1
|
da Silva ABS, da Silva Leal KN, Arruda MAZ. An acidless microwave-assisted wet digestion of biological samples as a greener alternative: applications from COVID-19 monitoring to plant nanobiotechnology. Anal Bioanal Chem 2024:10.1007/s00216-024-05472-w. [PMID: 39164506 DOI: 10.1007/s00216-024-05472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Sample preparation in an analytical sequence increases the number of errors, is highly time-consuming, and involves the manipulation of hazardous reagents. Therefore, when an improvement in an analytical method is required, the sample preparation step needs to be optimised or redesigned. Moreover, this step can involve significant toxic reagents and a high volume of waste. In that regard, this study proposes a new procedure based on microwave-assisted wet digestion combining two green strategies: a miniaturised system (with a few microlitres of volume) and the only use of hydrogen peroxide. Three biological samples (human serum, urine, and plant in vitro material) were chosen due to their high potential for disease monitoring, toxicological studies, and biotechnology applications. Several trace elements (Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Se, and Zn) were determined by inductively coupled plasma optical emission spectroscopy and inductively coupled plasma mass spectrometry. For human serum and urine, a certified reference material was used to check for accuracy; the recovery ranged from 72% (Cd, ICP-MS) to 105% (Mg, ICP OES) for serum, while for urine, they varied from 82% (Ni, ICP-MS) to 122% (Zn, ICP-MS). For the soybean callus sample (in vitro plant material), a comparison between the proposed method and the acid digestion method was conducted to evaluate the accuracy, and the results agreed. The detection limits were 0.001-60 µg L-1 (lowest for Cd), thus demonstrating a suitable sensitivity. Moreover, the decomposition efficiency was demonstrated by determining the residual carbon, and a low amount was found in the final product digested (below 0.8% w v-1). A green metric approach was calculated for the proposed method, and according to AGREEprep software, it was found to be around 0.4. Finally, the method was applied to urine samples collected in patients with COVID-19 and soybean callus cultivated with silver nanoparticles. This sample preparation method is a new acidless and miniaturised alternative for elemental analysis involving biological samples.
Collapse
Affiliation(s)
- Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- Center of Environmental Studies, São Paulo State University, Rio Claro, 13506900, Brazil
| | - Ketolly Natanne da Silva Leal
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
2
|
Wang W, Shi S, Liu Y, Hou Z, Qi J, Guo L. Staging classification of omicron variant SARS-CoV-2 infection based on dual-spectrometer LIBS (DS-LIBS) combined with machine learning. OPTICS EXPRESS 2023; 31:42413-42427. [PMID: 38087616 DOI: 10.1364/oe.504640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Effective differentiation of the infection stages of omicron can provide significant assistance in transmission control and treatment strategies. The combination of LIBS serum detection and machine learning methods, as a novel disease auxiliary diagnostic approach, has a high potential for rapid and accurate staging classification of Omicron infection. However, conventional single-spectrometer LIBS serum detection methods focus on detecting the spectra of major elements, while trace elements are more closely related to the progression of COVID-19. Here, we proposed a rapid analytical method with dual-spectrometer LIBS (DS-LIBS) assisted with machine learning to classify different infection stages of omicron. The DS-LIBS, including a broadband spectrometer and a narrowband spectrometer, enables synchronous collection of major and trace elemental spectra in serum, respectively. By employing the RF machine learning models, the classification accuracy using the spectra data collected from DS-LIBS can reach 0.92, compared to 0.84 and 0.73 when using spectra data collected from single-spectrometer LIBS. This significant improvement in classification accuracy highlights the efficacy of the DS-LIBS approach. Then, the performance of four different models, SVM, RF, IGBT, and ETree, is compared. ETree demonstrates the best, with cross-validation and test set accuracies of 0.94 and 0.93, respectively. Additionally, it achieves classification accuracies of 1.00, 0.92, 0.92, and 0.89 for the four stages B1-acute, B1-post, B2, and B3. Overall, the results demonstrate that DS-LIBS combined with the ETree machine learning model enables effective staging classification of omicron infection.
