflammatory injury in loperamide-induced constipated rats. Further analysis of the gut microbiota revealed that 10% SHY gavage increased the relative abundances of the Lactobacillus, Allobaculum, Turicibacter, Oscillibacter, Ruminococcus, and Phascolarctobacterium genera in the constipated rats, whereas Akkermansia, Clostridium_XIVa, Bacteroides, Staphylococcus, and Clostridium_IV were decreased. The combination of defatted hempseed meal and probiotics was found to be effective in relieving constipation, probably due to the enriched amino acids and peptides, such as Thr-Leu and lysinoalanine through correlation analysis. CONCLUSION Our findings indicated that defatted hempseed meal in yogurt altered the metabolic profile and effectively alleviated constipation in rats, which is a promising therapeutic candidate for constipation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jifeng Li
- Liaoning Qiaopai Biotech Co. Ltd, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
10
|
Wang J, Pu J, Zhang Z, Feng Z, Han J, Su X, Shi L. Triterpenoids of Ganoderma lucidum inhibited S180 sarcoma and H22 hepatoma in mice by regulating gut microbiota. Heliyon 2023; 9:e16682. [PMID: 37484292 PMCID: PMC10360580 DOI: 10.1016/j.heliyon.2023.e16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
In order to explore effect of natural plant extracts on anti-tumor and prevent tumor development. The study assessed the antitumor effect of triterpenoids of Ganoderma lucidum (TGL) on S180 and H22 tumor bearing mice. A triterpene compound, 2α, 3α, 23-trihydroxy-urs-12-en-28-oic acid, was successfully isolated and purified from G. lucidum. S180 and H22 cells were subcutaneously inoculated in the left axilla of mice to establish a transplantable tumor model. After, the mice were orally treated with TGL and evaluated by tumor inhibition rate, organ index, and the serum index. The Bax and Bcl-2 proteins and gut microbiota was analyzed using western blot and 16S rDNA sequencing respectively. The results showed the tumor inhibition rates of TGL were higher than 40% in H22 and S180 tumor bearing mice. TGL had a protective effect on the spleen and thymus, and improved lipid peroxidation caused by the increased free radicals. TGL downregulated Bcl-2 and upregulated Bax. In particular, TGL treatment improved the reduction of gut microbiota richness and structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Shi
- Corresponding author. Department of Pharmacy, Gansu Provincial Hospital, Donggang West Road No. 204, Lanzhou, Gansu 730000, China.
| |
Collapse
|
11
|
Xue Z, Li R, Liu J, Zhou J, Zhang X, Zhang T, Zhang M, Yang Y, Chen H. Preventive and synbiotic effects of the soluble dietary fiber obtained from Lentinula edodes byproducts and Lactobacillus plantarum LP90 against dextran sulfate sodium-induced colitis in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:616-626. [PMID: 36054505 DOI: 10.1002/jsfa.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soluble dietary fiber (SDF) obtained from Lentinula edodes byproducts has beneficial effects on human intestinal health. This study aimed to examine the combined preventive and ameliorative effects of a kind of synbiotic (SDF with a molecular weight of 1.58 × 102 kDa and Lactobacillus plantarum LP90 (LP) at 1 × 109 CFU kg-1 ) on dextran sulfate sodium-induced colitis mice. RESULTS The results demonstrated that synbiotic treatment could alleviate weight loss, decrease the disease activity index level and cause histological amelioration. Synbiotic treatment also promoted the production of goblet cells, increased the expression of tight junction proteins, and adjusted the production of myeloperoxidase, malondialdehyde and superoxide dismutase to repair intestinal epithelial injury. Clinical symptoms were alleviated by maintaining Th17/Treg balance, increasing interleukin 10 and immunoglobulin A levels, reducing interleukin 17a and tumor necrosis factor α production, and promoting mRNA to highly express of Foxp3 and vitamin D receptors. Moreover, synbiotic treatment could upregulate butyric acid production (4.71 ± 0.46 mol g-1 feces, P < 0.05) and diversity of intestinal microbial to maintain intestinal homeostasis. CONCLUSION This study suggested that the combination of LP and SDF as a synbiotic has the potential for use as a nutritional supplement to alleviate colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
12
