1
|
Duval A, Benali W, Avérous L. Exploiting Lignin Structure and Reactivity to Design Vitrimers with Controlled Ratio of Dynamic to Non-Dynamic Bonds. CHEMSUSCHEM 2025; 18:e202401480. [PMID: 39258939 PMCID: PMC11789997 DOI: 10.1002/cssc.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
Lignin is an abundant biobased feedstock, representing the first source of renewable aromatic structures. Thanks to its high functionality in aliphatic hydroxyls (Al-OH), phenolic hydroxyls (Ph-OH) and carboxylic acids (COOH), lignin is an attractive precursor to crosslinked polymer materials. Different biobased macromolecular architectures can be designed from lignins, whose end-of-life should also be considered in the context of a circular bioeconomy. To enhance the recyclability of crosslinked polymer networks, the introduction of dynamic linkages to design vitrimers is a promising strategy. In this study, Kraft lignin was chemically modified with succinic anhydride, to prepare a series of modified lignins with a controlled COOH/Ph-OH ratio, exploiting the difference in reactivity between Al-OH and Ph-OH groups. Upon crosslinking with a diepoxy, mixed vitrimer networks with variable ratios between dynamic ester bonds and non-dynamic ether bonds were synthesized. The analysis of their properties evidenced the impact of the non-dynamic linkages on the materials behaviors, including their dynamicity and reprocessing ability. Although the activation energy for bond exchange is increased, non-dynamic linkages do not hinder the reprocessability of these adaptable materials, and provide them high creep resistance. The controlled introduction of non-dynamic linkages appears as a promising strategy to enhance the properties of lignin-based vitrimers.
Collapse
Affiliation(s)
- Antoine Duval
- BioTeam/ICPEES-ECPMUMR CNRS 7515Université de Strasbourg25 rue Becquerel67087Strasbourg, Cedex 2France
- Soprema15 rue de Saint Nazaire67100StrasbourgFrance
| | - Wissam Benali
- BioTeam/ICPEES-ECPMUMR CNRS 7515Université de Strasbourg25 rue Becquerel67087Strasbourg, Cedex 2France
| | - Luc Avérous
- BioTeam/ICPEES-ECPMUMR CNRS 7515Université de Strasbourg25 rue Becquerel67087Strasbourg, Cedex 2France
| |
Collapse
|
2
|
Maes S, Badi N, Winne JM, Du Prez FE. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat Rev Chem 2025:10.1038/s41570-025-00686-7. [PMID: 39891024 DOI: 10.1038/s41570-025-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Dynamic covalent chemistry (DCC) allows the development of thermally (re)processable and recyclable polymer networks, which is a highly attractive feature for new generations of thermoset materials. However, despite a surge in academic interest wherein soon almost any imaginable DCC platform may have been applied in a thermoset formulation, dynamic or reversible covalent polymer networks have so far found only few industrial applications. This Review provides a perspective on the main strategies for the application of DCC in the design and development of bulk thermoset materials, and it presents some of the key hurdles for their industrial implementation. The polymer design strategies and associated chemistries are viewed from the perspective of how 'close to market' their development pathway is, thus providing a roadmap to achieve high-volume breakthrough applications.
Collapse
Affiliation(s)
- Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan M Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Hayashi M, Suzuki M, Kito T. Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network. ACS Macro Lett 2025:182-187. [PMID: 39869918 DOI: 10.1021/acsmacrolett.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (Tv), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state. Various methods, including viscosity-temperature plots and temperature-ramp creep (or dilatometry), have been proposed for determining the Tv. In this study, we complementarily employ X-ray scattering-based structural analysis and rheological analysis to assign Tv in phase-separated vitrimer-like materials undergoing trans-N-alkylation bond exchange. Note that the trans-N-alkylation progresses via the dissociative bond exchange pathway, whereas our previous studies demonstrated that the temperature-dependence of relaxation time followed the Arrhenius dependence, which was the reason for the classification as a vitrimer-like material. Specifically, we identify Tv as the temperature at which an anomalous increase in domain distance occurs during the rubbery state in the structural analysis. In the rheological analysis, Tv corresponds to the transition temperature marking the shift from the Williams-Landel-Ferry dependence to the Arrhenius dependence in the shift factors used to create master curves for frequency sweep rheology data. Importantly, both methods yield nearly the same Tv, validating the accuracy of the proposed assignment and, thus, providing valuable insights into the specific properties of vitrimers.
Collapse
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Maho Suzuki
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
| | - Takumi Kito
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan
| |
Collapse
|
4
|
Maessen SJD, Lekanne Deprez S, Vermeeren P, van den Bersselaar BWL, Lutz M, Heuts JPA, Fonseca Guerra C, Palmans ARA. Structure-property relationships to direct the dynamic properties of acylsemicarbazide-based materials. Polym Chem 2025; 16:290-300. [PMID: 39669554 PMCID: PMC11629936 DOI: 10.1039/d4py01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Secondary interactions, such as hydrogen bonding or phase separation, can enhance the stability of dynamic covalent materials without compromising on desired dynamic properties. Here, we investigate the combination of multiple secondary interactions in dynamic covalent materials based on acylsemicarbazides (ASCs), with the aim of achieving tunable material properties. The effects of different ASC substituents on the dynamic covalent and hydrogen bonding capabilities were investigated in a small molecule study using a combined experimental and theoretical approach, and revealed the presence of cooperative hydrogen-bonding interactions in 2 directions in one of the derivatives. The different motifs were subsequently incorporated into polymeric materials. Combining ASC motifs capable of strong, multiple hydrogen bonding with a polydimethylsiloxane backbone introduces structure-dependent, ordered nanophase separation in polymeric materials. The thermo-mechanical properties of the materials reveal a strong dependance on the hydrogen-bonding structure and exact nature of the ASC bond. The dynamic behavior in bulk shows that bond exchange depends on the dissociation rate obtained from ASC model compounds, as well as the strength of the secondary interactions in these materials. Differences in hydrogen-bonding structures of the ASC motifs also cause differences in creep resistance of the materials. Interestingly, the materials with strong, ordered and cooperative hydrogen-bonded clusters show the highest creep resistance. Our results demonstrate that tuning both the dissociation rate and the secondary interactions by molecular design in dynamic covalent materials is important for controlling their thermal stability and creep resistance.
