1
|
Liu Y, Zhao T, Wang Z, Zhang Y, Shen J, Lu B. The microbiome- and metabolome-modulating activity of dietary cholesterol: insights from the small and large intestines. Food Funct 2025; 16:1872-1887. [PMID: 39931947 DOI: 10.1039/d4fo03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Cholesterol is an important lipid molecule that affects the gut microbiome upon ingestion. We systematically investigated the effects of cholesterol on the microbiota of the large and small intestines using ex vivo and in vivo models, combining flow cytometry, metabolomics, and metagenomics. The results showed that cholesterol directly causes a loss of bacterial membrane polarity and integrity, as well as a reduction in microbial metabolic activity. Cholesterol directly affected the global metabolism of the large and small intestinal microbiota, including amino acid, carbohydrate, and nucleotide metabolism. Ex vivo and in vivo studies shared similar results, showing that cholesterol increased the abundance of the primary bile acid-metabolizing bacteria Clostridium and Dorea in the large intestinal microbiota, confirming the enrichment effect of cholesterol on these bacteria. In the in vivo model, increased conjugated bile acids in the small intestine and decreased abundance of BSH-containing Bifidobacterium were observed due to cholesterol. Only in vivo models have demonstrated that cholesterol increases phosphatidylcholine levels in both the small and large intestines, which may be related to the effects of cholesterol on host metabolism. The pro-inflammatory capacity of the intestinal microbiota was enhanced by cholesterol, as evidenced by the increased levels of IL-1β and TNF-α in THP-1 cells upon stimulation with cholesterol-treated microbiota. This study comprehensively elucidates the effects of cholesterol on the composition and metabolic functions of the microbiota in both the large and small intestines. It offers a novel perspective on the ways in which cholesterol affects host metabolism via the gut microbiome.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Yansong Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Jianfu Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Yan Z, Zheng Z, Cao L, Zhu Z, Zhou C, Sun Q, Tang B, Zhao G. Altered gut microbiome and serum metabolome profiles associated with essential tremor. Metab Brain Dis 2025; 40:118. [PMID: 39903340 DOI: 10.1007/s11011-025-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The genetic predisposition and environmental factors both trigger the complex neurological dyskinesia of essential tremor (ET). Gut dysbiosis may facilitate the occurrence and development of neurological diseases. Therefore, it is worth exploring the inner connections between gut microbiota and ET. First, the gut microbiota of 19 ET patients and 21 healthy controls (HCs) were analysed with metagenomics approach. Second, the potential linkages between gut microbiome and serum metabolome profiles were explored by integrative analysis. The gut microbiota disorders were present in ET patients. The LEfSe method showed a significant decrease in Bacteroides. The functional analysis revealed that there were differences in gut microbial apoptosis, retinol metabolism, and steroid hormone biosynthesis pathways. The levels of various lipids and lipid-like molecules alter in serum of ET patients, which correlated with altered gut microbial abundance, indicating the alterations in lipid metabolism involved in apoptosis pathway in ET. All of these data point to the gut dysbiosis in ET, and some changed gut microbial species were linked to abnormalities in blood lipid metabolism, which open up new avenues for investigation into the pathophysiology of ET.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Zhilin Zheng
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Zeyu Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Chen Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, P.R. China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
3
|
Lv W, Chen H, Zhou P, Du A, Lei Y. Mechanisms Associated With Renal Injury in Hyperuricemia and Strategies for the Development of Natural Active Substances. Int J Rheum Dis 2025; 28:e70096. [PMID: 39895275 DOI: 10.1111/1756-185x.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Hyperuricemia (HUA) is a metabolic condition resulting from an abnormality in the process of purine metabolism. Its occurrence has been on the rise globally. The results of relevant studies show that 5% to 12% of HUA patients will eventually develop gout, and one-third of these patients may involve the kidneys and develop kidney disease. Although the severe renal health hazards associated with excessive uric acid levels are well known, the specific molecular mechanisms remain unknown. Therefore, this paper provides insights into the mechanisms and related chain reactions of HUA leading to renal injury from three perspectives: imbalance of intestinal homeostasis, oxidative stress response, and NLRP3 inflammasome. In addition, standing against the background of the strong side effects and high tolerability disadvantages of commercially available uric acid-lowering drugs such as allopurinol, benzbromarone, and febuxostat, the development of a new active anti-hyperuricemic drug with fewer side effects is justified. This article reviews the progress of research on natural actives (probiotics, dietary polyphenols, peptides) with a high safety profile, multi-targeting, and integrative modulatory effects, in an attempt to provide some ideas for drug developers.
Collapse
Affiliation(s)
- Wanping Lv
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huixiang Chen
- Hospitalization Department, Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, China
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Pan Zhou
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aihua Du
- Hospitalization Department, Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, China
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Yu Lei
- Outpatient Department, Chengdu Rheumatology Hospital, Chengdu, China
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Gu W, Zhao J, Xu Y. Hyperuricemia-induced complications: dysfunctional macrophages serve as a potential bridge. Front Immunol 2025; 16:1512093. [PMID: 39935474 PMCID: PMC11810932 DOI: 10.3389/fimmu.2025.1512093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
With the changes in modern life, hyperuricemia (HUA) has become a serious universal health issue, leading to rising morbidity and mortality. Characterized by elevated levels of UA, HUA has become an independent risk factor for gout, chronic kidney disease, insulin resistance, cardiovascular disease, nonalcoholic fatty liver disease, etc. As HUA is a metabolic syndrome, the immune response is likely to play an active role throughout the whole process. Moreover, macrophages, as an indispensable component of the immune system, may serve as a promising target for addressing hyperuricemia-induced inflammation. Along with their precursor cells, monocytes, macrophages play a key role in the pathogenesis of HUA, primarily through three specific aspects, all of which are associated with inflammatory cytokines. The first mechanism involves direct action on urate transporters, such as URAT1 and ABCG2. The second mechanism is the modulation of inflammation, including targeting toll-like receptors (TLRs) and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. The third mechanism pertains to the effects on oxidative stress mediators. In this review, we summarize the underlying mechanisms of hyperuricemia, focusing on the effects of macrophages, therapeutic approaches, and clinical trials addressing hyperuricemia-caused dysfunction. Additionally, we highlight directions for future development, aiming to support future theoretical studies.
Collapse
Affiliation(s)
- Wenyi Gu
- Department of Traditional Chinese Medicine, Shanghai Putuo Hospital of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Zhao
- Department of Traditional Chinese Medicine, Shanghai Putuo Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yu Xu
- Department of Traditional Chinese Medicine, Shanghai Putuo Hospital of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine New Drug Discovery, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wu J, Wang X, Aga L, Tang L, Tan S, Zhang D, Li H, Yang L, Zhang N, Su S, Xiao M, Min R, Li A, Wang X. Lacticaseibacillus casei JS-2 from 'Jiangshui' Reduces Uric Acid and Modulates Gut Microbiota in Hyperuricemia. Foods 2025; 14:407. [PMID: 39942000 PMCID: PMC11817023 DOI: 10.3390/foods14030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Lacticaseibacillus casei (JS-2) is a novel probiotic isolated from "Jiangshui", a kind of traditional folk fermented food, which has a significant effect on hyperuricemia (HUA). In vitro experimental results showed that JS-2 has a high degradation ability and selectivity for uric acid (UA). The animal test results indicated that after two weeks of treatment, JS-2 could significantly reduce the level of UA in the serum of HUA quails (p < 0.01), and its effect is almost equivalent to that of the positive drug control group, benzbromarone. Further, after JS-2 treatment, the level of xanthine oxidase in quail serum decreased significantly. Analysis data of quail fecal metabolomics results showed that JS-2-altering metabolites were involved in amino acid, purine, and lipid metabolism. To investigate the mechanism underlying JS-2-mediated UA degradation in the quail model of HUA, 16S rRNA gene sequencing was conducted. It was found that the structure and function of the gut microbiota were restored after JS-2 intervention, and the abundance of short-chain fatty acid (SCFA)-producing bacteria (g__Ruminococcus_torques_group and g__Butyricicoccus) and bacteria with UA degradation capacity (g__unclassified_f__Lachnospiraceae and g__Negativibacillus) increased significantly; intestinal SCFAs, especially propionic acid, increased accordingly. These experimental data suggest that the beneficial effects of JS-2 may derive from changes in the gut microbiome, altering host-microbiota interactions, reducing UA levels by increasing UA excretion, and reducing absorption. These findings provided new evidence that JS-2 has the potential to be used as a naturally functional food for the prevention of HUA.