Collapse
|
3
|
Zhou Y, Yuan S, Xiao F, Li H, Ye Z, Cheng T, Luo C, Tang K, Cai J, Situ J, Sridhar S, Chu WM, Tam AR, Chu H, Che CM, Jin L, Hung IFN, Lu L, Chan JFW, Sun H. Metal-coding assisted serological multi-omics profiling deciphers the role of selenium in COVID-19 immunity. Chem Sci 2023; 14:10570-10579. [PMID: 37799995 PMCID: PMC10548515 DOI: 10.1039/d3sc03345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ziwei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianwen Situ
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Ivan Fan-Ngai Hung
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong SAR China
- Guangzhou Laboratory Guangdong Province China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| |
Collapse
|
4
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
5
|
Łanocha-Arendarczyk N, Kot K, Baranowska-Bosiacka I, Kupnicka P, Przydalska D, Łanocha A, Chlubek D, Wojciechowska-Koszko I, Kosik-Bogacka DI. Macroelement and Microelement Levels in the Urine in Experimental Acanthamoebiasis. Pathogens 2023; 12:1039. [PMID: 37623999 PMCID: PMC10458488 DOI: 10.3390/pathogens12081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Free-living amoebas can impact the excretion of macroelements and microelements in urine. The aim of the present study was to examine the concentrations of macroelements, including calcium (Ca), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), as well as microelements such as manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and chromium (Cr), in the urine during acanthamoebiasis while considering the host's immunological status. This is the first study to show an increase in urinary excretion of Ca, Mn, Cu, Fe, Na, and Cr, along with a decreased excretion of K, in immunocompetent mice 16 days post Acanthamoeba sp. infection. In the final phase of infection (24 dpi), there was a further decrease in urinary K excretion and a lower level of P in Acanthamoeba sp. infected immunocompetent hosts. During acanthamoebiasis in immunosuppressed hosts, increased excretion of Zn, Fe, and Cr was observed at the beginning of the infection, and increased Na excretion only at 16 days post Acanthamoeba sp. infection. Additionally, host immunosuppression affected the concentration of Fe, Cr, Zn, Cu, Mn, and Ca in urine.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Dagmara Przydalska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
6
|
Fan C, Wang X, Song X, Sun R, Liu R, Sui W, Jin Y, Wu T, Zhang M. Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites. Foods 2023; 12:foods12010226. [PMID: 36613440 PMCID: PMC9818316 DOI: 10.3390/foods12010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Peptide iron chelate is widely regarded as one of the best iron supplements for relieving iron deficiency. In this study, a new type of walnut peptide iron (WP-Fe) chelate was prepared using low molecular weight walnut peptides (WP) as raw materials. Under the conditions of this study, the chelation rate and iron content of the WP-Fe chelate were 71.87 ± 1.60% and 113.11 ± 2.52 mg/g, respectively. Fourier transform infrared spectroscopy (FTIR), zeta potential, amino acid composition, and other structural analysis showed that WP-Fe is formed by the combination of carboxyl, amino and carbonyl with Fe2+. The WP-Fe chelate exhibits a honeycomb-like bulk structure different from that of WP. In addition, we predicted and established the binding model of ferrous ion and WP by molecular docking technology. After chelation, the free radical scavenging ability of the WP-Fe chelate was significantly higher than that of the WP. Overall, the WP-Fe chelate has high iron-binding capacity and antioxidant activity. We believe that peptides from different sources also have better iron binding capacity, and peptide iron chelates are expected to become a promising source of iron supplement and antioxidant activities.
Collapse
Affiliation(s)
- Chaozhong Fan
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xintong Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiwang Song
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (T.W.); (M.Z.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (T.W.); (M.Z.)
| |
Collapse
|
7
|
Bayraktar N, Bayraktar M, Ozturk A, Ibrahim B. Evaluation of the Relationship Between Aquaporin-1, Hepcidin, Zinc, Copper, and İron Levels and Oxidative Stress in the Serum of Critically Ill Patients with COVID-19. Biol Trace Elem Res 2022; 200:5013-5021. [PMID: 36001235 PMCID: PMC9399591 DOI: 10.1007/s12011-022-03400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Department of Internal Medical, Faculty of Medicine, Yıdırım Beyazıt University, Ankara, Turkey
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Bashar Ibrahim
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Bego T, Meseldžić N, Prnjavorac B, Prnjavorac L, Marjanović D, Azevedo R, Pinto E, Duro M, Couto C, Almeida A. Association of trace element status in COVID-19 patients with disease severity. J Trace Elem Med Biol 2022; 74:127055. [PMID: 35985069 PMCID: PMC9349050 DOI: 10.1016/j.jtemb.2022.127055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Caused by the new SARS-CoV-2 coronavirus, COVID-19 (coronavirus disease 2019) evolves with clinical symptoms that vary widely in severity, from mild symptoms to critical conditions, which can even result in the patient's death. A critical aspect related to an individual response to SARS-CoV-2 infection is the competence of the immune system, and it is well known that several trace elements are essential for an adequate immune response and have anti-inflammatory and antioxidant properties that are of particular importance in fighting infection. Thus, it is widely accepted that adequate trace element status can reduce the risk of SARS-CoV-2 infection and disease severity. In this study, we evaluated the serum levels of Cu, Zn, Se, Fe, I and Mg in patients (n = 210) with clinical conditions of different severity ("mild", "moderate", "severe" and "exitus letalis", i.e., patients who eventually died). The results showed significant differences between the four groups for Cu, Zn, Se and Fe, in particular a significant trend of Zn and Se serum levels to be decreased and Cu to be increased with the severity of symptoms. For Mg and I, no differences were observed, but I levels were shown to be increased in all groups.
