1
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404254. [PMID: 39445520 PMCID: PMC11633526 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hannah Thomson
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
2
|
Marqués-Marchán J, Jaafar M, Ares P, Gubieda AG, Berganza E, Abad A, Fdez-Gubieda ML, Asenjo A. Magnetic imaging of individual magnetosome chains in magnetotactic bacteria. BIOMATERIALS ADVANCES 2024; 163:213969. [PMID: 39059114 DOI: 10.1016/j.bioadv.2024.213969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
While significant advances have been made in exploring and uncovering the promising potential of biomagnetic materials, persistent challenges remain on various fronts, notably in the characterization of individual elements. This study makes use of advanced modes of Magnetic Force Microscopy (MFM) and tailored MFM probes to characterize individual magnetotactic bacteria in different environments. The characterization of these elements posed a significant challenge, as the magnetosomes, besides presenting low magnetic signal, are embedded in bacteria of much larger size. To overcome this, customed Atomic Force Microscopy probes are developed through various strategies, enhancing sensitivity in different environments, including liquids. Furthermore, employing MFM imaging under an in-situ magnetic field provides an opportunity to gather quantitative data regarding the critical fields of these individual chains of nanoparticles. This approach marks a substantial advancement in the field of MFM for biological applications, enabling the detection of magnetosomes under different conditions.
Collapse
Affiliation(s)
| | - Miriam Jaafar
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; Dpto. de Física de la Materia Condensada and IFIMAC, UAM, 28049 Madrid, Spain
| | - Pablo Ares
- Dpto. de Física de la Materia Condensada and IFIMAC, UAM, 28049 Madrid, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Eider Berganza
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Ana Abad
- Dpto. Inmunología, Microbiología y Parasitología, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - María Luisa Fdez-Gubieda
- Dpto. Electricidad y Electrónica, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Spain
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Allen FI, De Teresa JM, Onoa B. Focused Helium Ion and Electron Beam-Induced Deposition of Organometallic Tips for Dynamic Atomic Force Microscopy of Biomolecules in Liquid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4439-4448. [PMID: 38244049 DOI: 10.1021/acsami.3c16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
We demonstrate the fabrication of sharp nanopillars of high aspect ratio onto specialized atomic force microscopy (AFM) microcantilevers and their use for high-speed AFM of DNA and nucleoproteins in liquid. The fabrication technique uses localized charged-particle-induced deposition with either a focused beam of helium ions or electrons in a helium ion microscope (HIM) or scanning electron microscope (SEM). This approach enables customized growth onto delicate substrates with nanometer-scale placement precision and in situ imaging of the final tip structures using the HIM or SEM. Tip radii of <10 nm are obtained and the underlying microcantilever remains intact. Instead of the more commonly used organic precursors employed for bio-AFM applications, we use an organometallic precursor (tungsten hexacarbonyl) resulting in tungsten-containing tips. Transmission electron microscopy reveals a thin layer of carbon on the tips. The interaction of the new tips with biological specimens is therefore likely very similar to that of standard carbonaceous tips, with the added benefit of robustness. A further advantage of the organometallic tips is that compared to carbonaceous tips they better withstand UV-ozone cleaning treatments to remove residual organic contaminants between experiments, which are inevitable during the scanning of soft biomolecules in liquid. Our tips can also be grown onto the blunted tips of previously used cantilevers, thus providing a means to recycle specialized cantilevers and restore their performance to the original manufacturer specifications. Finally, a focused helium ion beam milling technique to reduce the tip radii and thus further improve lateral spatial resolution in the AFM scans is demonstrated.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, California 97420, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 97420, United States
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 97420, United States
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Bibiana Onoa
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 97420, United States
| |
Collapse
|
4
|