Collapse
Affiliation(s)
- Stefan J D Maessen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Siebe Lekanne Deprez
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Pascal Vermeeren
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Bart W L van den Bersselaar
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Johan P A Heuts
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Anja R A Palmans
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
5
|
Scholiers V, Fischer SM, Daelman B, Lehner S, Gaan S, Winne JM, Du Prez FE. Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size Effects. Angew Chem Int Ed Engl 2024:e202420657. [PMID: 39724466 DOI: 10.1002/anie.202420657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers. While it is known that thioether bonds can be triggered to exchange through transalkylation reactions, this process is usually slow, as thioether moieties not only have to be activated by an alkylating agent, but the activated thioether also has to associate with a second thioether moiety in a classical SN2-type process. Here, we present the rational design of dynamic polymer networks based on simple dithiol-based monomers and a fatty acid derived triene. Two neighboring thioethers can undergo a much faster bond exchange reaction, and we found that the exchange dynamics can be further tuned over almost three orders of magnitude by tailoring the distance between two thioether functionalities. This resulted in thioether-cross-linked materials that could be processed by extrusion, a continuous reprocessing technique that was previously not accessible for this class of cross-linked materials, while still exhibiting appealing creep-resistance below 70 °C.
Collapse
Affiliation(s)
- Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Susanne M Fischer
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Bram Daelman
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Sandro Lehner
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Sabyasachi Gaan
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Johan M Winne
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Alarcon RT, Dos Santos GI, Gaglieri C, de Moura A, Cavalheiro ÉTG, Bannach G. Lipidic biomass as a renewable chemical building block for polymeric materials. Chem Commun (Camb) 2024; 60:14557-14572. [PMID: 39576017 DOI: 10.1039/d4cc04993d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Polymers are intrinsically connected to modern society and are found and used in a variety of technologies. Although polymers are valuable, concerns about synthetic polymers derived from non-renewable sources have emerged. Therefore, there is a need to develop new polymeric materials from renewable sources, especially those that are cost-effective, non-toxic, widely available, not derived from depleting sources and are designed to be biodegradable after disposal. In this regard, a perfect class of renewable resources are the lipids (not soluble in water), among which, we can find useful compounds such as triacylglycerols/triglycerides (vegetable oil), terpenes/terpenoids (essential oils), and abietic acid (rosin resin). These are liable to modification to new monomers that can be used in adhesives, 3D-printing, self-healing and so on. However, these materials still suffer from some limitations when compared to non-renewable polymers. Therefore, in this feature article, we will present a description/review of these renewable sources together with related polymeric materials and their mechanical/chemical/physical properties and applications.
Collapse
Affiliation(s)
- Rafael Turra Alarcon
- Universidade de São Paulo-USP, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil.
| | - Gabriel Iago Dos Santos
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil
| | - Caroline Gaglieri
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil
| | - Aniele de Moura
- Universidade de São Paulo-USP, Instituto de Química de São Carlos, 13566-590, São Carlos, SP, Brazil.
| | | | - Gilbert Bannach
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil
| |
Collapse
|
7
|
Nour Eddine N, Meslong L, Cordier M, Arroyo Diaz I, Aloïse S, Devillard M, Alcaraz G. Photoresponsive Dioxazaborocanes-Containing Oligomers. Chemistry 2024; 30:e202402912. [PMID: 39207028 DOI: 10.1002/chem.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The synthetic methodology for the preparation of photoresponsive dioxazaborocanes-containing oligomers is developed. It relies on the transformation of the (diisopropylamino)boryl group (-BH(NiPr2)) into a dioxazaborocane unit in the presence of β-aminodiols and involves a bis-borylated dithienylethene photochromic unit. The photophysical properties of the obtained oligomers are evaluated as well as their processability for the preparation of spin-coated films. The photomechanical behavior of the resulting films is assessed via displacement tracking profile.
Collapse
Affiliation(s)
- Nour Nour Eddine
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Laurine Meslong
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Marie Cordier
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Ismael Arroyo Diaz
- LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, CNRS, UMR 8516, 59500, Lille, France
| | - Stéphane Aloïse
- LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, CNRS, UMR 8516, 59500, Lille, France
| | - Marc Devillard
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| | - Gilles Alcaraz
- ISCR (Institut des Sciences Chimiques de Rennes), Univ Rennes, CNRS, UMR 6226, 35000, Rennes, France
| |
Collapse
|
8
|
Abbasoglu T, Skarsetz O, Fanlo P, Grignard B, Detrembleur C, Walther A, Sardon H. Spatio-Selective Reconfiguration of Mechanical Metamaterials Through the Use of Dynamic Covalent Chemistries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407746. [PMID: 39439214 PMCID: PMC11615789 DOI: 10.1002/advs.202407746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Mechanical metamaterials achieve unprecedented mechanical properties through their periodically interconnected unit cell structure. However, their geometrical design and resulting mechanical properties are typically fixed during fabrication. Despite efforts to implement covalent adaptable networks (CANs) into metamaterials for permanent shape reconfigurability, emphasis is given to global rather than local shape reconfiguration. Furthermore, the change of effective material properties like Poisson's ratio remains to be explored. In this work, a non-isocyanate polyurethane elastomeric CAN, which can be thermally reconfigured, is introduced into a metamaterial architecture. Structural reconfiguration allows for the local and global reprogramming of the Poisson's ratio with change of unit cell angle from 60° to 90° for the auxetic and 120° to 90° for the honeycomb metamaterial. The respective Poisson's ratio changes from -1.4 up to -0.4 for the auxetic and from +0.7 to +0.2 for the honeycomb metamaterial. Carbon nanotubes are deposited on the metamaterials to enable global and spatial electrothermal heating for on-demand reshaping with a heterogeneous Poisson's ratio ranging from -2 to ≈0 for a single auxetic or +0.6 to ≈0 for a single honeycomb metamaterial. Finite element simulations reveal how permanent geometrical reconfiguration results from locally and globally relaxed heated patterns.