Collapse
Affiliation(s)
- Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Lvbu Aga
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Leimengyuan Tang
- Bayingolin Mongolian Autonomous Prefecture Institute for Food and Drug Control, No. 101, North Jianguo Road, Korla City 841000, Bayingolin Mongol Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Shuting Tan
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Shiyao Su
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Maochun Xiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Rongting Min
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Aji Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| |
Collapse
|
6
|
Cui M, Yang WM, Yao P. Protective effect of low-dose lactulose in dextran sulfate sodium induced ulcerative colitis model of rats. Sci Rep 2025; 15:2760. [PMID: 39843913 PMCID: PMC11754915 DOI: 10.1038/s41598-025-86823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e., normal drinking water was provided for an initial 14 days in blank control group, 4% dextran sulfate sodium was used for modeling in the remaining 4 groups. During the 15-24th day, rats in the blank control group were administered with 0.9% saline (0.5 ml/d) by gavage. In the rest 4 groups, rats were administered 0.9% saline (0.5 ml/d, UC model), mesalazine (400 mg/kg/d), lactulose (1000 mg/kg/d), and lactulose + mesalazine (two-drug combination) by gavage. In addition to symptoms and pathological changes, serum IL-6, TNF-α, and High-sensitivity C-reactive protein(Hs-CRP) by ELISA analysis, mRNA and protein expression levels of TLR-2, TLR-4, Nuclear factor-κB(NF-κB), IL-6, and TNF-α in colon tissues by RT-qPCR and WB analyses respectively. Meanwhile, short-chain fatty acid(SCFAs) and intestinal flora were analyzed. Low-dose lactulose improved symptoms (diarrhea, blood in stool, weight loss) and pathological inflammation. In addition to serum IL-6, TNF-α, and Hs-CRP, the mRNA and protein expression levels of TLR-2, TLR-4, NF-κB, IL-6 and TNF-α in the colon were down-regulated with the intervention of lactulose.Meanwhile, lactulose decreased the ileocecal PH, increased SCFAs and altered the intestinal flora. Low-dose lactulose may be beneficial to UC by regulating TLRs/NF-κB pathway, reducing ileocecal PH, increasing SCFAs, regulating intestinal flora and improving the intestinal mucosal barrier. Meanwhile, low-dose lactulose and mesalazine may have additive effects upon combination.
Collapse
Affiliation(s)
- Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China
| | - Wei-Ming Yang
- Xinjiang Medical University, Xinjiang Province, Urumqi, 830000, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, No.137 LiYuShan Road Xinjiang Province, Urumqi, 830000, China.
| |
Collapse
|
7
|
Guo JW, Lin GQ, Tang XY, Yao JY, Feng CG, Zuo JP, He SJ. Therapeutic potential and pharmacological mechanisms of Traditional Chinese Medicine in gout treatment. Acta Pharmacol Sin 2025:10.1038/s41401-024-01459-6. [PMID: 39825190 DOI: 10.1038/s41401-024-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Gout is a systemic metabolic disorder caused by elevated uric acid (UA) levels, affecting over 1% of the population. The most common complication of gout is gouty arthritis (GA), characterized by swelling, pain or tenderness in peripheral joints or bursae, which can lead to the formation of tophi. At present, western medicines like colchicine, febuxostat and allopurinol are the primary treatment strategy to alleviate pain and prevent flare-ups in patients with GA, but they have significant side effects and increased mortality risks. Traditional Chinese medicine (TCM) has been utilized for thousands of years for the prevention and treatment of GA, demonstrating effective control over serum UA (SUA) levels with fewer side effects. Herein we summarized a total of 541 studies published from 2000 to 2023 in sources including PubMed, Web of Science, the Cochrane Library and Embase, highlighting the therapeutic potential of TCM in treating gout and GA, particularly in combination with modern medical strategies. This review focuses on TCM formulas, Chinese herbal extracts, and active compounds derived from TCM, providing an overview of recent clinical application and the pharmacological research based on animal models and cellular systems. Particularly, the current review categorized the clinical and experimental evidence into the strategies for improving hyperuricemia, decreasing the sudden onset of acute GA and retarding chronic GA progression, supplied further coherent reference and enlightenment for clinicians, investigators of natural product chemistry, researchers in TCM and pharmacology. We hope this article will inspire the development of novel formulas and molecular entities for the treatment of gout and GA.
Collapse
Affiliation(s)
- Jing-Wen Guo
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Chen L, Bello-Onaghise G, Chen M, Li S, Zhang Y, Wang H, Qu Q, Li Y. Efficacy of Chlorogenic Acid in Treating Tripterygium Glycoside-Induced Asthenozoospermia in Rats and Its Possible Mechanisms. Vet Sci 2025; 12:66. [PMID: 39852941 PMCID: PMC11768533 DOI: 10.3390/vetsci12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Tripterygium glycosides (TGs) are the most common form of traditional Chinese medicine, known as Tripterygium wilfordii Hook F (TWHF) [...].
Collapse
Affiliation(s)
- Long Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300103, Nigeria
| | - Mo Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China;
| | - Shunda Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Haoran Wang
- Department of Clinical Medicine, School of Clinical Medicine, Southern Medical University, 1023 Shatainan Road, Guangzhou 510515, China;
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| |
Collapse
|
9
|
Xu M, Xiao H, Zou X, Pan L, Song Q, Hou L, Zeng Y, Han Y, Zhou Z. Mechanisms of levan in ameliorating hyperuricemia: Insight into levan on serum metabolites, gut microbiota, and function in hyperuricemia rats. Carbohydr Polym 2025; 347:122665. [PMID: 39486924 DOI: 10.1016/j.carbpol.2024.122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
This study aims to investigate the effects of levan on the progression of hyperuricemia (HUA) rats and elucidate its underlying mechanisms. After levan intervention, both low and high-dose groups exhibited a significant decrease in serum uric acid (UA) levels, reaching 71.0 % and 77.5 %, respectively, compared to the model group. Furthermore, levan could alleviate renal pathological damage caused by glomerular cell vacuolation, inflammatory infiltration and collagen deposition. The results of enzyme activity assay and real-time fluorescence quantitative PCR showed that levan decreased UA production by inhibiting adenosine deaminase (ADA) activity and gene expression in liver; it upregulated ATP-binding cassette subfamily G member 2 protein (ABCG2) and organic anion transporter 1 (OAT1) transporter gene expression in the kidney, promoting UA excretion. Gut microbiome analysis indicated that levan regulated gut flora dysbiosis induced by HUA, resulting in up-regulated the abundance of beneficial bacteria (Muribaculaceae, Faecalibaculum, Bifidobacterium, and Lactobacillus) and decreased conditioned pathogenic bacteria (Escherichia_Shigella and Proteus). Non-targeted metabolomics showed changes in various serum metabolites associated with glycerophospholipid metabolism, lipid metabolism, and inflammation following oral administration of levan. Therefore, levan may be a promising functional dietary supplement for regulating the gut flora and remodeling of metabolic disorders in individuals with HUA.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huazhi Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Pan
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Luying Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yihong Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
Xu X, Wei S, Lin M, Chen F, Zhang X, Zhu Y. The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 39668759 DOI: 10.1080/10408398.2024.2440602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
11
|
Xue M, Du R, Zhou Y, Liu Y, Tian Y, Xu Y, Yan J, Song P, Wan L, Xu H, Zhang H, Liang H. Fucoidan Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in Hyperuricemia Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27187-27202. [PMID: 39600107 DOI: 10.1021/acs.jafc.4c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hyperuricemia is a metabolic disease characterized by an excessively increased level of uric acid (UA) in the blood, with an increasing prevalence and often associated with kidney damage. Gut microbiota and endotoxins of gut origin are key mediators in the gut-kidney axis that can cause renal impairment. The study was to reveal the protective effects of fucoidan on renal injury caused by hyperuricemia. The hyperuricemia model was established in C57BL/6J mice. After 10 weeks of fucoidan supplementation, we found that the levels of serum UA and creatinine were reduced, and the levels of renal tumor necrosis factor α, interleukin-18 (IL-18), IL-6, and interleukin-1β (IL-1β) were also decreased. Fucoidan inhibited the expressions of phosphorylated NF-κB p65, NLRP3, and activated caspase-1 in the kidneys. Fucoidan also regulated the expressions of Bcl-2 family proteins and decreased the activation of caspase-3, thereby exerting antiapoptotic effect. In addition, fucoidan could reduce the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) proteins, thereby promoting the excretion of UA from the kidneys. Moreover, the protective effect of fucoidan on renal injury may be related to maintaining intestinal homeostasis. Fucoidan reduced serum lipopolysaccharide and improved the intestinal mucosal barrier function. Fucoidan decreased the abundances of Blautia, Muribaculaceae, and Dubosiella, and increased the abundances of Lactobacillus. High-dose fucoidan supplementation increased the content of butyric acid and enhanced the expression of ATP binding box transporter G2 (ABCG2) via the AMPK/AKT/CREB pathway in ileum. Conclusion: Fucoidan could protect against hyperuricemia-induced renal injury by inhibiting renal inflammation and apoptosis and modulating intestinal homeostasis in hyperuricemia mice.
Collapse
Affiliation(s)
- Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Ronghuan Du
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yuhan Liu
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yingjie Tian
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yan Xu
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jiayi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Pengzhao Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Lu Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Hongsen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Huaqi Zhang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Rao L, Dong B, Chen Y, Liao J, Wang C, Fu G, Wan Y. Study on the mechanism of lactic acid bacteria and their fermentation broth in alleviating hyperuricemia based on metabolomics and gut microbiota. Front Nutr 2024; 11:1495346. [PMID: 39698246 PMCID: PMC11652139 DOI: 10.3389/fnut.2024.1495346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Hyperuricemia (HUA) is a metabolic disease caused by purine metabolism disorders in the body. Lactic acid bacteria (LAB) and their fermentation broth have the potential to alleviate hyperuricemia, but the potential mechanism of action is still unclear. Methods The LAB with high inhibitory activity against xanthine oxidase (XOD) were screened out. Then the fermentation broth, fermentation supernatant and fermentation bacteria after fermentation of these LAB were administered into HUA mice, respectively. Results Lactobacillus reuteri NCUF203.1 and Lactobacillus brevis NCUF207.7, of which fermentation supernatant had high inhibitory activity against XOD, were screened out and administered into HUA mice. Among them, L. reuteri strain, L. reuteri fermentation broth, L. brevis fermentation broth and L. brevis fermentation supernatant could significantly reduce serum uric acid levels and inhibited the liver XOD activity in HUA mice. The GC-MS metabolomics analysis of colon contents showed that supplementation of these four substances could partially reverse the down-regulation of energy metabolism pathways such as ketone body metabolism, pyruvate metabolism and citric acid cycle in HUA mice. It could also regulate amino acid metabolism pathways such as alanine metabolism, arginine and proline metabolism, glycine and serine metabolism, and repair the disorders of amino acid metabolism caused by HUA. In addition, the intervention of L. brevis fermentation broth and L. brevis fermentation supernatant may also accelerate the catabolism of uric acid in the intestine by up-regulating the urea cycle pathway. Fecal 16S rRNA sequencing analysis showed that their intervention increased the diversity of gut microbiota in HUA mice and alleviated the gut microbiota dysregulation caused by HUA. Discussion These results indicated that the LAB and their fermentation broth may play a role in alleviating HUA by regulating intestinal metabolism and gut microbiota.