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Lin Q, Liu M, Erhunmwunsee F, Li B, Mou Y, Wang S, Zhang G, Tian J. Chinese patent medicine shouhui tongbian capsule attenuated loperamide-induced constipation through modulating the gut microbiota in rat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115575. [PMID: 35934189 DOI: 10.1016/j.jep.2022.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shouhui tongbian capsule (SHTC) is a commercial Chinese patent medicine used in the treatment of constipation. However, its mechanism of action remains unclear. AIM OF THE STUDY The present study was undertaken to assess SHTC relieved effects on the clinical symptoms of loperamide (LOP) induced constipation in Sprague Dawley (SD) rat model and to clarify the relationship between the protective effect of SHTC on constipation and the gut microbiota. MATERIALS AND METHODS Constipation male SD rats models were induced with solution of LOP (1.5 mg/kg bw), and rats were treated with an oral dose of SHTC (35, 70 mg/kg bw) three times a day after successful modeling. All rats were assessed weekly by change in body weight, gastric emptying rate, fecal moisture content and wet/dry weight. Hematoxylin and eosin (H&E) were used to observe parts of the rats small intestine. The gut microbiota in colonic contents was analyzed using 16SrRNA gene sequencing. Contents of short-chain fatty acids (SCFAs) were analyzed by gas chromatography-mass spectrometer (GCMS). RESULTS The results confirmed the therapeutic effects of SHTC on constipation. Specifically, SHTC could alleviate the decrease in body weight, gastric emptying rate and fecal moisture content caused by LOP-induced constipation. The pathological damage of small intestine was significantly improved by H&E staining. Notably, SHTC increased the relative abundances of Lactobacillus and the ratio of Firmicutes to Bacteroides (F/B). In addition, the content of acetic acid and propionic acid was significantly increased in constipated rats fed with SHTC. CONCLUSION SHTC could ameliorate the development of LOP-induced constipation in rats by remodeling the structure of gut microbial community and regulating production of intestinal metabolites.
Collapse
Affiliation(s)
- Qian Lin
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Man Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Famous Erhunmwunsee
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Sen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Zheng L. New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World J Clin Cases 2022; 10:10823-10839. [PMID: 36338232 PMCID: PMC9631134 DOI: 10.12998/wjcc.v10.i30.10823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal flora plays a key role in nutrient absorption, metabolism and immune defense, and is considered to be the cornerstone of maintaining the health of human hosts. Bile acids synthesized in the liver can not only promote the absorption of fat-soluble substances in the intestine, but also directly or indirectly affect the structure and function of intestinal flora. Under the action of intestinal flora, bile acids can be converted into secondary bile acids, which can be reabsorbed back to the liver through the enterohepatic circulation. The complex dialogue mechanism between intestinal flora and bile acids is involved in the development of intestinal inflammation such as inflammatory bowel disease (IBD). In this review, the effects of intestinal flora, bile acids and their interactions on IBD and the progress of treatment were reviewed.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
15
|
Fu L, Zhang G, Qian S, Zhang Q, Tan M. Associations between dietary fiber intake and cardiovascular risk factors: An umbrella review of meta-analyses of randomized controlled trials. Front Nutr 2022; 9:972399. [PMID: 36172520 PMCID: PMC9511151 DOI: 10.3389/fnut.2022.972399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Although several meta-analyses have revealed the beneficial effects of dietary fiber intake on human health, some have reported inconsistent findings. The purpose of this work was to perform an umbrella meta-analysis to evaluate the relevant evidence and elucidate the effect of dietary fiber intake on glycemic control, lipid profiles, systematic inflammation, and blood pressure. Eligible studies were searched in several electronic databases, including Web of Science, PubMed, Scopus, and the Cochrane Library, up to March 2022. A total of 52 meta-analyses involving 47,197 subjects were identified to assess the pooled