Collapse
Affiliation(s)
- Tansu Abbasoglu
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Oliver Skarsetz
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Paula Fanlo
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- FRITCO2T PlatformUniversity of LiègeSart‐Tilman B6aLiège4000Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- WEL Research InstituteWavre1300Belgium
| | - Andreas Walther
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| |
Collapse
|
9
|
Pourrahimi AM, Mauri M, D'Auria S, Pinalli R, Müller C. Alternative Concepts for Extruded Power Cable Insulation: from Thermosets to Thermoplastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313508. [PMID: 38607958 PMCID: PMC11681306 DOI: 10.1002/adma.202313508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Indexed: 04/14/2024]
Abstract
The most common type of insulation of extruded high-voltage power cables is composed of low-density polyethylene (LDPE), which must be crosslinked to adjust its thermomechanical properties. A major drawback is the need for hazardous curing agents and the release of harmful curing byproducts during cable production, while the thermoset nature complicates reprocessing of the insulation material. This perspective explores recent progress in the development of alternative concepts that allow to avoid byproducts through either click chemistry type curing of polyethylene-based copolymers or the use of polyolefin blends or copolymers, which entirely removes the need for crosslinking. Moreover, polypropylene-based thermoplastic formulations enable the design of insulation materials that can withstand higher cable operating temperatures and facilitate reprocessing by remelting once the cable reaches the end of its lifetime. Finally, polyethylene-based covalent and non-covalent adaptable networks are explored, which may allow to combine the advantages of thermoset and thermoplastic insulation materials in terms of thermomechanical properties and reprocessability.
Collapse
Affiliation(s)
- Amir Masoud Pourrahimi
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Massimiliano Mauri
- Department of Materials EngineeringNexans Norway ASKnivsøveien 70Berg i Østfold1788Norway
| | - Silvia D'Auria
- Department of ChemistryLife Sciences and Environmental SustainabilityUniversity of ParmaParma43124Italy
| | - Roberta Pinalli
- Department of ChemistryLife Sciences and Environmental SustainabilityUniversity of ParmaParma43124Italy
| | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| |
Collapse
|
10
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400356. [PMID: 38842466 PMCID: PMC11587689 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Bhausaheb Dhokale
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Department of ChemistryUniversity of WyomingLaramieWyoming 82071United States of America
| | - Zeinab M. Saeed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry ProgramKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| |
Collapse
|
11
|
Liang H, Tian W, Xu H, Ge Y, Yang Y, He E, Yang Z, Wang Y, Zhang S, Wang G, Chen Q, Wei Y, Ji Y. Reprocessable Epoxy-Anhydride Resin Enabled by a Thermally Stable Liquid Transesterification Catalyst. Polymers (Basel) 2024; 16:3216. [PMID: 39599307 PMCID: PMC11598466 DOI: 10.3390/polym16223216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Introducing dynamic ester bonds into epoxy-anhydride resins enhances the reprocessability of the crosslinked network, facilitated by various types of transesterification catalysts. However, existing catalysts, such as metal salts and organic molecules, often struggle with dispersion, volatility, or structural instability issues. Here, we propose to solve such problems by incorporating a liquid-state, thermally stable transesterification catalyst into epoxy resins. This catalyst, an imidazole derivative, can be uniformly dispersed in the epoxy resin at room temperature. In addition, it shows high-temperature structural stability above at least 200 °C as the synergistic effects of the electron-withdrawing group and steric bulk can be leveraged. It can also effectively promote transesterification at elevated temperatures, allowing for the effective release of shear stress. This property enables the thermal recycling and reshaping of the fully crosslinked epoxy-anhydride resin. This strategy not only enhances the functionality of epoxy resins but also broadens their applicability across various thermal and mechanical environments.
Collapse
Affiliation(s)
- Huan Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Wendi Tian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongtu Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yuzhen Ge
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
| | - Enjian He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Zhijun Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yixuan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Shuhan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Guoli Wang
- Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510623, China; (G.W.); (Q.C.)
| | - Qiulin Chen
- Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510623, China; (G.W.); (Q.C.)
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yan Ji
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| |
Collapse
|
12
|
Ye G, Huo S, Wang C, Zhang Q, Wang H, Song P, Liu Z. Strong yet Tough Catalyst-Free Transesterification Vitrimer with Excellent Fire-Retardancy, Durability, and Closed-Loop Recyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404634. [PMID: 39082404 DOI: 10.1002/smll.202404634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Indexed: 11/08/2024]
Abstract
Despite great advances in vitrimer, it remains highly challenging to achieve a property portfolio of excellent mechanical properties, desired durability, and high fire safety. Thus, a catalyst-free, closed-loop recyclable transesterification vitrimer (TPN1.50) with superior mechanical properties, durability, and fire retardancy is developed by introducing a rationally designed tertiary amine/phosphorus-containing reactive oligomer (TPN) into epoxy resin (EP). Because of strong covalent interactions between TPN and EP and its linear oligomer structure, as-prepared TPN1.50 achieves a tensile strength of 86.2 MPa and a toughness of 6.8 MJ m-3, superior to previous vitrimer counterparts. TPN1.50 containing 1.50 wt% phosphorus shows desirable fire retardancy, including a limiting oxygen index of 35.2% and a vertical burning (UL-94) V-0 classification. TPN1.50 features great durability and can maintain its structure integrity in 1 M HCl or NaOH solution for 100 days. This is because the tertiary amines are anchored within the cross-linked network and blocked by rigid P-containing groups, thus effectively suppressing the transesterification. Owing to its good chemical recovery, TPN1.50 can be used as a promising resin for creating recyclable carbon fiber-reinforced polymer composites. This work offers a promising integrated method for creating robust durable fire-safe vitrimers which facilitate the sustainable development of high-performance polymer composites.