Collapse
Affiliation(s)
- Lijuan Rao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Biao Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Jiajing Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Ullah Z, Yue P, Mao G, Zhang M, Liu P, Wu X, Zhao T, Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int J Biol Macromol 2024; 278:134832. [PMID: 39168219 DOI: 10.1016/j.ijbiomac.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
16
|
Liu X, Liang XQ, Lu TC, Feng Z, Zhang M, Liao NQ, Zhang FL, Wang B, Wang LS. Leech Poecilobdella manillensis protein extract ameliorated hyperuricemia by restoring gut microbiota dysregulation and affecting serum metabolites. World J Gastroenterol 2024; 30:3488-3510. [PMID: 39156502 PMCID: PMC11326090 DOI: 10.3748/wjg.v30.i29.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.
Collapse
Affiliation(s)
- Xia Liu
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
- Department of Traditional Chinese Medicine, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Tian-Cai Lu
- General Manager’s Office, Guangxi Fuxinyi Biological Technology Co. Ltd., Pingnan 537300, Guangxi Zhuang Autonomous Region, China
| | - Zhe Feng
- Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Min Zhang
- Department of Gerontology, Nanning Social Welfare Hospital, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Nan-Qing Liao
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Feng-Lian Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Bo Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Li-Sheng Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Feng R, Wang Q, Yu T, Hu H, Wu G, Duan X, Jiang R, Xu Y, Huang Y. Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora-SCFAs-inflammatory signaling axis. Int Immunopharmacol 2024; 136:112341. [PMID: 38810309 DOI: 10.1016/j.intimp.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a common systemic skeletal disorder characterized by an imbalance in bone homeostasis, involving increased osteoclastic bone formation and decreased osteoblastic bone resorption. Quercetin is a plant polyphenol that has been found to exhibit various biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects. Previous studies have demonstrated its potential to improve postmenopausal OP, although the exact mechanism remains unclear. This study aims to investigate the anti-osteoporotic mechanism of quercetin based on the "intestinal flora - short-chain fatty acids (SCFAs) - inflammatory" signaling axis. METHODS In this study, we established an ovariectomized (OVX)-induced rat model, quercetin intervention and evaluated the effects on rats following antibiotic (ABX) treatment and fecal microbiota transplantation (FMT). After 6 weeks of intervention, the rats were euthanized, and samples from their femur, tibia, lumbar spine, serum, colon and feces were collected, and bone strength, intestinal flora structure, SCFAs levels and cytokine levels were assessed. RESULTS Quercetin modulates the intestinal flora by increasing potentially probiotic bacteria (i.e., Lactobacillales, Prevotellaceae, and Blautia) and decreasing potentially pathogenic bacteria (Desulfobacterota, Erysipelotrichales, Romboutsia, and Butyricoccaceae). It also increases SCFAs content and reduces colonic permeability by enhancing tight junction proteins (ZO-1, Occludin). Furthermore, quercetin lowers proinflammatory cytokine levels (LPS, IL-1β, and TNF-α), which enhances bone strength and prevents OVX-induced bone loss. CONCLUSIONS Quercetin may effectively reduce bone loss in OVX rats via the "intestinal flora - SCFAs - inflammatory" signaling pathway.
Collapse
Affiliation(s)
- Ruibing Feng
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Qing Wang
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Tiantian Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Hao Hu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Gang Wu
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Xiaofeng Duan
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China
| | - Ruixuan Jiang
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China
| | - Yifan Xu
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China
| | - Yong Huang
- Department of Spine Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province 430074, PR China; School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan City, Hubei Province 430079, PR China; Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province 430060, PR China.
| |
Collapse
|
18
|
Wang X, Zhang T, Li W, Zhang M, Zhao L, Wang N, Zhang X, Zhang B. Dietary supplementation with Macleaya cordata extract alleviates intestinal injury in broiler chickens challenged with lipopolysaccharide by regulating gut microbiota and plasma metabolites. Front Immunol 2024; 15:1414869. [PMID: 39100674 PMCID: PMC11294198 DOI: 10.3389/fimmu.2024.1414869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1β and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Liu W, Nan F, Liu F, Yang X, Li Z, Jiang S, Zhang X, Li J, Yu M, Wang Y, Wang B. Isolation and identification of uric acid-dependent Aciduricibacillus chroicocephali gen. nov., sp. nov. from seagull feces and implications for hyperuricemia treatment. mSphere 2024; 9:e0002524. [PMID: 38814072 PMCID: PMC11332149 DOI: 10.1128/msphere.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Hyperuricemia has become the second most prevalent metabolic disease after diabetes, but the limitations of urate-lowering treatment (ULT) drugs and patient nonadherence make ULT far less successful. Thus, more ULT approaches urgently need to be explored. Uric acid-degrading bacteria have potential application value in ULT. In this study, we isolated 44XBT, a uric acid-degrading bacterium, from black-headed gull (Chroicocephalus ridibundus) feces. Using a polyphasic taxonomic approach, strain 44XBT was identified as a novel genus within the family Bacillaceae; subsequently, the name Aciduricibacillus chroicocephali was proposed. Strain 44XBT had a unique uric acid-dependent phenotype and utilized uric acid and allantoin as the sole carbon and nitrogen sources, but not common carbon sources or complex media. In the genome, multiple copies of genes involved in uric acid metabolic pathway (pucL, pucM, uraD, and allB) were found. Six copies of pucL (encoding urate oxidase) were detected. Of these, five pucL copies were in a tandem arrangement and shared 70.42%-99.70% amino acid identity. In vivo experiments revealed that 44XBT reduced serum uric acid levels and attenuated kidney damage in hyperuricemic mice through uric acid catalysis in the gut and gut microbiota remodeling. In conclusion, our findings discover a strain for studying bacterial uric acid metabolism and may provide valuable insights into ULT. IMPORTANCE The increasing disease burden of hyperuricemia highlights the need for new therapeutic drugs and treatment strategies. Our study describes the developmental and application values of natural uric acid-degrading bacteria found in the gut of birds and broadened the source of bacteria with potential therapeutic value. Furthermore, the special physiology characteristics and genomic features of strain 44XBT are valuable for further study.
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengjun Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoli Yang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zonghui Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meng Yu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Liang J, Wen T, Zhang X, Luo X. Chlorogenic Acid as a Potential Therapeutic Agent for Cholangiocarcinoma. Pharmaceuticals (Basel) 2024; 17:794. [PMID: 38931461 PMCID: PMC11206998 DOI: 10.3390/ph17060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorogenic acid (CGA) has demonstrated anti-tumor effects across various cancers, but its role in cholangiocarcinoma (CCA) remains unclear. Our study revealed CGA's potent anti-tumor effects on CCA, significantly suppressing cell proliferation, migration, colony formation, and invasion while inhibiting the epithelial-mesenchymal transition. CGA induced apoptosis, modulated cell cycle progression, and exhibited a stable binding affinity to AKR1B10 in CCA. AKR1B10 was highly expressed in RBE cells, and CGA treatment reduced AKR1B10 expression. Knocking out AKR1B10 inhibited the proliferation of RBE cells, whereas the overexpression of AKR1B10 promoted their proliferation. Additionally, CGA suppressed the proliferation of RBE cells with AKR1B10 overexpression. Mechanistically, AKR1B10 activated AKT, and CGA exerted its inhibitory effect by reducing AKR1B10 levels, thereby suppressing AKT activation. Furthermore, CGA facilitated the polarization of tumor-associated macrophages towards an anti-tumor phenotype and enhanced T-cell cytotoxicity. These findings underscore CGA's potential as a promising therapeutic agent for CCA treatment.
Collapse
Affiliation(s)
- Jiabao Liang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
| | - Tong Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
| | - Xiaojian Zhang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (J.L.)
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
21
|
Yang Z, Lyu B, Ma B, Gao Y, Qin D. Screening of the effective sites of Cichorium glandulosum against hyperuricemia combined with hyperlipidemia and its network pharmacology analysis. Comput Biol Chem 2024; 110:108088. [PMID: 38685167 DOI: 10.1016/j.compbiolchem.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cichorium glandulosum, a common traditional Chinese medicine used by Uyghur and Mongolian ethnic groups, is recognized for its potential to ameliorate metabolic disorders. However, the specific efficacy and mechanisms of Cichorium glandulosum in treating the comorbidity of hyperuricaemia and hyperlipidaemia remain unexplored. This study aims to explore the pharmacological effects and mechanisms of Cichorium glandulosum on this comorbidity through a combination of animal experiments, network pharmacology, and molecular docking techniques. A rat model of hyperuricaemia combined with hyperlipidaemia was established through a high-fat and high-purine diet, and the effective parts of the aqueous extract of Cichorium glandulosum to reduce uric acid and lipid levels were screened and the components of the parts were analysed by LC-MS/MS. The active components, core targets, and key pathways were analysed using network pharmacology and validated by molecular docking. Animal experimental results indicated that the n-butanol extract of Cichorium glandulosum showed a significant therapeutic effect on this comorbidity. Analysis of the n-butanol extract yielded 35 active ingredients and 138 intersecting targets related to diseases. Key targets identified through compound-target-pathway (C-T-P) and Protein-Protein Interaction (PPI) analyses included RELA, CASP3, PTGS2, TNF, and ESR1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed 2515 functional items and 164 pathways, respectively. Molecular docking demonstrated that isochlorogenic acid A, baicalin, chicoric acid, and lactucopicrin showed the highest binding affinity to RELA and PTGS2. The n-butanol fraction from the aqueous extract of Cichorium glandulosum was found to reduce uric acid and lipid levels effectively. In summary, Cichorium glandulosum has a therapeutic effect on hyperuricaemia combined with hyperlipidaemia through its multi-component, multi-target, and multi-pathway characteristics.