effect size. Overall, higher dietary fiber intake was significantly associated with reductions in parameters involving glycemic control, including fasting plasma glucose (ES = -0.55, 95% CI: -0.73, -0.38, P < 0.001), fasting plasma insulin (ES = -1.22, 95% CI: -1.63, -0.82, P < 0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (ES = -0.43, 95% CI: -0.60, -0.27, P < 0.001), and glycosylated hemoglobin (HbA1c) (ES = -0.38, 95% CI: -0.50, -0.26, P < 0.001). In terms of lipid profiles, higher dietary fiber intake was associated with significant reductions in the serum level of total cholesterol (ES = -0.28, 95% CI: -0.39, -0.16, P < 0.001) and low-density lipoprotein cholesterol (ES = -0.25, 95% CI: -0.34, -0.16, P < 0.001), but not triglycerides (ES = -0.001, 95% CI: -0.006, 0.004, P = 0.759) and high-density lipoprotein cholesterol (ES = -0.002, 95% CI: -0.004, 0.000, P = 0.087). Higher dietary fiber intake was also significantly associated with improved tumor necrosis factor-alpha serum levels (ES = -0.78, 95% CI: -1.39, -0.16, P = 0.013), while no significant effect was observed for C-reactive protein (ES = -0.14, 95% CI: -0.33, 0.05, P = 0.156). Finally, blood pressure was also significantly improved following higher dietary fiber intake (systolic blood pressure: ES = -1.72, 95% CI: -2.13, -1.30, P < 0.001; diastolic blood pressure: ES = -0.67, 95% CI: -0.96, -0.37, P < 0.001). Subgroup analysis revealed that the study population and type of dietary fiber could be partial sources of heterogeneity. In conclusion, the present umbrella meta-analysis provides evidence for the role of dietary fiber supplementation in the improvement of established cardiovascular risk factors.
Collapse
Affiliation(s)
| | | | | | | | - Mingming Tan
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
16
|
Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Structure, Physicochemical Property, and Functional Activity of Dietary Fiber Obtained from Pear Fruit Pomace (Pyrus ussuriensis Maxim) via Different Extraction Methods. Foods 2022; 11:foods11142161. [PMID: 35885404 PMCID: PMC9319332 DOI: 10.3390/foods11142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were extracted from Pyrus ussuriensis Maxim pomace via three methods including enzymic extraction (EE), microwave-assisted enzymatic extraction (MEE), and three-phase partitioning (TPP). The effects of different extraction methods on the structure, physicochemical property, and functional activity of the extracted dietary fiber were evaluated. The results showed that different extraction methods had significant effects on the extraction yield, molecular weight distribution, thermal stability, antioxidant activity, and hypoglycemic activity in vitro, but resulted in no difference in the structure and composition of functional groups. It is noteworthy that SDF extracted by TPP has a more complex and porous structure, lower molecular weight, and higher thermal stability, as well as better physicochemical properties and in vitro hypoglycemic activity. IDF extracted by MEE showed the greatest water and oil holding capacity; the highest adsorption capacity for glucose, cholesterol, and nitrite ion; as well as the strongest inhibitory activity on α-amylase. These results suggest that PUP may be a source of cheap natural dietary fiber.
Collapse
|
18
|
Ban QY, Liu M, Ding N, Chen Y, Lin Q, Zha JM, He WQ. Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Front Nutr 2022; 9:794169. [PMID: 35734374 PMCID: PMC9207447 DOI: 10.3389/fnut.2022.794169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting inflammatory disease of the gastrointestinal tract. Patients are usually diagnosed in adolescence and early adulthood and need lifelong treatment. In recent years, it has been found that diet plays an important role in the pathogenesis of IBD. Diet can change intestinal barrier function, affect the structure and function of intestinal flora, and promote immune disorder, thus promoting inflammation. Many patients believe that diet plays a role in the onset and treatment of the disease and changes their diet spontaneously. This review provides some insights into how nutraceuticals regulate intestinal immune homeostasis and improve intestinal barrier function. We reviewed the research results of dietary fiber, polyphenols, bioactive peptides, and other nutraceuticals in the prevention and treatment of IBD and sought better alternative or supplementary treatment methods for IBD patients.