Winkler R, Brugger-Hatzl M, Porrati F, Kuhness D, Mairhofer T, Seewald LM, Kothleitner G, Huth M, Plank H, Barth S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2907. [PMID: 37947751 PMCID: PMC10647607 DOI: 10.3390/nano13212907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | - Fabrizio Porrati
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Lukas M. Seewald
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Winkler R, Brugger-Hatzl M, Seewald LM, Kuhness D, Barth S, Mairhofer T, Kothleitner G, Plank H. Additive Manufacturing of Co 3Fe Nano-Probes for Magnetic Force Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1217. [PMID: 37049311 PMCID: PMC10097098 DOI: 10.3390/nano13071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | | | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, 60438 Frankfurt, Germany
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
7
|
Escalante-Quiceno AT, Novotný O, Neuman J, Magén C, De Teresa JM. Long-Term Performance of Magnetic Force Microscopy Tips Grown by Focused Electron Beam Induced Deposition. SENSORS (BASEL, SWITZERLAND) 2023; 23:2879. [PMID: 36991589 PMCID: PMC10052145 DOI: 10.3390/s23062879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
High-resolution micro- and nanostructures can be grown using Focused Electron Beam Induced Deposition (FEBID), a direct-write, resist-free nanolithography technology which allows additive patterning, typically with sub-100 nm lateral resolution, and down to 10 nm in optimal conditions. This technique has been used to grow magnetic tips for use in Magnetic Force Microscopy (MFM). Due to their high aspect ratio and good magnetic behavior, these FEBID magnetic tips provide several advantages over commercial magnetic tips when used for simultaneous topographical and magnetic measurements. Here, we report a study of the durability of these excellent candidates for high-resolution MFM measurements. A batch of FEBID-grown magnetic tips was subjected to a systematic analysis of MFM magnetic contrast for 30 weeks, using magnetic storage tape as a test specimen. Our results indicate that these FEBID magnetic tips operate effectively over a long period of time. The magnetic signal was well preserved, with a maximum reduction of 60% after 21 weeks of recurrent use. No significant contrast degradation was observed after 30 weeks in storage.
Collapse
Affiliation(s)
| | | | - Jan Neuman
- NenoVision s.r.o., 61200 Brno, Czech Republic
| | - César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Berganza E, Boltynjuk E, Mathew G, Vallejo FF, Gröger R, Scherer T, Sekula-Neuner S, Hirtz M. 3D Nanolithography by Means of Lipid Ink Spreading Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205590. [PMID: 36538752 DOI: 10.1002/smll.202205590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
While patterning 2D metallic nanostructures are well established through different techniques, 3D printing still constitutes a major bottleneck on the way to device miniaturization. In this work a fluid phase phospholipid ink is used as a building block for structuring with dip-pen nanolithography. Following a bioinspired approach that relies on ink-spreading inhibition, two processes are presented to build 2D and 3D metallic structures. Serum albumin, a widely used protein with an innate capability to bind to lipids, is the key in both processes. Covering the sample surface with it prior to lipid writing, anchors lipids on the substrate, which ultimately allows the creation of highly stable 3D lipid-based scaffolds to build metallic structures.
Collapse
Affiliation(s)
- Eider Berganza
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Ines de la Cruz 3, 29048, Madrid, Spain
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Evgeniy Boltynjuk
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - George Mathew
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fabio Fernando Vallejo
- Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Cra 45, 111321, Bogotá, Colombia
| | - Roland Gröger
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics (APH), Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
| | - Torsten Scherer
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sylwia Sekula-Neuner
- n.able GmbH, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Orús P, Sigloch F, Sangiao S, De Teresa JM. Superconducting W-C nanopillars fabricated by Ga+ focused ion beam induced deposition. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Orús P, Sigloch F, Sangiao S, De Teresa JM. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1367. [PMID: 35458074 PMCID: PMC9029853 DOI: 10.3390/nano12081367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
Since its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity.