Collapse
Affiliation(s)
- Zhiguo Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Bo Lyu
- The First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Bin Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia, Henan 472000, China
| | - Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
22
|
Tian Y, Jian T, Li J, Huang L, Li S, Lu H, Niu G, Meng X, Ren B, Liao H, Ding X, Chen J. Phenolic acids from Chicory roots ameliorate dextran sulfate sodium-induced colitis in mice by targeting TRP signaling pathways and the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155378. [PMID: 38507851 DOI: 10.1016/j.phymed.2024.155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a type of immune-mediated condition associated with intestinal homeostasis. Our preliminary studies disclosed that Cichorium intybus L., a traditional medicinal plant, also known as Chicory in Western countries, contained substantial phenolic acids displaying significant anti-inflammatory activities. We recognized the potential of harnessing Chicory for the treatment of IBD, prompting a need for in-depth investigation into the underlying mechanisms. METHODS On the third day, mice were given 100, 200 mg/kg of total phenolic acids (PA) from Chicory and 200 mg/kg of sulfasalazine (SASP) via gavage, while dextran sodium sulfate (DSS) concentration was 2.5 % for one week. The study measured and evaluated various health markers including body weight, disease activity index (DAI), colon length, spleen index, histological score, serum concentrations of myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD), lipid oxidation (MDA), and inflammatory factors. We evaluated the TRP family and the NLRP3 inflammatory signaling pathways by Western blot, while 16S rDNA sequencing was used to track the effects of PA on gut microbes. RESULTS It was shown that PA ameliorated the weight loss trend, attenuated inflammatory damage, regulated oxidative stress levels, and repaired the intestinal barrier in DSS mice. Analyses of Western blots demonstrated that PA suppressed what was expressed of transient receptor potential family TRPV4, TRPA1, and the expression of NLRP3 inflammatory signaling pathway, NLRP3 and GSDMD. In addition, PA exerted therapeutic effects on IBD by regulating gut microbiota richness and diversity. Meanwhile, the result of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that gut microbiota was mainly related to Membrane Transport, Replication and Repair, Carbohydrate Metabolism and Amino Acid Metabolism. CONCLUSION PA derived from Chicory may have therapeutic effects on IBD by regulating the TRPV4/NLRP3 signaling pathway and gut microbiome. This study provides new insights into the effects of phenolic acids from Chicory on TRP ion channels and gut microbiota, revealing previously unexplored modes of action.
Collapse
Affiliation(s)
- Yuwen Tian
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jin Li
- Department of Painology, Hainan Cancer Hospital, Haikou 570311, China
| | - Lushi Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shen Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huarong Liao
- Pharmaceutical Affairs Department, Hubei Provincial Traditional Chinese Medical Hospital HuBei Institute of traditional Chinese Medicine, WuHan 430061, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
23
|
Satkanov M, Tazhibay D, Zhumabekova B, Assylbekova G, Abdukarimov N, Nurbekova Z, Kulatayeva M, Aubakirova K, Alikulov Z. Method for assessing the content of molybdenum enzymes in the internal organs of fish. MethodsX 2024; 12:102576. [PMID: 38304395 PMCID: PMC10832488 DOI: 10.1016/j.mex.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Molybdenum enzymes (Mo-enzymes) contain a molybdenum cofactor (MoCo) in the active site. These enzymes are potentially interesting for studying the survival mechanism of fish under hypoxic water conditions. This is because Mo-enzymes can synthesize nitric oxide from nitrates and nitrites, which are present in high concentrations under hypoxic water conditions. However, there is currently no method for assessing the Mo-enzymes content in the fish internal organs. Methods capable of determining Mo-enzymes content in the fish are of major importance. For this purpose, a method for quantitative determination of MoCo from plant tissues was modified. We demonstrated the Mo-enzyme content assessment by isolated MoCo from the fish's internal organs and the Neurospora crassa nit-1 extract containing inactive NADPH nitrate reductase. The Mo enzyme content was calculated using a calibration curve in nM of nitrites as a product of restored NADPH reductase activity after complementation with MoCo. Here we present a robust laboratory method which can be used to assess the content of Mo-enzymes in the internal organs of fish.•Mo-enzymes play a crucial role in detoxifying toxic compounds. Therefore, it is important to develop a method to accurately determine the amount of Mo-enzymes present. Notably, the method demonstrated the efficiency and accuracy as detected high content of Mo-enzymes in the liver and intestines (P < 0.0001). The obtained data on the distribution of Mo-enzymes in the internal organs of this species correspond to that of other vertebrates. Here, we present a rapid, sensitive, accurate and accessible method.•The developed method is simple and easy to use. Importantly, the protocol does not require complex manipulations, and the equipment used is available in most laboratories. The article provides step-by-step instructions for reproducing the method.
Collapse
Affiliation(s)
- Mereke Satkanov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
- Immanuel Kant Baltic Federal University, Higher School of Living Systems, Kaliningrad, 236041, Russia
| | - Diana Tazhibay
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Bibigul Zhumabekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | - Gulmira Assylbekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | | | - Zhadyrassyn Nurbekova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Maral Kulatayeva
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Karlygash Aubakirova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Zerekbai Alikulov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| |
Collapse
|
24
|
Liu WW, Dong HJ, Zhang Z, Ma XH, Liu S, Huang W, Wang X. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice. Fitoterapia 2024; 175:105926. [PMID: 38537887 DOI: 10.1016/j.fitote.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.
Collapse
Affiliation(s)
- Wen-Wen Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Hong-Jing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xin-Hui Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wei Huang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
25
|
Tang C, Li L, Jin X, Wang J, Zou D, Hou Y, Yu X, Wang Z, Jiang H. Investigating the Impact of Gut Microbiota on Gout Through Mendelian Randomization. Orthop Res Rev 2024; 16:125-136. [PMID: 38766545 PMCID: PMC11100514 DOI: 10.2147/orr.s454211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Background The relationship between gout and gut microbiota has attracted significant attention in current research. However, due to the diverse range of gut microbiota, the specific causal effect on gout remains unclear. This study utilizes Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and gout, aiming to elucidate the underlying mechanism of microbiome-mediated gout and provide valuable guidance for clinical prevention and treatment. Materials and Methods The largest genome-wide association study meta-analysis conducted by the MiBioGen Consortium (n=18,340) was utilized to perform a two-sample Mendelian randomization investigation on aggregate statistics of intestinal microbiota. Summary statistics for gout were utilized from the data released by EBI. Various methods, including inverse variance weighted, weighted median, weighted model, MR-Egger, and Simple-mode, were employed to assess the causal relationship between gut microbiota and gout. Reverse Mendelian randomization analysis revealed a causal association between bacteria and gout in forward Mendelian randomization analysis. Cochran's Q statistic was used to quantify instrumental variable heterogeneity. Results The inverse variance weighted estimation revealed that Rikenellaceae exhibited a slight protective effect on gout, while the presence of Ruminococcaceae UCG_011 is associated with a marginal increase in the risk of gout. According to the reverse Mendelian Randomization results, no significant causal relationship between gout and gut microbiota was observed. No significant heterogeneity of instrumental variables or level pleiotropy was detected. Conclusion Our MR analysis revealed a potential causal relationship between the development of gout and specific gut microbiota; however, the causal effect was not robust, and further research is warranted to elucidate its underlying mechanism in gout development. Considering the significant association between diet, gut microbiota, and gout, these findings undoubtedly shed light on the mechanisms of microbiota-mediated gout and provide new insights for translational research on managing and standardizing treatment for this condition.
Collapse
Affiliation(s)
- Chaoqun Tang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Lei Li
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Jin
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Jinfeng Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Debao Zou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Yan Hou
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Xin Yu
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Zhizhou Wang
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| | - Hongjiang Jiang
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
- Department of Orthopedics, Shandong Wendeng Osteopathic Hospital, Wendeng, Weihai, Shandong, People’s Republic of China
| |
Collapse
|
26
|
Yang F, Zhang K, Dai X, Jiang W. Preliminary Exploration of Potential Active Ingredients and Molecular Mechanisms of Yanggan Yishui Granules for Treating Hypertensive Nephropathy Using UPLC-Q-TOF/MS Coupled with Network Pharmacology and Molecular Docking Strategy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:7967999. [PMID: 38766523 PMCID: PMC11101260 DOI: 10.1155/2024/7967999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Kailun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiaohua Dai
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
27
|
Xu X, Shan M, Chu C, Bie S, Wang H, Cai S. Polysaccharides from Polygonatum kingianum Collett & Hemsl ameliorated fatigue by regulating NRF2/HO-1/NQO1 and AMPK/PGC-1α/TFAM signaling pathways, and gut microbiota. Int J Biol Macromol 2024; 266:131440. [PMID: 38593898 DOI: 10.1016/j.ijbiomac.2024.131440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Polygonatum kingianum Coll & Hemsl is an important Chinese medicine used for enhancing physical function and anti-fatigue, and polysaccharides (PKPs) are considered as the main bioactive components. However, the mechanisms through which PKPs exert their anti-fatigue effects are not fully understood. This study aimed more comprehensively to explore the anti-fatigue mechanisms of PKPs, focusing on metabolism, protein expression, and gut flora, by using exhaustive swimming experiments in mice. Results showed a significant increase in the exhaustive swimming time of the mice treated with PKPs, especially in the high-dose group (200 mg/kg/day). Further studies showed that PKPs remarkably improves several fatigue-related physiological indices. Additionally, 16S rRNA sequence analysis showed that PKPs increased antioxidant bacteria (e.g., g_norank_f_Muribaculaceae) and the production of short-chain fatty acids (SCFAs), while reducing the abundance of harmful bacteria (e.g., g_Escherichia-Shigella and g_Helicobacter). PKPs also mitigated oxidative stress through activating the NRF2/HO-1 signaling pathway, and promoted energy metabolism by upregulating the expression of AMPK/PGC-1α/TFAM signaling pathway proteins. This research may offer theoretical support for incorporating PKPs as a novel dietary supplement in functional foods targeting anti-fatigue properties.