Collapse
Affiliation(s)
- Quan-Yao Ban
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Mei Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ning Ding
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ying Chen
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiong Lin
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Juan-Min Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- *Correspondence: Juan-Min Zha
| | - Wei-Qi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Wei-Qi He
| |
Collapse
|
19
|
Wang Z, Yang L, Xue S, Wang S, Zhu L, Ma T, Liu H, Li R. Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ziyi Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Sen Xue
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lijie Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Tao Ma
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Ruren Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|
20
|
Qiao H, Zhao T, Yin J, Zhang Y, Ran H, Chen S, Wu Z, Zhang R, Wang X, Gan L, Wang J. Structural Characteristics of Inulin and Microcrystalline Cellulose and Their Effect on Ameliorating Colitis and Altering Colonic Microbiota in Dextran Sodium Sulfate-Induced Colitic Mice. ACS OMEGA 2022; 7:10921-10932. [PMID: 35415348 PMCID: PMC8991927 DOI: 10.1021/acsomega.1c06552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported that dietary fibers (DFs) from plants may exert beneficial effects on inflammatory bowel disease. In the present study, we investigated the structural differences of soluble DF (inulin) and insoluble DF (microcrystalline cellulose, MCC) and their effects on the intestinal barrier integrity, gut microbiota community, and inflammation response in mice with dextran sodium sulfate (DSS)-induced colitis. Mice were fed for 21 days with diets containing inulin or MCC (2.5 g/kg body weight), and colitis was induced by administration of DSS (4% w/v) in drinking water during the last 8 days of experimentation. The results showed that inulin and MCC differ in morphology and structure. MCC exhibited a smaller particle size, a larger specific surface area, and higher thermal stability than inulin. In addition, both inulin and MCC restored various physical signs (body weight, colon weight and length, disease activity index score, and infiltration of inflammatory cells), gut barrier function (as evidenced by the increased expression of claudin-3, claudin-7, ZO-2, occludin, JAM-2, and MUC-3 and the decreased activity of myeloperoxidase activity), downregulation of mRNA expression of proinflammatory cytokines (caspase-1, NLPR3, TLR4, TNF-α, and IL-1β), and modulation of colon microbiota community. Taken together, the present study demonstrates that DFs differ in morphology and structure and ameliorate DSS-induced colitis in mice by blocking proinflammatory cytokines, reinforcing gut barrier integrity, and modulating gut microbiota. Therefore, DFs, especially inulin, are promising dietary supplements to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Hanzhen Qiao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Tongxi Zhao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jie Yin
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Yichen Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Hongmei Ran
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Shaojie Chen
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ziwei Wu
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ran Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Xingkexin Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Liping Gan
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jinrong Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| |
Collapse
|
21
|
Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites. Carbohydr Polym 2022; 281:119046. [DOI: 10.1016/j.carbpol.2021.119046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
|
22
|
The Anti-Inflammatory Effect of Bovine Bone-Gelatin-Derived Peptides in LPS-Induced RAW264.7 Macrophages Cells and Dextran Sulfate Sodium-Induced C57BL/6 Mice. Nutrients 2022; 14:nu14071479. [PMID: 35406093 PMCID: PMC9003490 DOI: 10.3390/nu14071479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
The bioactive peptides hydrolyzed from bone collagen have been found to possess health-promoting effects by regulating chronic diseases such as arthritis and hypertension. In the current study, the anti-inflammatory effect of bovine bone gelatin peptides (GP) was evaluated in 264.7 macrophages cells and followed by animal trials to investigate their interference on inflammatory cytokines and gut microbiota compositions in dextran sodium sulfate (DSS)-induced C57BL/6 mice. The GP was demonstrated to alleviate the extra secretion of interleukin-6 (IL-6), nitric oxide (NO) and tumor necrosis factor-α(TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. In DSS-induced colitis mice, the gavage of GP was demonstrated to ameliorate the IBD symptoms of weight loss, hematochezia and inflammatory infiltration in intestinal tissues. In serum, the proinflammatory cytokines (TNF-α,IL-6, MCP-1, IL-1β) were suppressed along with the decreasing effect on toll-like receptor 4 and cyclooxygenase-2 by GP treatment. In the analysis of gut microbiota, the GP was checked to modulate the abundance of Akkermansia, Parasutterella, Peptococcus, Bifidobacterium and Saccharibacteria. The above results imply that GP could attenuate DSS-induced colitis by suppressing the inflammatory cytokines and regulating the gut microbiota.