Collapse
Affiliation(s)
- Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
13
|
Reisinger D, Sietmann A, Das A, Plutzar S, Korotkov R, Rossegger E, Walluch M, Holler-Stangl S, Hofer TS, Dielmann F, Glorius F, Schlögl S. Light-Driven, Reversible Spatiotemporal Control of Dynamic Covalent Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411307. [PMID: 39370771 DOI: 10.1002/adma.202411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Dynamic covalent polymer networks exhibit a cross-linked structure like conventional thermosets and elastomers, although their topology can be reorganized through externally triggered bond exchange reactions. This characteristic enables a unique combination of repairability, recyclability and dimensional stability, crucial for a sustainable industrial economy. Herein the application of a photoswitchable nitrogen superbase is reported for the spatially resolved and reversible control over dynamic bond exchange within a thiol-ene photopolymer. By the exposure to UV or visible light, the associative exchange between thioester links and thiol groups is successfully gained control over, and thereby the macroscopic mechanical material properties, in a locally controlled manner. Consequently, the resulting reorganization of the global network topology enables to utilize this material for previously unrealizable advanced applications such as spatially resolved, reversible reshaping as well as micro-imprinting over multiple steps. Finally, the presented concept contributes fundamentally to the evolution of dynamic polymers and provides universal applicability in covalent adaptable networks relying on a base-catalyzed exchange mechanism.
Collapse
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | - Alexander Sietmann
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Ankita Das
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Sarah Plutzar
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | - Roman Korotkov
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| | | | | | | | - Thomas S Hofer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Fabian Dielmann
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, Leoben, 8700, Austria
| |
Collapse
|
14
|
Oh J, Liu G, Kim H, Hertzog JE, Nitta N, Rowan SJ. Exploring the Impact of Ring Mobility on the Macroscopic Properties of Doubly Threaded Slide-Ring Gel Networks. Angew Chem Int Ed Engl 2024; 63:e202411172. [PMID: 39158508 DOI: 10.1002/anie.202411172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide-ring gels (SRGs), which are generally accessed by crosslinking rings on a main-chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide-ring gel networks (dt-SRGs). In this study, a photo-curable ligand-containing thread was used to assemble a series of metal-templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt-SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo-curable ligand-containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt-SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt-SRGs could be altered by "locking" ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks.
Collapse
Affiliation(s)
- Jongwon Oh
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Guancen Liu
- Department of Chemistry, University of Chicago, IL 60637, Chicago, USA
| | - Hojin Kim
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
- James Franck Institute, University of Chicago, IL 60637, Chicago, USA
| | - Jerald E Hertzog
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, IL 60637, Chicago, USA
- Department of Chemistry, University of Chicago, IL 60637, Chicago, USA
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, IL 60434, Lemont, USA
| |
Collapse
|
15
|
Hoang VK, Ku K, Yeo H. Design and Evaluation of a Reprocessable Bismaleimide Thermoset: Enhancing Functionality and Sustainability Compatibility. ACS Macro Lett 2024; 13:1279-1285. [PMID: 39283812 DOI: 10.1021/acsmacrolett.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Bismaleimide (BMI) resins are high-performance thermosets that are primarily used in aerospace because of their exceptional heat resistance and physical properties. However, their growing demand has led to significant environmentally unfriendly waste. To address this, our research proposes a reprocessable BMI system using a newly synthesized BMI vitrimer (BMIV) with functional groups that form covalent adaptable networks (CANs). To enhance the properties, a symmetrical BMI with two ester groups introduced into the rigid rod molecule was designed as a CAN component. After confirming the structure using various spectroscopic techniques, BMIV was coupled with aromatic diamines via an additional aza-Michael reaction to obtain the cured resins. Subsequently, the mechanical properties and reprocessing behavior of the thermally stable and optimized thermosetting material with the best performance were evaluated, and the evidence, mechanism, and activation energy of the topology rearrangement are reported in detail.
Collapse
Affiliation(s)
- Van-Kien Hoang
- Department of Nanoscience & Nanotechnology, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kyosun Ku
- Advanced Institute of Water Industry, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeonuk Yeo
- Department of Nanoscience & Nanotechnology, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Chemistry Education Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- School of Applied Chemical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Shapiro A, Brigandi PJ, Moubarak M, Sengupta SS, Epps TH. Cross-Linked Polyolefins: Opportunities for Fostering Circularity Throughout the Materials Lifecycle. ACS APPLIED POLYMER MATERIALS 2024; 6:11859-11876. [PMID: 39416717 PMCID: PMC11474822 DOI: 10.1021/acsapm.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Cross-linked polyolefins (XLPOs) constitute a significant portion of the plastics commercial market, with a market size of a similar order of magnitude to those of polystyrene and polyethylene terephthalate. However, few aspects of XLPO materials circularity have been examined relative to thermoplastic polyolefins. The cross-linking of polyolefins imparts superior performance properties, such as impact strength, chemical and electrical resistance, and thermal stability vs thermoplastic analogues, but it also makes the reprocessing of XLPOs to valuable products more challenging, as XLPOs cannot be molten. Thus, most XLPOs are incinerated or landfilled at the end of the first lifecycle, even though XLPO products are commonly collected as a relatively clean waste stream-providing a unique opportunity for valorization. In this review, we discuss approaches to improve XLPO circularity throughout the entire materials lifecycle by examining biobased feedstocks as alternative olefinic monomer sources and by assessing both traditional mechanical and advanced XLPO recycling methods based on industrial feasibility and potential product value. We also consider how advancing materials longevity can reduce environmental impacts and lifecycle costs and how recyclable-by-design strategies can enable better end-of-life opportunities for future generations of XLPO materials. Throughout this review, we highlight XLPO circularity routes that have the potential to balance the performance, circularity, and scalability necessary to impart economic and environmental viability at an industrial scale.