Collapse
Affiliation(s)
- Xingrui Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Meimei Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Shenke Bie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212100, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
28
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
29
|
Zhou Y, Zeng Y, Wang R, Pang J, Wang X, Pan Z, Jin Y, Chen Y, Yang Y, Ling W. Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients 2024; 16:1086. [PMID: 38613119 PMCID: PMC11013445 DOI: 10.3390/nu16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Ruijie Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
30
|
Chen PK, Cheng ZY, Wang YL, Xu BJ, Yu ZC, Li ZX, Gong SA, Zhang FT, Qian L, Cui W, Feng YZ, Cai XR. Renal interstitial fibrotic assessment using non-Gaussian diffusion kurtosis imaging in a rat model of hyperuricemia. BMC Med Imaging 2024; 24:78. [PMID: 38570748 PMCID: PMC10988851 DOI: 10.1186/s12880-024-01259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND To investigate the feasibility of Diffusion Kurtosis Imaging (DKI) in assessing renal interstitial fibrosis induced by hyperuricemia. METHODS A hyperuricemia rat model was established, and the rats were randomly split into the hyperuricemia (HUA), allopurinol (AP), and AP + empagliflozin (AP + EM) groups (n = 19 per group). Also, the normal rats were selected as controls (CON, n = 19). DKI was performed before treatment (baseline) and on days 1, 3, 5, 7, and 9 days after treatment. The DKI indicators, including mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) of the cortex (CO), outer stripe of the outer medulla (OS), and inner stripe of the outer medulla (IS) were acquired. Additionally, hematoxylin and eosin (H&E) staining, Masson trichrome staining, and nuclear factor kappa B (NF-κB) immunostaining were used to reveal renal histopathological changes at baseline, 1, 5, and 9 days after treatment. RESULTS The HUA, AP, and AP + EM group MKOS and MKIS values gradually increased during this study. The HUA group exhibited the highest MK value in outer medulla. Except for the CON group, all the groups showed a decreasing trend in the FA and MD values of outer medulla. The HUA group exhibited the lowest FA and MD values. The MKOS and MKIS values were positively correlated with Masson's trichrome staining results (r = 0.687, P < 0.001 and r = 0.604, P = 0.001, respectively). The MDOS and FAIS were negatively correlated with Masson's trichrome staining (r = -626, P < 0.0014 and r = -0.468, P = 0.01, respectively). CONCLUSION DKI may be a non-invasive method for monitoring renal interstitial fibrosis induced by hyperuricemia.
Collapse
Affiliation(s)
- Ping-Kang Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Ya-Lin Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Bao-Jun Xu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Zong-Chao Yu
- Nephrology department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhao-Xia Li
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shang-Ao Gong
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Feng-Tao Zhang
- Intervention department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- MRI Research, GE Healthcare, Beijing, China
| | - You-Zhen Feng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China.
| | - Xiang-Ran Cai
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
31
|
Liu H, Chen Z, Liu M, Li E, Shen J, Wang J, Liu W, Jin X. The Terminalia chebula Retz extract treats hyperuricemic nephropathy by inhibiting TLR4/MyD88/NF-κB axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117678. [PMID: 38159820 DOI: 10.1016/j.jep.2023.117678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperuricemic nephropathy (HN) is a renal injury caused by hyperuricemia and is the main cause of chronic kidney disease and end-stage renal disease. ShiWeiHeZiSan, which is composed mainly of components of Terminalia chebula Retz. And is recorded in the Four Medical Tantras, is a typical traditional Tibetan medicinal formula for renal diseases. Although T. chebula has been reported to improve renal dysfunction and reduce renal cell apoptosis, the specific mechanism of the nephroprotective effects of T. chebula on HN is still unclear. AIM OF THE STUDY This study was conducted to evaluate the effects and specific mechanism of T. chebula extract on HN through network pharmacology and in vivo and in vitro experiments. MATERIALS AND METHODS Potassium oxalate (1.5 g/kg) and adenine (50 mg/kg) were combined for oral administration to establish the HN rat model, and the effects of T. chebula extract on rats in the HN model were evaluated by renal function indices and histopathological examinations. UPLC-Q-Exactive Orbitrap/MS analysis was also conducted to investigate the chemical components of T. chebula extract, and the potential therapeutic targets of T. chebula in HN were predicted by network pharmacology analysis. Moreover, the activation of potential pathways and the expression of related mRNAs and proteins were further observed in HN model rats and uric acid-treated HK-2 cells. RESULTS T. chebula treatment significantly decreased the serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (SCr) levels in HN rats and ameliorated renal pathological injury and fibrosis. A total of 25 chemical components in T. chebula extract were identified by UPLC-Q-Exactive Orbitrap/MS analysis, and network pharmacology analysis indicated that the NF-κB pathway was the potential pathway associated with the therapeutic effects of T. chebula extract on HN. RT‒PCR analysis, immunofluorescence staining and ELISA demonstrated that the mRNA and protein levels of TLR4 and MyD88 were significantly decreased in the renal tissue of HN rats after treatment with T. chebula extract at different concentrations, while the phosphorylation of P65 and the secretion of TNF-α and IL-6 were significantly inhibited. The results of in vitro experiments showed that T. chebula extract significantly decreased the protein levels of TLR4, MyD88, p-IκBα and p-P65 in uric acid-treated HK-2 cells and inhibited the nuclear translocation of p65 in these cells. In addition, the expression of inflammatory factors (IL-1β, IL-6 and TNF-α) and fibrotic genes (α-SMA and fibronectin) was significantly downregulated by T. chebula extract treatment, while E-cadherin expression was significantly upregulated. CONCLUSION T. chebula extract exerts nephroprotective effects on HN, such as anti-inflammatory effects and fibrosis improvement, by regulating the TLR4/MyD88/NF-κB axis, which supports the general use of T. chebula in the management of HN and other chronic kidney diseases.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Zhiyu Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Meng Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Ertong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China.
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China.
| |
Collapse
|
32
|
Hussain A, Rui B, Ullah H, Dai P, Ahmad K, Yuan J, Liu Y, Li M. Limosilactobacillus reuteri HCS02-001 Attenuates Hyperuricemia through Gut Microbiota-Dependent Regulation of Uric Acid Biosynthesis and Excretion. Microorganisms 2024; 12:637. [PMID: 38674582 PMCID: PMC11052267 DOI: 10.3390/microorganisms12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Hyperuricemia is a prevalent metabolic disorder that arises from abnormal purine metabolism and reduced excretion of uric acid (UA). The gut microbiota plays a significant role in the biosynthesis and excretion of UA. Probiotics capable of purine degradation possess the potential to prevent hyperuricemia. Our study aimed to screen probiotics in areas with abundant dairy products and longevity populations in China, which could attenuate the level of UA and explore the underlying mechanism. In this study, twenty-three lactic acid bacteria isolated from healthy Chinese infant feces and traditional fermented foods such as hurood and lump milk were evaluated for the ability to tolerance acid, bile, artificial gastric juice, and artificial intestinal juice to determine the potential of the candidate strains as probiotics. Eight strains were identified as possessing superior tolerance to simulated intestinal conditions and were further analyzed by high-performance liquid chromatography (HPLC), revealing that Limosilactobacillus reuteri HCS02-001 (Lact-1) and Lacticaseibacillus paracasei HCS17-040 (Lact-2) possess the most potent ability to degrade purine nucleosides. The effect of Lact-1 and Lact-2 on hyperuricemia was evaluated by intervening with them in the potassium oxonate and adenine-induced hyperuricemia Balb/c mice model in vivo. Our results showed that the level of serum UA in hyperuricemic mice can be efficiently reduced via the oral administration of Lact-1 (p < 0.05). It significantly inhibited the levels of liver inflammatory cytokines and hepatic xanthine oxidase through a TLR4/MyD88/NF-κB pathway across the gut-liver axis. Furthermore, UA transporters ABCG2 and SLC2A9 were substantially upregulated by the intervention of this probiotic. Fecal ATP levels were significantly induced, while fecal xanthine dehydrogenase and allantoinase levels were increased following probiotics. RNA sequencing of HT-29 cells line treated with Lact-1 and its metabolites demonstrated significant regulation of pathways related to hyperuricemia. In summary, these findings demonstrate that Limosilactobacillus reuteri HCS02-001 possesses a capacity to ameliorate hyperuricemia by inhibiting UA biosynthesis via enhancing gastrointestinal barrier functions and promoting UA removal through the upregulation of urate transporters, thereby providing a basis for the probiotic formulation by targeting the gut microbiota.