Collapse
|
23
|
Yang L, Wu X, Luo M, Shi T, Gong F, Yan L, Li J, Ma T, Li R, Liu H. Na +/Ca 2+ induced the migration of soy hull polysaccharides in the mucus layer in vitro. Int J Biol Macromol 2022; 199:331-340. [PMID: 35031312 DOI: 10.1016/j.ijbiomac.2022.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the mechanism of Na+/Ca2+-induced soy hull polysaccharide (SHP) migration in the mucus layer. The viscosity, potential, microstructure, SHP migration, and metabolite migration were analyzed. The results showed that Na+ had little effect on the viscosity of polysaccharides, while Ca2+ increased the viscosity of polysaccharides. Na+ and Ca2+ promoted the migration of SHP particles by reducing the zeta potential, while they decreased the migration of SHP chyle particles by increasing the aggregation. SHP was fermented by gut microbiota to produce a large number of short-chain fatty acids (SCFAs). Compared with Ca2+, Na+ increased the migration of total SCFAs in the mucus layer. The high-Na+/Ca2+ mucus internal environment had a specific effect on the transport of nutrients in the intestine.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xinghui Wu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Taiyuan Shi
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Fayong Gong
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Lang Yan
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Jing Li
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruren Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
24
|
Lyu B, Wang Y, Fu H, Li J, Yang X, Shen Y, Swallah MS, Yu Z, Li Y, Wang H, Yu H, Jiang L. Intake of high-purity insoluble dietary fiber from Okara for the amelioration of colonic environment disturbance caused by acute ulcerative colitis. Food Funct 2022; 13:213-226. [PMID: 34881766 DOI: 10.1039/d1fo02264d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-purity insoluble dietary fiber from okara (okara-HPIDF) is a raw material with a potentially positive effect on colon health. However, the mechanisms of the effect are far from clear. In this study, okara-HPIDF and low-purity dietary fiber from okara (okara-LPDF) were fed to C57BL/6 mice with acute ulcerative colitis induced by DSS. The levels of inflammatory factors, bacterial 16S rDNA sequencing, short-chain fatty acids (SCFAs), and bioinformatics were analyzed with the colonic tissue status. The results showed that the intake of HPIDF affected the proliferation of the key bacteria Shigella, Lactobacillus, and Peptostreptococcaceae in the PWY-2941 pathway and AEROBACTINSYN-PWY pathway, and then affected the synthesis of SCFAs, providing a positive role for colon health. However, the intake of HPIDF was unable to repair colonic injury caused by DSS-induced acute ulcerative colitis mainly owing to the abundance of Shigella in the colon. This study demonstrates that the recommended intake content of HPIDF can ameliorate colonic environment disturbance caused by acute ulcerative colitis, but not enough to relieve it.