Collapse
Affiliation(s)
- Alison
J. Shapiro
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paul J. Brigandi
- The
Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Maria Moubarak
- The
Dow Chemical Company, Rheingaustrasse 34, 65201 Wiesbaden, Germany
| | - Saurav S. Sengupta
- The
Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Morgan FC, Beeren IAO, Bauer J, Moroni L, Baker MB. Structure-Reactivity Relationships in a Small Library of Imine-Type Dynamic Covalent Materials: Determination of Rate and Equilibrium Constants Enables Model Prediction and Validation of a Unique Mechanical Softening in Dynamic Hydrogels. J Am Chem Soc 2024; 146:27499-27516. [PMID: 39350717 PMCID: PMC11467966 DOI: 10.1021/jacs.4c08099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
The development of next generation soft and recyclable materials prominently features dynamic (reversible) chemistries such as host-guest, supramolecular, and dynamic covalent. Dynamic systems enable injectability, reprocessability, and time-dependent mechanical properties. These properties arise from the inherent relationship between the rate and equilibrium constants (RECs) of molecular junctions (cross-links) and the resulting macroscopic behavior of dynamic networks. However, few examples explicitly measure RECs while exploring this connection between molecular and material properties, particularly for polymeric hydrogel systems. Here we use dynamic covalent imine formation to study how single-point compositional changes in NH2-terminated nucleophiles affect binding constants and resulting hydrogel mechanical properties. We explored both model small molecule studies and model polymeric macromers, and found >3-decade change in RECs. Leveraging established relationships in the literature, we then developed a simple model to describe the cross-linking equilibrium and predict changes in hydrogel mechanical properties. Interestingly, we observed that a narrow ≈2-decade range of Keq's determine the bound fraction of imines. Our model allowed us to uncover a regime where adding cross-linker before saturation can decrease the cross-link density of a hydrogel. We then demonstrated the veracity of this predicted behavior experimentally. Notably this emergent behavior is not accounted for in covalent hydrogel theory. This study expands upon structure-reactivity relationships for imine formation, highlighting how quantitative determination of RECs facilitates predicting macroscopic behavior. Furthermore, while the present study focuses on dynamic covalent imine formation, the underlying principles of this work are applicable to the general bottom-up design of soft and recyclable dynamic materials.
Collapse
Affiliation(s)
- Francis
L. C. Morgan
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ivo A. O. Beeren
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B. Baker
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
18
|
Nishiie N, Kawatani R, Tezuka S, Mizuma M, Hayashi M, Kohsaka Y. Vitrimer-like elastomers with rapid stress-relaxation by high-speed carboxy exchange through conjugate substitution reaction. Nat Commun 2024; 15:8657. [PMID: 39368967 PMCID: PMC11455856 DOI: 10.1038/s41467-024-53043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
We report vitrimer-like elastomers that exhibit significantly fast stress relaxation using carboxy exchange via the conjugate substitution reaction of α-(acyloxymethyl) acrylate skeletons. This network design is inspired by a small-molecule model that shows the carboxy exchange reaction even at ambient temperature in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO). The acrylate and acrylic acid copolymers are cross-linked using bis[α-(bromomethyl)acrylates] and doped with 10 wt% DABCO, exhibiting processability to obtain a transparent film by hot pressing. The high-speed bond exchange in the network, validated by stress-relaxation tests, allows quick molding with household iron. In addition, the material is applied as an adhesion sheet for plastic and metal substrates. Because dynamic cross-linking with the proposed bond exchange mechanism can be implemented for any polymer bearing carboxyl pendants, our approach can be applied to versatile backbones, which must thus be meaningful in the practical sense.
Collapse
Affiliation(s)
- Natsumi Nishiie
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Ryo Kawatani
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Sae Tezuka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Miu Mizuma
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
- Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| |
Collapse
|
19
|
Telatin T, De la Flor S, Montané X, Serra À. Chemically Degradable Vitrimers Based on Divanillin Imine Diepoxy Monomer and Aliphatic Diamines for Enhanced Carbon Fiber Composite Applications. Polymers (Basel) 2024; 16:2754. [PMID: 39408465 PMCID: PMC11479291 DOI: 10.3390/polym16192754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This study presents the development of a diglycidyl monomer containing two imine groups that can act as dynamic and reversible bonds. During the curing of the monomer with two different amine hardeners, we confirmed the formation of new imine groups due to the transamination reaction between the imine groups of the diepoxy monomer with the amine groups of the hardener. The effect of this structural change was observed in the stress relaxation behavior, resulting in the overlapping of two different relaxation modes. The analytical modelling was able to extract two distinct characteristic relaxation times using a double-element Maxwell model. A second characterization of the stress relaxation process by frequency sweep experiments was performed to corroborate the results obtained, confirming speedy stress relaxation. Acid-catalyzed hydrolysis was performed on the studied materials, demonstrating the complete degradation of the network. We finally confirmed that the synthesized diepoxy compound is suitable for preparing carbon-fiber-reinforced composite materials, demonstrating easy fiber impregnation, fast reshaping, and especially a total degradation of the polymer matrix that allows for the recovery of the carbon fibers in mild conditions. This epoxy-amine system is an excellent candidate for overcoming the traditional limits of thermosets in preparing fiber-reinforced composites.
Collapse
Affiliation(s)
- Tommaso Telatin
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain;
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Montané
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain;
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain;
| |
Collapse
|
20
|
Korotkov R, Alabiso W, Jelinek A, Schmallegger M, Li Y, Schlögl S, Rossegger E. Microscale manipulation of bond exchange reactions in photocurable vitrimers with a covalently attachable photoacid generator. Chem Sci 2024:d4sc04932b. [PMID: 39297000 PMCID: PMC11404296 DOI: 10.1039/d4sc04932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Vitrimers are polymer networks with covalent bonds that undergo reversible exchange reactions and rearrange their topology in response to an external stimulus. The temperature-dependent change in viscoelastic properties is conveniently adjusted by selected catalysts. In these thermo-activated systems, the lack in spatial control can be overcome by using photolatent catalysts. Herein, we advance this concept to locally manipulate bond exchange reactions on a single digit microscale level. For this, we synthetize a linkable non-ionic photoacid generator, which is covalently attached to a thiol-click photopolymer. UV induced deprotection of the photoacid yields a strong immobilized sulfonic acid species, which is able to efficiently catalyze transesterification reactions. Covalent attachment of the formed acid prevents migration/leaching processes and enables a precise tuning of material properties. As proof of concept, positive toned microstructures with a resolution of 5 μm are inscribed in thin films using direct two-photon absorption laser writing and subsequent depolymerization. In addition, the possibility to locally reprogram bulk material properties is demonstrated by performing a post-modification reaction with ethylene glycol and carboxylic acids. The Young's modulus is varied between 3.3 MPa and 11.9 MPa giving rise to the versatility of the newly introduced catalysts for creating light processable and transformable materials.