Collapse
Affiliation(s)
- Akbar Hussain
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Hayan Ullah
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Panpan Dai
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Kabir Ahmad
- Department of Physiology, Dalian Medical University, Dalian 116041, China;
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116041, China; (A.H.); (B.R.); (H.U.); (J.Y.)
| |
Collapse
|
33
|
Abdel-Wahhab KG, Elqattan GM, El-Sahra DG, Hassan LK, Sayed RS, Mannaa FA. Immuno-antioxidative reno-modulatory effectiveness of Echinacea purpurea extract against bifenthrin-induced renal poisoning. Sci Rep 2024; 14:5892. [PMID: 38467789 PMCID: PMC10928203 DOI: 10.1038/s41598-024-56494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
This study was conducted to evaluate the ameliorative, anti-inflammatory, antioxidant, and chemical detoxifying activities of Echinacea purpurea ethanolic extract (EEE) against bifenthrin-induced renal injury. Adult male albino rats (160-200 g) were divided into four groups (10 rats each) and orally treated for 30 days as follows: (1) normal control; (2) healthy animals were treated with EEE (465 mg/kg/day) dissolved in water; (3) healthy animals were given bifenthrin (7 mg/kg/day) dissolved in olive oil; (4) animals were orally administered with EEE 1-h prior bifenthrin intoxication. The obtained results revealed that administration of the animals with bifenthrin caused significant elevations of serum values of urea, creatinine, ALAT and ASAT, as well as renal inflammatory (IL-1β, TNF-α & IFN-γ), apoptotic (Caspase-3) and oxidative stress (MDA and NO) markers coupled with a marked drop in the values of renal antioxidant markers (GSH, GPx, and SOD) in compare to those of normal control. Administration of EEE prior to bifenthrin resulted in a considerable amelioration of the mentioned deteriorated parameters near to that of control; moreover, the extract markedly improved the histological architecture of the kidney. In conclusion, Echinacea purpurea ethanolic extract has promising ameliorative, antioxidant, anti-inflammatory, renoprotective, and detoxifying efficiencies against bifenthrin-induced renal injury.
Collapse
Affiliation(s)
| | - Ghada M Elqattan
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| | - Doaa G El-Sahra
- Modern University for Technology and Information, Cairo, Egypt
| | - Laila K Hassan
- Dairy Department, National Research Centre, Giza, 12622, Egypt
| | - Rehab S Sayed
- Regional Center for Food and Feed, Agriculture Research Centre, Giza, Egypt
| | - Fathia A Mannaa
- Medical Physiology Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
34
|
Qian Y, Shen Y. Si Miao San relieves hyperuricemia by regulating intestinal flora. Biomed Chromatogr 2024; 38:e5807. [PMID: 38118432 DOI: 10.1002/bmc.5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
This study seeks to investigate the therapeutic effects of Si Miao San (SMS) on hyperuricemia and its underlying mechanisms, particularly focusing on the role of intestinal flora. The key components of SMS were identified using high-performance liquid chromatography (HPLC). To establish a rat model of hyperuricemia, an intraperitoneal injection of potassium oxonate was performed, followed by oral administration of various concentrations of SMS. The study evaluated the status of hyperuricemia, renal pathology, xanthine oxidase (XO) activity, and intestinal flora. Utilizing HPLC, we identified five active components of SMS. Following SMS intervention, there was a significant reduction in serum levels of uric acid (UA), blood urea nitrogen, and creatinine, accompanied by an increase in urine UA levels in rats with hyperuricemia. Distinct pathological injuries were evident in the renal tissues of hyperuricemic rats, and these were partially alleviated following SMS intervention. Moreover, SMS exhibited a dose-dependent reduction in XO activity both in the serum and hepatic tissues. Notably, SMS contributed to an enhancement in the diversity of intestinal flora in hyperuricemic rats. The intervention of SMS resulted in a reduction in the abundance of certain bacterial species, including Parabacteroides johnsonii, Corynebacterium urealyticum, and Burkholderiales bacterium. This suggests that SMS may exert anti-hyperuricemia effects, potentially by modulating the composition of intestinal flora.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, Zhejiang Province, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, Zhejiang Province, China
| |
Collapse
|
35
|
Lyu CC, Ji XY, Che HY, Meng Y, Wu HY, Zhang JB, Zhang YH, Yuan B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024; 10:e25004. [PMID: 38317876 PMCID: PMC10838784 DOI: 10.1016/j.heliyon.2024.e25004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Mastitis is an easy clinical disease in dairy cows, which seriously affects the milk yield and quality of dairy cows. Chlorogenic acid (CGA), a polyphenolic substance, is abundant in Eucommia ulmoides leaves and has anti-inflammatory and anti-oxidative stress effects. Here, we explore whether CGA attenuated lipopolysaccharide (LPS)-induced inflammation and decreased milk fat in bovine mammary epithelial cells (BMECs). 10 μg/mL LPS was used to induce mastitis in BMECs. QRT-PCR, Western blotting, oil red O staining, and triglyceride (TG) assay were used to examine the effects of CGA on BMECs, including inflammatory response, oxidative stress response, and milk fat synthesis. The results showed that CGA repaired LPS-induced inflammation in BMECs. The expression of IL-6, IL-8, TNF-α, IL-1β, and iNOS was decreased, and the expression levels of CHOP, XCT, NRF2, and HO-1 were increased, which reduced the oxidative stress level of cells and alleviated the reduction of milk fat synthesis. In addition, the regulation of P65 phosphorylation by CGA suggests that CGA may exert its anti-inflammatory and anti-oxidative effects through the NF-κB signaling pathway. Our study showed that CGA attenuated LPS-induced inflammation and oxidative stress, and restored the decrease in milk fat content in BMECs by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Hao-Yu Che
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Yu Meng
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Hong-Yu Wu
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Jia-Bao Zhang
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | | | | |
Collapse
|
36
|
Lu M, Yin J, Xu T, Dai X, Liu T, Zhang Y, Wang S, Liu Y, Shi H, Zhang Y, Mo F, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117262. [PMID: 37788785 DOI: 10.1016/j.jep.2023.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuling-Zexie (FZ) formula, a traditional Chinese herbal prescription composed of Poria cocos (Schwan.) Wolf. (Poria), Pueraria lobate (Willd.) Howe. (Puerariae Lobatae Radix), Alisma orientale (Sam.) Julep. (Alismatis Rhizoma), and Atractylodes lancea (Thunb.) Dc. (Atractylodis Rhizoma), has been clinically used to ameliorate hyperuricemia (HUA) and its associated renal injury. AIM OF STUDY This study aims to explore the action and mechanism of FZ on renal inflammation and dysfunction caused by HUA. MATERIALS AND METHODS FZ was orally administered to rapid HUA mouse induced by potassium oxonate (PO) and hypoxanthine (HX) for 7 days. Serum levels of uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD), adenosine deaminase (ADA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urine levels of UA, CRE and urinary albumin were determined by biochemical assays. Serum levels of interleukin (IL)-1β and IL-6 were tested by ELISA. Hematoxylin-eosin and Masson staining were used to examine kidney and liver histopathological alterations. The expressions of renal glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), phospho-janus kinase 2 (p-JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), suppression of cytokine signaling 3 (SOCS3), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cleaved-cysteinyl aspartate specific proteinase-1 (cleaved-Cas-1) were detected by western blots. The potential protein targets and pathways of FZ intervention on HUA were predicted by network pharmacology. The constituents in FZ aqueous extract were analyzed by UPLC-MS. RESULTS FZ reduced serum UA, CRE, BUN, and urinary albumin and increased urine UA, CRE levels in HUA mice. In addition, the treatment with FZ to HUA mice inhibited the elevated serum levels of XOD and ADA, and regulated renal urate transports including OAT1, GLUT9 and ABCG2. FZ also attenuated kidney inflammation and fibrosis and downregulated the expressions of IL-1β, p-JAK2, p-STAT3, SOCS3, IL-6, NLRP3, ASC, and cleaved-Cas-1. Thirteen compounds were identified in the FG, including L-phenylalanine, D-tryptophan, 3'-hydroxypuerarin, Puerarin, 3'-Methoxy Puerarin, Daidzin, Pueroside A, formononetin-8-C- [xylosyl (1→6)]-glucoside, Ononin, Alisol I 23-acetate, 16-oxo-alisol A, Alisol C and Alisol A. CONCLUSION FZ inhibits serum UA generation and promotes urine UA excretion as well as attenuates kidney inflammation and fibrosis in HUA mouse with nephropathy. The underlying mechanism of its action may be associated with suppression of the JAK2/STAT3 signaling pathway and NLRP3 inflammasome activation. This formula may offer a novel source for developing anti-HUA drugs.