Collapse
Affiliation(s)
- Bo Lyu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Yi Wang
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Hongling Fu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaoqing Yang
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Mohammed Sharif Swallah
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hansong Yu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Fan P, Kim M, Liu G, Zhai Y, Liu T, Driver JD, Jeong KC. The Gut Microbiota of Newborn Calves and Influence of Potential Probiotics on Reducing Diarrheic Disease by Inhibition of Pathogen Colonization. Front Microbiol 2021; 12:772863. [PMID: 34745079 PMCID: PMC8567051 DOI: 10.3389/fmicb.2021.772863] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Calf diarrhea is one of the most concerning challenges facing both the dairy and beef cattle industry. Maintaining healthy gut microbiota is essential for preventing gastrointestinal disorders. Here, we observed significantly less bacterial richness in the abnormal feces with watery or hemorrhagic morphology compared to the normal solid feces. The normal solid feces showed high relative abundances of Osllospiraceae, Christensenellaceae, Barnesiella, and Lactobacillus, while the abnormal feces contained more bacterial taxa of Negativicutes, Tyzzerella, Parasutterella, Veillonella, Fusobacterium, and Campylobacter. Healthy calves had extensive bacterial-bacterial correlations, with negative correlation between Lactobacillus and potential diarrheagenic Escherichia coli-Shigella, but not in the abnormal feces. We isolated Lactobacillus species (L. reuteri, L. johnsonii, L. amylovorus, and L. animalis), with L. reuteri being the most abundant, from the healthy gut microbiota. Isolated Lactobacillus strains inhibited pathogenic strains including E. coli K88 and Salmonella Typhimurium. These findings indicate the importance of a diverse gut microbiota in newborn calf’s health and provide multiple potential probiotics that suppress pathogen colonization in the gastrointestinal tract to prevent calf diarrhea.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Grace Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Danny Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Wang K, Xu X, Maimaiti A, Hao M, Sang X, Shan Q, Wu X, Cao G. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol Res Perspect 2021; 9:e00765. [PMID: 34523246 PMCID: PMC8440943 DOI: 10.1002/prp2.765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long‐term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF‐α, IL‐6, IL‐1β) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme‐linked immunosorbent assay (ELISA) and high‐performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high‐throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose‐dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aikebaier Maimaiti
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
28
|
Liu Q, Zhao J, Liu S, Fan Y, Mei J, Liu X, Wei T. Positive intervention of insoluble dietary fiber from defatted rice bran on hyperlipidemia in high fat diet fed rats. J Food Sci 2021; 86:3964-3974. [PMID: 34251041 DOI: 10.1111/1750-3841.15812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
Increasing dietary fiber intake is considered to be an effective way to prevent and relieve the diseases associated with high-income lifestyles. Compared with soluble dietary fiber, comprehensive evaluation about the effects of insoluble dietary fiber on hyperlipidemia is rarely studied. In the present study, the insoluble dietary fiber was extracted from defatted rice bran by enzymatic treatments (IDF-dRB), followed by investigation about the adsorption and antioxidant activities in vitro. Moreover, the alleviating effects of IDF-dRB on hyperlipidemia were evaluated and analyzed. As a result, IDF-dRB possessed good adsorption capacities of glucose and cholesterol, and also exhibited excellent properties in scavenging radicals. Furthermore, intervention with IDF-dRB significantly improved lipid and glucose metabolism and alleviated inflammation and oxidative stress in rats fed high-fat diet. It was also observed that IDF-dRB treatment could recover the decline in species of gut microbiota caused by high fat diet, increase the community richness, and modulate the metabolic function of gut microbiota. In conclusion, the results indicated that IDF-dRB could ameliorate hyperlipidemia from many aspects and offered some perspectives about the effects of diet intervention with insoluble dietary fiber. PRACTICAL APPLICATION: Rice bran and defatted rice bran are coproducts in the rice processing industry and potentially valuable for the preparation of insoluble dietary fiber. Here an insoluble dietary fiber IDF-dRB was extracted from defatted rice bran and showed good properties in improving lipid and glucose levels, alleviating inflammation and oxidative stress, and modulating gut microbiota in rats fed high-fat diet, suggesting the potential application in ameliorating hyperlipidemia.