Collapse
Affiliation(s)
- Roman Korotkov
- Polymer Competence Center Leoben GmbH Sauraugasse 1 Leoben 8700 Austria
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH Sauraugasse 1 Leoben 8700 Austria
| | - Alexander Jelinek
- Department of Materials Science, Montanuniversität Leoben Franz-Josef-Strasse 18 Leoben 8700 Austria
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/II Graz 8010 Austria
| | - Yang Li
- Polymer Competence Center Leoben GmbH Sauraugasse 1 Leoben 8700 Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Sauraugasse 1 Leoben 8700 Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Sauraugasse 1 Leoben 8700 Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology Stremayrgasse 9/V Graz 8010 Austria
| |
Collapse
|
21
|
Xu H, Liang H, Yang Y, Liu Y, He E, Yang Z, Wang Y, Wei Y, Ji Y. Rejuvenating liquid crystal elastomers for self-growth. Nat Commun 2024; 15:7381. [PMID: 39191791 DOI: 10.1038/s41467-024-51544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
To date, only one polymer can self-grow to an extended length beyond its original size at room temperature without external stimuli or energy input. This breakthrough paves the way for significant advancements in untethered autonomous soft robotics, eliminating the need for the energy input or external stimuli required by all existing soft robotics systems. However, only freshly prepared samples in an initial state can self-grow, while non-fresh ones cannot. The necessity of synthesizing from monomers for each use imposes significant limitations on practical applications. Here, we propose a strategy to rejuvenate non-fresh samples to their initial state for on-demand self-growth through the synergistic effects of solvents and dynamic covalent bonds during swelling. The solvent used for swelling physically transforms the non-fresh LCEs from the liquid crystal phase to the isotropic phase. Simultaneously, the introduction of the transesterification catalyst through swelling facilitates topological rearrangements through exchange reactions of dynamic covalent bonds. The rejuvenation process can also erase growth history, be repeated several times, and be regulated by selective swelling. This strategy provides a post-modulation method for the rejuvenation and reuse of self-growing LCEs, promising to offer high-performance materials for cutting-edge soft growing robotics.
Collapse
Affiliation(s)
- Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Xia J, Li S, Gao R, Zhang Y, Wang L, Ye Y, Cao C, Xue H. Bio-Based Epoxy Vitrimers with Excellent Properties of Self-Healing, Recyclability, and Welding. Polymers (Basel) 2024; 16:2113. [PMID: 39125140 PMCID: PMC11314141 DOI: 10.3390/polym16152113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The development of more recyclable materials is a key requirement for a transition towards a more circular economy. Thanks to exchange reactions, vitrimer, an attractive alternative for recyclable materials, is an innovative class of polymers that is able to change its topology without decreasing its connectivity. In this work, a bisphenol compound (VP) was prepared from saturated cardanol, i.e., 3-pentadecylphenol and vanillyl alcohol. Then, VP was epoxidized to obtain epoxide (VPGE). Finally, VPGE and citric acid (CA) were polymerized in the presence of catalyst TBD to prepare a fully bio-based vitrimer based on transesterification. The results from differential scanning calorimetry (DSC) showed that the VPGE/CA system could be crosslinked at around 163 °C. The cardanol-derived vitrimers had good network rearrangement properties. Meanwhile, because of the dynamic structural elements in the network, the material was endowed with excellent self-healing, welding, and recyclability.
Collapse
Affiliation(s)
- Jianrong Xia
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Shuyun Li
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Renjin Gao
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
| | - Yuchi Zhang
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
| | - Liwei Wang
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
| | - Yuansong Ye
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
| | - Changlin Cao
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Hanyu Xue
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China; (J.X.); (S.L.); (R.G.); (Y.Z.); (L.W.); (Y.Y.)
| |
Collapse
|
23
|
Kumar V, Kuang W, Fifield LS. Carbon Fiber-Based Vitrimer Composites: A Path toward Current Research That Is High-Performing, Useful, and Sustainable. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3265. [PMID: 38998348 PMCID: PMC11243385 DOI: 10.3390/ma17133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
In the polymeric material industry, thermosets and related composites have played a substantial role in the production of rubber and plastics. One important subset of these is thermoset composites with carbon reinforcement. The incorporation of carbon fillers and fibers gives polymeric materials improved electrical and mechanical properties, among other benefits. However, the covalently crosslinked network of thermosets presents significant challenges for recycling and reprocessing because of its intractable nature. The introduction of vitrimer materials opens a new avenue to produce biodegradable and recyclable thermosets. Carbon-reinforced vitrimer composites are pursued for high-performance, long-lasting materials with attractive physical properties, the ability to be recycled and processed, and other features that respond uniquely to stimuli. The development of carbon-reinforced vitrimer composites over the last few years is summarized in this article. First, an overview of vitrimers and the methods used to prepare carbon fiber-reinforced vitrimer composites is provided. Because of the vitrimer nature of such composites, reprocessing, healing, and recycling are viable ways to greatly extend their service life; these approaches are thoroughly explained and summarized. The conclusion is our prediction for developing carbon-based vitrimer composites.
Collapse
Affiliation(s)
| | | | - Leonard S. Fifield
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; (V.K.); (W.K.)
| |
Collapse
|
24
|
Billington E, Şucu T, Shaver MP. Mechanical Properties and Recyclability of Fiber Reinforced Polyester Composites. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10011-10019. [PMID: 38966238 PMCID: PMC11220791 DOI: 10.1021/acssuschemeng.4c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Fiber reinforced polymer composites (FRPs) are valuable construction materials owing to their strength, durability, and design flexibility; however, conventional FRPs utilize petroleum-based polymer matrices with limited recyclability. Furthermore, fiber reinforcements are made from nonrenewable feedstocks, through expensive and energy intensive processes, making recovery and reuse advantageous. Thus, FRPs that use biobased and degradable or reprocessable matrices would enable a more sustainable product, as both components can be recovered and reused. We previously developed a family of degradable and reprocessable cross-linked polyesters from bioderived cyclic esters (l-lactide, δ-valerolactone, and ε-caprolactone) copolymerized with a bis(1,3-dioxolan-4-one) cross-linker. We now incorporate these networks into FRPs and demonstrate degradability of the matrix into tartaric acid and oligomers, enabling recovery and reuse of the fiber reinforcement. Furthermore, the effect of varying comonomer structure, catalyst, reinforcement type, and lay-up method on mechanical properties of the resultant FRPs is explored. The FRPs produced have tensile strengths of up to 202 MPa and Young's moduli up to 25 GPa, promising evidence that sustainable FRPs can rival the mechanical properties of conventional high performance FRPs.