Collapse
Affiliation(s)
- Meixi Lu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Fangfang Mo
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
37
|
Qi J, Pan Z, Wang X, Zhang N, He G, Jiang X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front Immunol 2024; 15:1305886. [PMID: 38343532 PMCID: PMC10853423 DOI: 10.3389/fimmu.2024.1305886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Wu H, Lv Y, Zhao M, Tang R, Li Y, Fang K, Wei F, Ge W, Du W, Li C, Zhang Y. Study on the substance basis of the efficacy of eucommiae cortex before and after salt processing for the treatment of kidney-yang deficiency syndrome based on the spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116926. [PMID: 37479066 DOI: 10.1016/j.jep.2023.116926] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney-Yang deficiency syndrome (KYDS) is one of the common diseases of the elderly and closely related to the ageing of the body, it has a major impact on the quality of life of the patient. Eucommiae Cortex (EC) is the dried bark of Eucommia ulmoides Oliv. Which has the effect of tonifying the liver and kidneys, strengthening the muscles and bones. In Traditional Chinese Medicine clinics, EC is commonly used in the treatment of KYDS, but the material basis for the improvement of its efficacy in treating KYDS after salt processing remains unclear. AIM OF THE STUDY This study aimed to find the main active ingredients that could improve the treatment of KYDS efficacy of EC after salt processing. MATERIALS AND METHODS Firstly, the fingerprints of raw and salt-processed EC were established to determine the common components by using HPLC, and then an experimental study on the treatment of KYDS efficacy was carried out to compare the difference in the efficacy between raw and salt-processed EC. Thirdly, the spectrum-effect relationship of chemical components and pharmacodynamic indexes was established by using Grey Relational Analysis and Entropy Method. Finally, the network pharmacology and molecular docking technique was used to verify the kidney tonifying effect of the active ingredients of EC. RESULTS According to the results of the analysis of hormonal index levels on the hypothalamic-pituitary-target gland axis and the extent of renal lesions, the therapeutic effect of EC on KYDS was mainly reflected in the regulation of the Adrenocorticotropic hormone, Corticosterone in the hypothalamic-pituitary-adrenal axis and Tri-iodothyronine, Tetra-iodothyronine in the hypothalamic-pituitary-thyroid axis, moreover the therapeutic effect of salt-processed EC was stronger than that of raw EC. The pharmacologically active ingredients that improved its treatment of KYDS efficacy after salt processing were peak 1 (geniposidic acid), peak 2 (chlorogenic acid), peak 5 (geniposide), peak 6 (genipin), peak 7 (pinoresinol diglucoside) and peak 11 (hyperoside). Meanwhile, the results of network pharmacology and molecular docking showed that the 6 active ingredients could exert kidney tonic effects through multiple signaling pathways by acting on core targets such as AKT1 and PTGS2. CONCLUSION As far as we known, this was the first time to establish and compare the spectrum-effect relationship between raw and salt-processed EC, which laid the foundation for the pharmacokinetics studies of EC and provided a reference for future EC studies.
Collapse
Affiliation(s)
- Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Keer Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China.
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, PR China; Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd, Hangzhou, 311401, PR China.
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yefeng Zhang
- Ningbo Chinese Medicine Yinpian Co., Ltd, Ningbo, 315336, PR China
| |
Collapse
|
39
|
Zhang QY, Xu LL, Zhong MT, Chen YK, Lai MQ, Wang Q, Xie XL. Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168059. [PMID: 37884144 DOI: 10.1016/j.scitotenv.2023.168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX), a replacement for perfluorooctanoic acid (PFOA), has been detected in multiple environmental media and biological samples worldwide. Accumulated evidence implies that GenX exposure might exert adverse health effects, although the underlying mechanisms have not been fully revealed. In this study, pregnant BALB/c mice were exposed to GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water by gavage from the first day of gestation (GD0) until GD21. Necropsy and tissue collection were conducted in pups at 4 weeks of age. PFOA and GenX induced similar histopathological changes in both the liver and the intestinal mucosa, accompanied by higher serum levels of alanine and aspartate aminotransferase. Moreover, the capacity of hepatic glycogen storage and intestinal mucus secretion were significantly decreased, suggesting dysfunction of liver metabolism and the intestinal mucosal barrier. A total of 637 and 352 differentially expressed genes (DEGs) were identified in the liver tissues of GenX and PFOA group, respectively. Most of the enriched pathways from the DEGs by KEGG enrichment analysis were metabolism-associated. Moreover, overexpression of CYP4A14, Sult2a1, Cpt1b, Acaa1b, Igfbp1, Irs-2 and decreased expression of Gys2 were observed in livers of GenX exposed pups, supporting the hypothesis that there was metabolic disruption. Furthermore, DNA damage and cell cycle arrest proteins (Gadd45β, p21, Ppard) were significantly increased, while cell proliferation-related proteins (Cyclin E, Myc, EGFR) were decreased by gestational GenX exposure in the pups' liver. In addition, imbalance of gut microbiota and dysfunction of the intestinal mucosa barrier might contribute to hepatotoxicity at least in part. Taken together, our results suggested that gestational GenX exposure triggered metabolic disorder, which might be responsible for the hepatotoxicity in the pups in addition to dysfunction of the intestinal mucosa barrier. This study enriches the mechanisms of GenX-induced developmental hepatotoxicity by associating metabolic disorder with intestinal homeostasis.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
40
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
41
|
Zhou X, Zhang B, Zhao X, Zhang P, Guo J, Zhuang Y, Wang S. Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17775-17787. [PMID: 37936369 DOI: 10.1021/acs.jafc.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hyperuricemia nephropathy (HN) is a metabolic disease characterized by tubular damage, tubulointerstitial fibrosis, and uric acid kidney stones and has been demonstrated to be associated with hyperuricemia. Coffee leaf tea is drunk as a functional beverage. However, its prevention effects on HN remain to be explored. This study showed that coffee leaf tea extracts (TE) contain 19 polyphenols, with a total content of 550.15 ± 27.58 mg GAE/g. TE decreased serum uric acid levels via inhibiting XOD activities and modulating the expression of urate transporters (GLUT9, OAT3, and ABCG2) in HN rats. TE prevented HN-induced liver and kidney damage and attenuated renal fibrosis. Moreover, it upregulated the abundance of SCFA-producing bacteria (Phascolarctobacterium, Alloprevotella, and Butyricicoccus) in the gut and reversed the amino acid-related metabolism disorder caused by HN. TE also decreased the circulating LPS and d-lactate levels and increased the fecal SCFA levels. This study supported the preliminary and indicative effect of coffee leaf tea in the prevention of hyperuricemia and HN.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pixian Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
42
|
Wang Q, Liu T, Koci M, Wang Y, Fu Y, Ma M, Ma Q, Zhao L. Chlorogenic Acid Alleviated AFB1-Induced Hepatotoxicity by Regulating Mitochondrial Function, Activating Nrf2/HO-1, and Inhibiting Noncanonical NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:2027. [PMID: 38136147 PMCID: PMC10740517 DOI: 10.3390/antiox12122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 μM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 μM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Tianxu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| |
Collapse
|
43
|
Meng W, Chen L, Ouyang K, Lin S, Zhang Y, He J, Wang W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
44
|
Han D, Wu Y, Lu D, Pang J, Hu J, Zhang X, Wang Z, Zhang G, Wang J. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis 2023; 14:656. [PMID: 37813835 PMCID: PMC10562418 DOI: 10.1038/s41419-023-06190-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Dietary phenolic acids alleviate intestinal inflammation through altering gut microbiota composition and regulating macrophage activation. However, it is unclear how individual phenolic acids affect the interactions between intestinal microbiota and macrophages in the context of inflammatory bowel disease (IBD). Here, we aim to elucidate the mechanism by which phenolic acids alleviate gut inflammation. Mice with or without depletion of macrophages were administered with four individual phenolic acids including chlorogenic, ferulic, caffeic, and ellagic acids, following dextran sulfate sodium (DSS) treatment. Gut microbiota depletion and fecal microbiota transplantation were further performed in mice to investigate the role of the gut microbiota in phenolic acid-mediated protective effect. Colitis severity was evaluated using histological, serological, and immunological measurements. Absence of intestinal microbiota and macrophage deteriorate the epithelial injury in DSS colitis. Chlorogenic acid mitigated colitis by reducing M1 macrophage polarization through suppression of pyruvate kinase M 2 (Pkm2)-dependent glycolysis and inhibition of NOD-like receptor protein 3 (Nlrp3) activation. However, ferulic acid-mediated reduction of colitis was neutrophil-dependent through diminishing the formation of neutrophil extracellular traps. On the other hand, the beneficial effects of caffeic acid and ellagic acid were dependent upon the gut microbiota. In fact, urolithin A (UroA), a metabolite transformed from ellagic acid by the gut microbiota, was found to alleviate colitis and enhance gut barrier function in an IL22-dependent manner. Overall, our findings demonstrated that the mechanisms by which phenolic acid protected against colitis were resulted from the interaction between gut microbiota and macrophage-neutrophil.