Collapse
Affiliation(s)
- Tamer Bego
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Neven Meseldžić
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, 71000 Sarajevo, Bosnia and Herzegovina
| | - Besim Prnjavorac
- University of Sarajevo, Faculty of Pharmacy, 71000 Sarajevo, Bosnia and Herzegovina; General Hospital Tešanj, 74260 Tešanj, Bosnia and Herzegovina
| | | | - Damir Marjanović
- International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Department of Environmental Health, School of Health, P.Porto, 4200-072 Porto, Portugal
| | - Mary Duro
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Fernando Pessoa Health School, 4249-004 Porto, Portugal
| | - Cristina Couto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Vásquez-Procopio J, Espejel-Nuñez A, Torres-Torres J, Martinez-Portilla RJ, Espino Y. Sosa S, Mateu-Rogell P, Ortega-Castillo V, Tolentino-Dolores M, Perichart-Perera O, Franco-Gallardo JO, Carranco-Martínez JA, Prieto-Rodríguez S, Guzmán-Huerta M, Missirlis F, Estrada-Gutierrez G. Inflammatory-Metal Profile as a Hallmark for COVID-19 Severity During Pregnancy. Front Cell Dev Biol 2022; 10:935363. [PMID: 36016660 PMCID: PMC9395991 DOI: 10.3389/fcell.2022.935363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Pregnancy makes women more susceptible to infectious agents; however, available data on the effect of SARS-CoV-2 on pregnant women are limited. To date, inflammatory responses and changes in serum metal concentration have been reported in COVID-19 patients, but few associations between metal ions and cytokines have been described. The aim of this study was to evaluate correlations between inflammatory markers and serum metal ions in third-trimester pregnant women with varying COVID-19 disease severity. Patients with severe symptoms had increased concentrations of serum magnesium, copper, and calcium ions and decreased concentrations of iron, zinc, and sodium ions. Potassium ions were unaffected. Pro-inflammatory cytokines IL-6, TNF-α, IL-8, IL-1α, anti-inflammatory cytokine IL-4, and the IP-10 chemokine were induced in the severe presentation of COVID-19 during pregnancy. Robust negative correlations between iron/magnesium and zinc/IL-6, and a positive correlation between copper/IP-10 were observed in pregnant women with the severe form of the disease. Thus, coordinated alterations of serum metal ions and inflammatory markers – suggestive of underlying pathophysiological interactions—occur during SARS-CoV-2 infection in pregnancy.
Collapse
Affiliation(s)
- Johana Vásquez-Procopio
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | | | - Paloma Mateu-Rogell
- Clinical Research Division, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | - Otilia Perichart-Perera
- Department of Nutrition and Bioprogramming, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | | | - Mario Guzmán-Huerta
- Department of Translational Medicine, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
- *Correspondence: Guadalupe Estrada-Gutierrez, ; Fanis Missirlis,
| | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología, Mexico City, Mexico
- *Correspondence: Guadalupe Estrada-Gutierrez, ; Fanis Missirlis,
| |
Collapse
|
10
|
Kocak OF, Ozgeris FB, Parlak E, Kadıoglu Y, Yuce N, Yaman ME, Bakan E. Evaluation of Serum Trace Element Levels and Biochemical Parameters of COVID-19 Patients According to Disease Severity. Biol Trace Elem Res 2022; 200:3138-3146. [PMID: 34608570 PMCID: PMC8489790 DOI: 10.1007/s12011-021-02946-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
While the COVID-19 disease progresses mildly or asymptomatically in some people, its progression is severe and symptomatic in others, and it is an issue that requires a scientific response regarding the disease. The present study includes 60 people infected with COVID-19, and the cases were divided into the following groups: asymptomatic, mild, moderate, and severe. Serum Zn, Se, and Cu levels of these groups were analyzed by ICP-MS. All measurements in the patients were compared with those of 32 healthy individuals. When the patient group is compared with the control group, the serum Zn and Se concentrations were statistically low (p < 0.001) in the patient group. Serum Zn level decreased significantly in 4 different patient groups compared to the control group. Although the serum Se level decreased in all four patient groups compared to the control group, the change in Se level was statistically significant only in the severe and mild patient groups. This study examined serum Zn, Se concentrations, and biochemical parameters in patients with different severity of COVID-19, compared them with healthy individuals, and revealed new targets for diagnosis and treatment by revealing those data that may be important.