Collapse
Affiliation(s)
- Eloise
K. Billington
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Theona Şucu
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Michael P. Shaver
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
25
|
Liang H, Zhang Y, He E, Yang Y, Liu Y, Xu H, Yang Z, Wang Y, Wei Y, Ji Y. "Cloth-to-Clothes-Like" Fabrication of Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400286. [PMID: 38722690 DOI: 10.1002/adma.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Inspired by adaptive natural organisms and living matter, soft actuators appeal to a variety of innovative applications such as soft grippers, artificial muscles, wearable electronics, and biomedical devices. However, their fabrication is typically limited in laboratories or a few enterprises since specific instruments, strong stimuli, or specialized operation skills are inevitably involved. Here a straightforward "cloth-to-clothes-like" method to prepare soft actuators with a low threshold by combining the hysteretic behavior of liquid crystal elastomers (LCEs) with the exchange reaction of dynamic covalent bonds, is proposed. Due to the hysteretic behavior, the LCEs (resemble "cloth") effectively retain predefined shapes after stretching and releasing for extended periods. Subsequently, the samples naturally become soft actuators (resemble "clothes") via the exchange reaction at ambient temperatures. As a post-synthesis method, this strategy effectively separates the production of LCEs and soft actuators. LCEs can be mass-produced in bulk by factories or producers and stored as prepared, much like rolls of cloth. When required, these LCEs can be customized into soft actuators as needed. This strategy provides a robust, flexible, and scalable solution to engineer soft actuators, holding great promise for mass production and universal applications.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Elizalde F, Pertici V, Aguirresarobe R, Ximenis M, Vozzolo G, Lezama L, Ruipérez F, Gigmes D, Sardon H. Tuning Reprocessing Temperature of Aliphatic Polyurethane Networks by Alkoxyamine Selection. ACS APPLIED POLYMER MATERIALS 2024; 6:7057-7065. [PMID: 38961862 PMCID: PMC11217918 DOI: 10.1021/acsapm.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Recent studies have shown that the largest employed thermoset family, polyurethanes (PUs), has great potential to be reprocessed due to the dynamic behavior of carbamate linkage. However, it requires high temperatures, especially in the case of aliphatic PUs, which causes side reactions besides the desired exchange reaction. To facilitate the reprocessing of aliphatic PUs, in this work, we have explored the dynamic potential of alkoxyamine bonds in PU networks to facilitate the reprocessing under mild conditions considering their fast recombination ability. Taking advantage of the structural effect of the nitroxide and alkyl radicals on the dissociation energy, two different alkoxyamine-based diols have been designed and synthesized to generate PU networks. Our study shows that replacing 50 mol % of a nondynamic diol chain extender with these dynamic blocks boosts the relaxation times of the networks, enabling reprocessing at temperatures as low as 80 °C.
Collapse
Affiliation(s)
- Fermin Elizalde
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Vincent Pertici
- Aix
Marseille Univ, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Robert Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Giulia Vozzolo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Luis Lezama
- Department
of Inorganic Chemistry and BC Materials, University of the Basque Country UPV/EHU, E-48080 Bilbao, Spain
| | - Fernando Ruipérez
- POLYMAT
and Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Didier Gigmes
- Aix
Marseille Univ, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| |
Collapse
|
27
|
Alegría A, Arbe A, Colmenero J, Bhaumik S, Ntetsikas K, Hadjichristidis N. Segmental and Chain Dynamics of Polyisoprene-Based Model Vitrimers. Macromolecules 2024; 57:5639-5647. [PMID: 38948182 PMCID: PMC11210400 DOI: 10.1021/acs.macromol.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Polymer vitrimers are a new class of materials that combine the advantages of thermoplastics and thermosets. This is due to the dynamic nature of the chemical bonds linking different chains. However, how this property affects the polymer dynamics at different length scales is still an open question. Here, we investigate the dynamics of model vitrimers based on well-defined polyisoprene (PI) chains using broadband dielectric spectroscopy. In this way, we study the polymer dynamics from the segmental to the whole chain scale, taking advantage of the fact that PI belongs to the class of molecules that exhibit a net dipole moment associated with the end-to-end vector. Three distinct relaxation phenomena are identified. The fastest relaxation is attributed to the segmental PI dynamics with a small influence of the cross-linking. An intermediate relaxation attributed to the dipolar character of the cross-linker is also observed. The slower identified relaxation component, corresponding to limited fluctuations of the end-to-end PI chains, is found to be determined by the dynamics of the clusters formed by the cross-linkers with an average time scale orders of magnitude faster than that of the terminal relaxation as inferred from the viscous flow.
Collapse
Affiliation(s)
- Angel Alegría
- Departamento
de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Departamento
de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo
Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Saibal Bhaumik
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| | - Konstantinos Ntetsikas
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Wang S, Feng H, Li B, Lim JYC, Rusli W, Zhu J, Hadjichristidis N, Li Z. Knoevenagel C═C Metathesis Enabled Glassy Vitrimers with High Rigidity, Toughness, and Malleability. J Am Chem Soc 2024; 146:16112-16118. [PMID: 38803151 PMCID: PMC11177252 DOI: 10.1021/jacs.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Thermosets, characterized by their permanent cross-linked networks, present significant challenges in recyclability and brittleness. In this work, we explore a polarized Knoevenagel C═C metathesis reaction for the development of rigid yet tough and malleable thermosets. Initial investigation on small molecule model reactions reveals the feasibility of conducting the base-catalyzed C═C metathesis reaction in a solvent-free environment. Subsequently, thermosetting poly(α-cyanocinnamate)s (PCCs) were synthesized via Knoevenagel condensation between a triarm cyanoacetate star and a dialdehyde. The thermal and mechanical properties of the developed PCCs can be easily modulated by altering the structure of the dialdehyde. Remarkably, the introduction of ether groups into the PCC leads to a combination of high rigidity and toughness with Young's modulus of ∼1590 MPa, an elongation at break of ∼79%, and a toughness reaching ∼30 MJ m3. These values are competitive to traditional thermosets, in Young's modulus but far exceed them in ductility and toughness. Moreover, the C═C metathesis facilitates stress relaxation within the bulk polymer networks, thus rendering PCCs excellent malleability and reprocessability. This work overcomes the traditional limitations of thermosets, introducing groundbreaking insights for the design of rigid yet tough and malleable thermosets, and contributing significantly to the sustainability of materials.