Collapse
Affiliation(s)
- Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Zheng C, Zhong Y, Zhang W, Wang Z, Xiao H, Zhang W, Xie J, Peng X, Luo J, Xu W. Chlorogenic Acid Ameliorates Post-Infectious Irritable Bowel Syndrome by Regulating Extracellular Vesicles of Gut Microbes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302798. [PMID: 37616338 PMCID: PMC10558682 DOI: 10.1002/advs.202302798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Post-infectious irritable bowel syndrome (PI-IBS) occurs after acute infectious diarrhea, and dysbiosis can be involved in its pathogenesis. Here, the role of chlorogenic acid (CGA) is investigated, a natural compound with several pharmacological properties, in alleviating PI-IBS in rats. It is elucidated that the gut microbiota plays a key role in PI-IBS pathogenesis and that rectal administration of CGA alleviated PI-IBS by modulating the gut microbiota and its metabolites. CGA supplementation significantly increased fecal Bacteroides acidifaciens abundance and glycine levels. Glycine structurally altered B. acidifaciens extracellular vesicles (EVs) and enriched functional proteins in the EVs; glycine-induced EVs alleviated PI-IBS by reducing inflammation and hypersensitivity of the intestinal viscera and maintaining mucosal barrier function. Moreover, B. acidifaciens EVs are enriched in the brain tissue. Thus, CGA mediates the mitigation of PI-IBS through the gut microbiota and its metabolites. This study proposes a novel mechanism of signal exchange between the gut microenvironment and the host.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Yuchun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wenming Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Zhuoya Wang
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Haili Xiao
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wenjun Zhang
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Jian Xie
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006P. R. China
| | - Jun Luo
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wei Xu
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| |
Collapse
|
46
|
Zhang Y, Wang S, Dai X, Liu T, Liu Y, Shi H, Yin J, Xu T, Zhang Y, Zhao D, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Simiao San alleviates hyperuricemia and kidney inflammation by inhibiting NLRP3 inflammasome and JAK2/STAT3 signaling in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116530. [PMID: 37098372 DOI: 10.1016/j.jep.2023.116530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao San (SmS), a famous traditional Chinese formula, is clinically used to treat patients with hyperuricemia (HUA). However, its mechanism of action on lowering uric acid (UA) and inhibiting inflammation still deserves further investigation. AIM OF THE STUDY To examine the effect and its possible underlying mechanism of SmS on UA metabolism and kidney injury in HUA mouse. MATERIALS AND METHODS The HUA mouse model was constructed with the combined administration of both potassium oxalate and hypoxanthine. The effects of SmS on UA, xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN), interleukin-10 (IL-10), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by ELISA or biochemical assays. Hematoxylin and eosin (H&E) was used to observe pathological alterations in the kidneys of HUA mice. The expression levels of organic anion transporter 1 (OAT1), recombinant urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), nucleotide binding domain and leucine rich repeat pyrin domain containing 3 (NLRP3), Cleaved-Caspase 1, apoptosis-associated speck like protein (ASC), nuclear factor kappa-B (NF-κB), IL-6, janus kinase 2 (JAK2), phosphor (P)-JAK2, signal transducers and activators of transcription 3 (STAT3), P-STAT3, suppressor of cytokine signaling 3 (SOCS3) were examined by Western blot and/or immunohistochemical (IHC) staining. The major ingredients in SmS were identified by a HPLC-MS assay. RESULTS HUA mouse exhibited an elevation in serum levels of UA, BUN, CRE, XOD, and the ratio of urinary albumin to creatinine (UACR), and a decline in urine levels of UA and CRE. In addition, HUA induces pro-inflammatory microenvironment in mouse, including an increase in serum levels of IL-1β, IL-6, and TNF-α, and renal expressions of URAT1, GULT9, NLRP3, ASC, Cleaved-Caspase1, P-JAK2/JAK2, P-STAT3/STAT3, and SOCS3, and a decrease in serum IL-10 level and renal OAT1 expression as well as a disorganization of kidney pathological microstructure. In contrast, SmS intervention reversed these alterations in HUA mouse. CONCLUSION SmS could alleviate hyperuricemia and renal inflammation in HUA mouse. The action mechanisms behind these alterations may be associated with a limitation of the NLRP3 inflammasome and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
47
|
Lv H, Li P, Wang Z, Gao M, Li G, Nie W, Xiao L, Lv Z, Guo Y. Effects of Dietary Supplemental Chlorogenic Acid and Baicalin on the Growth Performance and Immunity of Broilers Challenged with Lipopolysaccharide. Life (Basel) 2023; 13:1645. [PMID: 37629502 PMCID: PMC10455899 DOI: 10.3390/life13081645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary supplemental chlorogenic acid and baicalin (CAB) on the growth performance and immunity of broilers challenged with lipopolysaccharide (LPS). This study was designed as a factorial arrangement of 2 dietary CAB treatments × 2 LPS treatments. Birds challenged with or without LPS were fed with a basic diet (CON) and (LPS), the level of CAB diet containing 500 mg/kg CAB(CAB) and (CAB + LPS). The feeding trial lasted for 42 days. Results showed that there was a negative effect on average daily weight gain (ADG) and average body weight of broilers during the animal trial with LPS challenge. The levels of diamine oxidase (DAO), lysozyme (LYZ), immunoglobulin G (IgG), and IgA in the serum, the contents of IL-1β and TNF-α in the spleen were elevated with LPS treated. Additionally, LPS treatment tended to reduce the jejunal villi height (VH) and total superoxide dismutase (T-SOD) in the serum. Dietary supplemental 500 mg/kg CAB increased the body weight and ADG and improved the feed conversion ratio (FCR) during the trial period. In addition, dietary 500 mg/kg CAB elevated the ratio of VH to crypt depth in the jejunum and reduced the content of protein carbonyl. Beyond that, the levels of IgG and IgA in the serum and transforming growth factor (TGF-β) in the spleen were up-regulated with 500 mg/kg CAB supplementation. In conclusion, dietary CAB was beneficial for growth performance and immunity of broilers challenged with lipopolysaccharide.
Collapse
Affiliation(s)
- Huiyuan Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Zhiming Wang
- Beijing Centre Biology Co., Ltd., Daxing District, Beijing 102218, China;
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Wei Nie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Lei Xiao
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China;
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; (H.L.); (M.G.); (G.L.); (W.N.); (Z.L.)
| |
Collapse
|
48
|
Xiao N, Zhang T, Han M, Tian D, Liu J, Li S, Yang L, Pan G. Chlorogenic Acid Inhibits Ceramide Accumulation to Restrain Hepatic Glucagon Response. Nutrients 2023; 15:3173. [PMID: 37513589 PMCID: PMC10384019 DOI: 10.3390/nu15143173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic acid (CGA), a dietary natural phenolic acid, has been widely reported to regulate glucose and lipid metabolism. However, the protective effects and the underlying mechanisms of CGA on glucagon-induced hepatic glucose production remain largely uncharacterized. Herein, we investigated the efficacy of CGA on hepatic gluconeogenesis both in vivo and in vitro. The elevated levels of endogenous glucose production induced by infusion of glucagon or pyruvate were lowered in mice administered with CGA. Furthermore, chronic CGA treatment ameliorated the accumulation of glucose and ceramide in high-fat diet (HFD)-fed mice. CGA also attenuated HFD-fed-induced inflammation response. The protective effect of CGA on glucose production was further confirmed in primary mouse hepatocytes by inhibiting accumulation of ceramide and expression of p38 MAPK. Moreover, CGA administration in HFD-fed mice preserved the decreased phosphorylation of Akt in the liver, resulting in the inhibition of FoxO1 activation and, ultimately, hepatic gluconeogenesis. However, these protective effects were significantly attenuated by the addition of C2 ceramide. These results suggest that CGA inhibits ceramide accumulation to restrain hepatic glucagon response.
Collapse
Affiliation(s)
- Na Xiao
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Tengfei Zhang
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Mingli Han
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Dan Tian
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Jiawei Liu
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Shan Li
- College of Agronomy, Shandong Agriculture University, Tai'an 271018, China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Guojun Pan
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, China
| |
Collapse
|
49
|
Wang ZY, Yin Y, Li DN, Zhao DY, Huang JQ. Biological Activities of p-Hydroxycinnamic Acids in Maintaining Gut Barrier Integrity and Function. Foods 2023; 12:2636. [PMID: 37444374 DOI: 10.3390/foods12132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
It is well established that p-Hydroxycinnamic acids (HCAs), including ferulic, caffeic, sinapic, and p-coumaric acids, possess a characteristic phenylpropanoid C6-C3 backbone and account for about one-third of the phenolic compounds in our diet. HCAs are typically associated with various plant cell wall components, including mono-, di-, and polysaccharides, sterols, polyamines, glycoproteins, and lignins. Interestingly, enzymes produced by intestinal microbes liberate HCAs from these associations. HCAs are completely absorbed in their free form upon ingestion and undergo specific reactions upon absorption in the small intestine or liver. The gut epithelium, composed of intestinal epithelial cells (IECs), acts as a physical barrier against harmful bacteria and a site for regulated interactions between bacteria and the gut lumen. Thus, maintaining the integrity of the epithelial barrier is essential for establishing a physiochemical environment conducive to homeostasis. This review summarizes the protective effects of HCAs on the intestinal barrier, achieved through four mechanisms: preserving tight junction proteins (TJPs), modulating pro-inflammatory cytokines, exerting antioxidant activity, and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Yin
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dong-Ni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dan-Yue Zhao
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Lin X, Wang M, He Z, Hao G. Gut microbiota mediated the therapeutic efficiency of Simiao decoction in the treatment of gout arthritis mice. BMC Complement Med Ther 2023; 23:206. [PMID: 37344836 DOI: 10.1186/s12906-023-04042-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in the development and treatment of gouty arthritis. Simiao decoction has been shown to alleviate gouty arthritis by inhibiting inflammation, regulating NLRP3 inflammasome, and altering gut microbiota. However, there is no evidence to prove whether gut microbiota directly mediates the therapeutic efficiency of Simiao decoction in treating gout arthritis. METHODS In this study, fecal microbiota transplantation (FMT) was used to transfer the gut microbiota of gout arthritis mice treated with Simiao decoction or allopurinol to blank gout arthritis mice, in order to investigate whether FMT had therapeutic effects on gout arthritis. RESULTS Both Simiao decoction and allopurinol effectively reduced the levels of serum uric acid, liver XOD activity, foot thickness, serum IL-1β, and G-CSF in gout arthritis mice. However, Simiao decoction also had additional benefits, including raising the pain threshold, reducing serum TNF-α and IL-6, alleviating gut inflammation, and repairing intestinal pathology, which were not observed with allopurinol treatment. Moreover, Simiao decoction had a greater impact on gut microbiota than allopurinol, as it was able to restore the abundance of phylum Proteobacteria and genus Helicobacter. After transplantation into gout arthritis mice, gut microbiota altered by Simiao decoction exhibited similar therapeutic effects to those of Simiao decoction, but gut microbiota altered by allopurinol showed no therapeutic effect. CONCLUSIONS These findings demonstrates that Simiao decoction can alleviate gout arthritis symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mingzhu Wang
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|