Collapse
Affiliation(s)
- Omer Faruk Kocak
- Department of Chemical Technology, Erzurum Vocational Training College, Ataturk University, Erzurum, Turkey, 25240.
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey, 25240
| | - Emine Parlak
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey, 25240
| | - Yucel Kadıoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey, 25240
| | - Neslihan Yuce
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey, 25240
| | - Mehmet Emrah Yaman
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey, 25240
| | - Ebubekir Bakan
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey, 25240
| |
Collapse
|
11
|
Sumaily KM. The Roles and Pathogenesis Mechanisms of a Number of Micronutrients in the Prevention and/or Treatment of Chronic Hepatitis, COVID-19 and Type-2 Diabetes Mellitus. Nutrients 2022; 14:2632. [PMID: 35807813 PMCID: PMC9268086 DOI: 10.3390/nu14132632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
A trace element is a chemical element with a concentration (or other measures of an amount) that is very low. The essential TEs, such as copper (Cu), selenium (Se), zinc (Zn), iron (Fe) and the electrolyte magnesium (Mg) are among the most commonly studied micronutrients. Each element has been shown to play a distinctive role in human health, and TEs, such as iron (Fe), zinc (Zn) and copper (Cu), are among the essential elements required for the organisms' well-being as they play crucial roles in several metabolic pathways where they act as enzyme co-factors, anti-inflammatory and antioxidant agents. Epidemics of infectious diseases are becoming more frequent and spread at a faster pace around the world, which has resulted in major impacts on the economy and health systems. Different trace elements have been reported to have substantial roles in the pathogenesis of viral infections. Micronutrients have been proposed in various studies as determinants of liver disorders, COVID-19 and T2DM risks. This review article sheds light on the roles and mechanisms of micronutrients in the pathogenesis and prevention of chronic hepatitis B, C and E, as well as Coronavirus-19 infection and type-2 diabetes mellitus. An update on the status of the aforementioned micronutrients in pre-clinical and clinical settings is also briefly summarized.
Collapse
Affiliation(s)
- Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
12
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
13
|
Lian S, Liu J, Wu Y, Xia P, Zhu G. Bacterial and Viral Co-Infection in the Intestine: Competition Scenario and Their Effect on Host Immunity. Int J Mol Sci 2022; 23:ijms23042311. [PMID: 35216425 PMCID: PMC8877981 DOI: 10.3390/ijms23042311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria and viruses are both important pathogens causing intestinal infections, and studies on their pathogenic mechanisms tend to focus on one pathogen alone. However, bacterial and viral co-infections occur frequently in clinical settings, and infection by one pathogen can affect the severity of infection by another pathogen, either directly or indirectly. The presence of synergistic or antagonistic effects of two pathogens in co-infection can affect disease progression to varying degrees. The triad of bacterial–viral–gut interactions involves multiple aspects of inflammatory and immune signaling, neuroimmunity, nutritional immunity, and the gut microbiome. In this review, we discussed the different scenarios triggered by different orders of bacterial and viral infections in the gut and summarized the possible mechanisms of synergy or antagonism involved in their co-infection. We also explored the regulatory mechanisms of bacterial–viral co-infection at the host intestinal immune interface from multiple perspectives.