Collapse
Affiliation(s)
- Pablo Orús
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Fabian Sigloch
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Schaefer KG, Pittman AE, Barrera FN, King GM. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling. Methods 2022; 197:20-29. [PMID: 33164792 DOI: 10.1016/j.ymeth.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Collapse
Affiliation(s)
- K G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - A E Pittman
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - F N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic force microscopy (MFM) belongs to the methods that enable spatially resolved magnetization measurements on common thin-film samples or magnetic nanostructures. The lateral resolution can be much higher than in Kerr microscopy, another spatially resolved magnetization imaging technique, but since MFM commonly necessitates positioning a cantilever tip typically within a few nanometers from the surface, it is often more complicated than other techniques. Here, we investigate the progresses in MFM on magnetic nanofibers that can be found in the literature during the last years. While MFM measurements on magnetic nanodots or thin-film samples can often be found in the scientific literature, reports on magnetic force microscopy on single nanofibers or chaotic nanofiber mats are scarce. The aim of this review is to show which MFM investigations can be conducted on magnetic nanofibers, where the recent borders are, and which ideas can be transferred from MFM on other rough surfaces towards nanofiber mats.
Collapse
|
13
|
Magnetic Functionalization of Scanning Probes by Focused Electron Beam Induced Deposition Technology. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fabrication of nanostructures with high resolution and precise control of the deposition site makes Focused Electron Beam Induced Deposition (FEBID) a unique nanolithography process. In the case of magnetic materials, apart from the FEBID potential in standard substrates for multiple applications in data storage and logic, the use of this technology for the growth of nanomagnets on different types of scanning probes opens new paths in magnetic sensing, becoming a benchmark for magnetic functionalization. This work reviews the recent advances in the integration of FEBID magnetic nanostructures onto cantilevers to produce advanced magnetic sensing devices with unprecedented performance.
Collapse
|
14
|
Jin C, Li X, Han W, Liu Q, Hu S, Ji Y, Xu Z, Hu S, Ye M, Gu M, Zhu Y, Chen L. Ferroelectricity and Ferromagnetism Achieved via Adjusting Dimensionality in BiFeO 3/BiMnO 3 Superlattices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41315-41322. [PMID: 34410105 DOI: 10.1021/acsami.1c11120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integrating characteristics of materials through constructing artificial superlattices (SLs) has raised extensive attention in multifunctional materials. Here, we report the synthesis of BiFeO3/BiMnO3 SLs with considerable ferroelectric polarizations and tunable magnetic moments. The polarization of BiFeO3/BiMnO3 SLs presents a decent value of 12 μC/cm2, even as the dimensionality of BiFeO3 layers per period is reduced to about five-unit cells when keeping the BiMnO3 layers same. Moreover, it is found that the tunable magnetic moments of SLs are linked intimately to the dimensionality of BiFeO3 layers. Our simulations demonstrate that the superexchange interaction of Fe-O-Mn tends to be antiferromagnetic (AFM) with a lower magnetic domain formation energy rather than ferromagnetic (FM). Therefore, as the dimensionality of BiFeO3 per period is reduced, the AFM superexchange interaction between BiFeO3 and BiMnO3 in the SLs becomes weak, promoting a robust magnetization. This interlayer modulation effect in SLs presents an alluring way to accurately control the multiple order parameters in a multiferroic oxide system.