Collapse
Affiliation(s)
- Qian Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| | - Jieyu Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Sushi Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Yuchuan Fan
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Jiajia Mei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Xuanjiang Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Tao Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| |
Collapse
|
29
|
Shang Q, Liu S, Liu H, Mahfuz S, Piao X. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. J Anim Sci Biotechnol 2021; 12:54. [PMID: 33879267 PMCID: PMC8059298 DOI: 10.1186/s40104-021-00573-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation. Methods Forty-five multiparous sows (Yorkshire × Landrace; 3–6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation). Results Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation. Conclusions Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
30
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
31
|
γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut-Microbiome-Brain Axis. Foods 2021; 10:foods10020221. [PMID: 33494481 PMCID: PMC7911192 DOI: 10.3390/foods10020221] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean paste is an indigenous food for use in cooking in East and Southeast Asia. Korea developed and used its traditional fermented foods two thousand years ago. Chungkookjang has unique characteristics such as short-term fermentation (24–72 h) without salt, and fermentation mostly with Bacilli. Traditionally fermented chungkookjang (TFC) is whole cooked soybeans that are fermented predominantly by Bacillus species. However, Bacillus species are different in the environment according to the regions and seasons due to the specific bacteria. Bacillus species differently contribute to the bioactive components of chungkookjang, resulting in different functionalities. In this review, we evaluated the production process of poly-γ-glutamic acid (γ-PGA)-rich chungkookjang fermented with specific Bacillus species and their effects on memory function through the modulation of brain insulin resistance, neuroinflammation, and the gut–microbiome–brain axis. Bacillus species were isolated from the TFC made in Sunchang, Korea, and they included Bacillus (B.) subtilis, B. licheniformis, and B. amyloliquefaciens. Chungkookjang contains isoflavone aglycans, peptides, dietary fiber, γ-PGA, and Bacillus species. Chungkookjangs made with B. licheniformis and B. amyloliquefaciens have higher contents of γ-PGA, and they are more effective for improving glucose metabolism and memory function. Chungkookjang has better efficacy for reducing inflammation and oxidative stress than other fermented soy foods. Insulin sensitivity is improved, not only in systemic organs such as the liver and adipose tissues, but also in the brain. Chungkookjang intake prevents and alleviates memory impairment induced by Alzheimer’s disease and cerebral ischemia. This review suggests that the intake of chungkookjang (20–30 g/day) rich in γ-PGA acts as a synbiotic in humans and promotes memory function by suppressing brain insulin resistance and neuroinflammation and by modulating the gut–microbiome–brain axis.
Collapse
|
32
|
Hou D, Zhao Q, Yousaf L, Xue Y, Shen Q. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. Eur J Nutr 2020; 60:2029-2045. [PMID: 33005980 DOI: 10.1007/s00394-020-02395-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Our recent study has reported that whole mung bean showed better beneficial effects on high-fat diet (HFD)-induced obesity and gut microbiota disorders when compared with the decorticated mung bean at the same intervention dose level, suggesting that the mung bean seed coat (MBC) may play a crucial role in its health benefits. This study aims to investigate whether MBC has beneficial benefits on the prevention of HFD-induced obesity and the modulation of gut microbiota in mice when it was supplemented in HFD. METHODS Herein, male C57BL/6 J mice were fed with normal control diet, HFD, and HFD supplemented with MBC (3-6%, w/w) for 12 weeks. The changes in physiological, histological, biochemical parameters, serum endotoxin, proinflammatory cytokines, and gut microbiota composition of mice were determined to assess the ability of MBC to alleviate HFD-induced obesity and modulate gut microbiota disorders in mice. RESULTS MBC supplementation exhibited significant reductions in the HFD-induced adiposity, fat accumulation, serum lipid levels, lipopolysaccharide, and proinflammatory cytokines concentrations (P < 0.05), which was accompanied by improvements in hepatic steatosis and adipocyte size. Especially, the elevated fasting blood glucose and insulin resistance were also significantly improved by MBC supplementation (P < 0.05). Furthermore, high-throughput sequencing of the 16S rRNA gene revealed that MBC could normalize HFD-induced gut microbiota dysbiosis. MBC not only could promote the bloom of Akkermansia, but also restore several HFD-dependent taxa (Blautia, Ruminiclostridium_9, Bilophila, and unclassified_f_Ruminococcaceae) back to normal status, co-occurring with the decreases in obesity-related indices. CONCLUSIONS This study provides evidence that MBC may be mainly responsible for the beneficial effects of whole mung bean on preventing the HFD-induced changes, thus enlarging the application value of MBC.
Collapse
Affiliation(s)
- Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China. .,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China. .,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|