Collapse
Affiliation(s)
- Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (S.L.); (J.L.); (Y.W.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of China, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
15
|
Tan Q, Wang Y, Zhang G, Lu B, Wang T, Tao T, Wang H, Jiang H, Chen W. The metabolic effects of multi-trace elements on parenteral nutrition for critically ill pediatric patients: a randomized controlled trial and metabolomic research. Transl Pediatr 2021; 10:2579-2593. [PMID: 34765482 PMCID: PMC8578764 DOI: 10.21037/tp-21-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We investigated the efficacy and metabolic dose-effect of multi-trace element injection I [MTEI-(I)] for severe pediatric patients via a parallel, randomized control study. METHODS The inclusion criteria were as follows: (I) patients who required parenteral nutrition (PN) due to various diseases, and were expected to receive PN for >5 days; (II) patients aged <18 years; (III) patients with no serious cardiac, hepatic, renal, or pulmonary dysfunction; and (IV) patients with an established central venous pathway. Enrolled patients were randomly assigned into two groups using sequentially numbered, sealed, opaque envelopes: Group A (low-dose group) received MTEI-(I) at 1 mL/kg/d, and Group B (high-dose group) received MTEI-(I) at 2 mL/kg/d, up to a maximum dose of 15 mL/d. The concentrations of manganese (Mn), copper (Cu), zinc (Zn), and selenium (Se) were detected. The following indexes were measured after 5 days of treatment (T5): β-oxidation of very-long-chain fatty acids, arginine and proline metabolism, pentose phosphate metabolism, ketone body metabolism, citric acid cycle, purine metabolism, caffeine metabolism, and pyruvate metabolism. The participants, care givers, and data analysis staff were blinded to the group assignment. RESULTS Overall, at T5, Mn and Cu levels were decreased, while Zn and Se levels were increased. The increase of Zn levels (A: 0.170±0.479 vs. B: 0.193±0.900) and decrease of Cu levels (A: -0.240±0.382 vs. B: -0.373±0.465) of patients in Group B (n=22) were significantly higher than those in Group A (n=18). At T5, the β-oxidation of very-long-chain fatty acids, arginine and proline metabolism, pentose phosphate metabolism, ketone body metabolism, citric acid cycle, purine metabolism, caffeine metabolism, and pyruvate metabolism were variably decreased (P<0.05) in Group B compared to Group A. CONCLUSIONS Our results suggested that the high-dose administration of MTEI-(I) is safe for severe pediatric patients, and may alleviate inflammation and antioxidation, relieve hyperactivity caused by stress, and improve tissues-based hypoxia and renal function. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100052198.
Collapse
Affiliation(s)
- Qingti Tan
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Wang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Institute for Emergency and Disaster Medicine, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Guoying Zhang
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Lu
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Wang
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Tao
- Pediatric Intensive Care Unit, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Jiang
- Institute for Emergency and Disaster Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Institute for Emergency and Disaster Medicine, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wei Chen
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Alfawaz H, Yakout SM, Wani K, Aljumah GA, Ansari MGA, Khattak MNK, Hussain SD, Al-Daghri NM. Dietary Intake and Mental Health among Saudi Adults during COVID-19 Lockdown. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041653. [PMID: 33572328 PMCID: PMC7916162 DOI: 10.3390/ijerph18041653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
The study aimed to explore the influence of the COVID-19 lockdown on the mental status and dietary intake of residents in Saudi Arabia. In this cross-sectional study, an online survey was conducted from 11 May to 6 June 2020 corresponding to almost two weeks during and after Ramadan (23 April–23 May 2020). The Patient Health Questionnaire was used to assess anxiety, depression, and insomnia. Logistic regression analysis was used to identify predictors of anxiety, depression, and insomnia. The prevalence of anxiety, depression, and insomnia among the participants was 25.4%, 27.7%, and 19.6%, respectively. Participants aged ≥50 years with high income (≥8000 SAR) were at a lower risk of developing depression, whereas participants of the same age group with income 5000–7000 SAR were at high risk of developing anxiety. Students and master-educated participants suffer from median elevated depression and are required to take more multivitamins and vitamin D than others. Anxiety and depression were more common among married participants with low income. There is a wide range of Saudi residents who are at a higher risk of mental illness during the COVID-19 pandemic. Policymakers and mental healthcare providers are advised to provide continuous monitoring of the psychological consequences during this pandemic and provide mental support.
Collapse
Affiliation(s)
- Hanan Alfawaz
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia;
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | - Sobhy M. Yakout
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | | | - Mohammed G. A. Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | - Malak N. K. Khattak
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.Y.); (K.W.); (M.G.A.A.); (M.N.K.K.); (S.D.H.)
- Correspondence:
| |
Collapse
|