Collapse
Affiliation(s)
- Cai Jin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- School of Physics, Harbin Institute of Technology, Harbin 150081, China
| | - Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqiao Han
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sixia Hu
- Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanjiang Ji
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zedong Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songbai Hu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mao Ye
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanmin Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Meng F, Donnelly C, Abert C, Skoric L, Holmes S, Xiao Z, Liao JW, Newton PJ, Barnes CH, Sanz-Hernández D, Hierro-Rodriguez A, Suess D, Cowburn RP, Fernández-Pacheco A. Non-Planar Geometrical Effects on the Magnetoelectrical Signal in a Three-Dimensional Nanomagnetic Circuit. ACS NANO 2021; 15:6765-6773. [PMID: 33848131 PMCID: PMC8155340 DOI: 10.1021/acsnano.0c10272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Expanding nanomagnetism and spintronics into three dimensions (3D) offers great opportunities for both fundamental and technological studies. However, probing the influence of complex 3D geometries on magnetoelectrical phenomena poses important experimental and theoretical challenges. In this work, we investigate the magnetoelectrical signals of a ferromagnetic 3D nanodevice integrated into a microelectronic circuit using direct-write nanofabrication. Due to the 3D vectorial nature of both electrical current and magnetization, a complex superposition of several magnetoelectrical effects takes place. By performing electrical measurements under the application of 3D magnetic fields, in combination with macrospin simulations and finite element modeling, we disentangle the superimposed effects, finding how a 3D geometry leads to unusual angular dependences of well-known magnetotransport effects such as the anomalous Hall effect. Crucially, our analysis also reveals a strong role of the noncollinear demagnetizing fields intrinsic to 3D nanostructures, which results in an angular dependent magnon magnetoresistance contributing strongly to the total magnetoelectrical signal. These findings are key to the understanding of 3D spintronic systems and underpin further fundamental and device-based studies.
Collapse
Affiliation(s)
- Fanfan Meng
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Claire Donnelly
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Claas Abert
- Faculty
of Physics, University of Vienna, Vienna, 1090, Austria
- Research
Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Vienna, 1090, Austria
| | - Luka Skoric
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Stuart Holmes
- London
Centre for Nanotechnology, UCL, London, WC1H 0AH, U.K.
| | - Zhuocong Xiao
- Nanoscience
Centre, University of Cambridge, Cambridge, CB3 0FF, U.K.
| | - Jung-Wei Liao
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Peter J. Newton
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | | | - Dédalo Sanz-Hernández
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
- Unité
Mixte de Physique, CNRS, Thales, Université
Paris-Saclay, Palaiseau, 91767, France
| | - Aurelio Hierro-Rodriguez
- Depto.
Física, Universidad de Oviedo, Oviedo, 33007, Spain
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow, G12 8QQ, U.K.
| | - Dieter Suess
- Faculty
of Physics, University of Vienna, Vienna, 1090, Austria
- Research
Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Vienna, 1090, Austria
| | | | - Amalio Fernández-Pacheco
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow, G12 8QQ, U.K.
| |
Collapse
|
16
|
Magén C, Pablo-Navarro J, De Teresa JM. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. NANOMATERIALS 2021; 11:nano11020402. [PMID: 33557442 PMCID: PMC7914621 DOI: 10.3390/nano11020402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.
Collapse
Affiliation(s)
- César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876-555369; Fax: +34-976-762-776
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Berganza E, Jaafar M, Fernandez-Roldan JA, Goiriena-Goikoetxea M, Pablo-Navarro J, García-Arribas A, Guslienko K, Magén C, De Teresa JM, Chubykalo-Fesenko O, Asenjo A. Half-hedgehog spin textures in sub-100 nm soft magnetic nanodots. NANOSCALE 2020; 12:18646-18653. [PMID: 32584341 DOI: 10.1039/d0nr02173c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topologically non-trivial structures such as magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to their unique features. It is well known that Néel skyrmions of definite chirality are stabilized by the Dzyaloshinskii-Moriya exchange interaction (DMI) in bulk non-centrosymmetric materials or ultrathin films with strong spin-orbit coupling at the interface. In this work, we show that soft magnetic (permalloy) hemispherical nanodots are able to host three-dimensional chiral structures (half-hedgehog spin textures) with non-zero tropological charge. They are observed at room temperature, in absence of DMI interaction and they can be further stabilized by the magnetic field arising from the Magnetic Force Microscopy probe. Micromagnetic simulations corroborate the experimental data. Our work implies the existence of a new degree of freedom to create and manipulate complex 3D spin-textures in soft magnetic nanodots and opens up future possibilities to explore their magnetization dynamics.
Collapse
Affiliation(s)
- Eider Berganza
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|