Collapse
Affiliation(s)
- Sheng Wang
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongzhi Feng
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Bofan Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jason Y. C. Lim
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wendy Rusli
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jin Zhu
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Physical Sciences and Engineering Division,
KAUST Catalysis Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zibiao Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117576, Republic
of Singapore
| |
Collapse
|
29
|
Bui AH, Fernando Pulle AD, Micallef AS, Lessard JJ, Tuten BT. Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules. Angew Chem Int Ed Engl 2024; 63:e202404474. [PMID: 38453652 DOI: 10.1002/anie.202404474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.
Collapse
Affiliation(s)
- Aaron H Bui
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anne D Fernando Pulle
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana, Champaign Urbana, Illinois, 61801, United States of America
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
30
|
Feng H, Wang S, Lim JYC, Li B, Rusli W, Liu F, Hadjichristidis N, Li Z, Zhu J. Catalyst-Free α-Acetyl Cinnamate/Acetoacetate Exchange to Enable High Creep-Resistant Vitrimers. Angew Chem Int Ed Engl 2024; 63:e202400955. [PMID: 38489506 DOI: 10.1002/anie.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Vitrimers represent an emerging class of polymeric materials that combine the desirable characteristics of both thermoplastics and thermosets achieved through the design of dynamic covalent bonds within the polymer networks. However, these materials are prone to creep due to the inherent instability of dynamic covalent bonds. Consequently, there are pressing demands for the development of robust and stable dynamic covalent chemistries. Here, we report a catalyst-free α-acetyl cinnamate/acetoacetate (α-AC/A) exchange reaction to develop vitrimers with remarkable creep resistance. Small-molecule model studies revealed that the α-AC/A exchange occurred at temperatures above 140 °C in bulk, whereas at 120 °C, this reaction was absent. For demonstration in the case of polymers, copolymers derived from common vinyl monomers were crosslinked with terephthalaldehyde to produce α-AC/A vitrimers with tunable thermal and mechanical performance. All resulting α-AC/A vitrimers exhibited high stability, especially in terms of creep resistance at 120 °C, while retaining commendable reprocessability when subjected to high temperatures. This work showcases the α-AC/A exchange reaction as a novel and robust dynamic covalent chemistry capable of imparting both reprocessability and high stability to cross-linked networks.
Collapse
Affiliation(s)
- Hongzhi Feng
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wendy Rusli
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Feng Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| |
Collapse
|
31
|
Karatrantos AV, Couture O, Hesse C, Schmidt DF. Molecular Simulation of Covalent Adaptable Networks and Vitrimers: A Review. Polymers (Basel) 2024; 16:1373. [PMID: 38794566 PMCID: PMC11125108 DOI: 10.3390/polym16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Covalent adaptable networks and vitrimers are novel polymers with dynamic reversible bond exchange reactions for crosslinks, enabling them to modulate their properties between those of thermoplastics and thermosets. They have been gathering interest as materials for their recycling and self-healing properties. In this review, we discuss different molecular simulation efforts that have been used over the last decade to investigate and understand the nanoscale and molecular behaviors of covalent adaptable networks and vitrimers. In particular, molecular dynamics, Monte Carlo, and a hybrid of molecular dynamics and Monte Carlo approaches have been used to model the dynamic bond exchange reaction, which is the main mechanism of interest since it controls both the mechanical and rheological behaviors. The molecular simulation techniques presented yield sufficient results to investigate the structure and dynamics as well as the mechanical and rheological responses of such dynamic networks. The benefits of each method have been highlighted. The use of other tools such as theoretical models and machine learning has been included. We noticed, amongst the most prominent results, that stress relaxes as the bond exchange reaction happens, and that at temperatures higher than the glass transition temperature, the self-healing properties are better since more bond BERs are observed. The lifetime of dynamic covalent crosslinks follows, at moderate to high temperatures, an Arrhenius-like temperature dependence. We note the modeling of certain properties like the melt viscosity with glass transition temperature and the topology freezing transition temperature according to a behavior ruled by either the Williams-Landel-Ferry equation or the Arrhenius equation. Discrepancies between the behavior in dissociative and associative covalent adaptable networks are discussed. We conclude by stating which material parameters and atomistic factors, at the nanoscale, have not yet been taken into account and are lacking in the current literature.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| | - Olivier Couture
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Channya Hesse
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| |
Collapse
|
32
|
Guerrero-Ruiz F, Otaegi I, Verde-Sesto E, Bonardd S, Maiz J. Revealing Dynamic Behavior in High Dielectric Poly(thiourethane)-Based Vitrimer-like Materials. ACS APPLIED POLYMER MATERIALS 2024; 6:5473-5484. [PMID: 38752014 PMCID: PMC11091852 DOI: 10.1021/acsapm.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Here, we have explored covalent adaptable networks (CANs) comprising poly(thiourethane)-based systems (PTUs). The PTUs were synthesized through the combination of thiol and isocyanate monomers in stoichiometric proportions, in the presence of dibutyltin dilaurate (DBTDL) as catalyst. Dynamic mechanical analysis (DMA) provided detailed insight into the vitrimeric behavior. Through these investigations, we evaluated the viscoelastic, thermomechanical, and vitrimeric properties. Additionally, broadband dielectric spectroscopy (BDS) revealed the various relaxation processes inherent in such vitrimer-like materials. We methodically examined the evolution of each relaxation in every prepared sample to comprehend the operational mechanisms in these vitrimer-like systems. Our findings underscore that depending on the PTU formulation, the glass transition temperature (Tg) and the topology freezing transition temperature (Tv) can be effectively distinguished and studied. Considering the high dipole moment of the dynamic bonds present in these systems, there is potential for utilizing them as dielectric materials working under the concept of dipolar glass polymers. Furthermore, the reversibility exhibited by their inner chemical structures positions them as promising candidates for active layers in capacitor devices, particularly for energy-related applications, with the ability to be recyclable while maintaining almost invariant both their mechanical and dielectric properties, thus promoting the extension of the lifespan of electronic devices.
Collapse
Affiliation(s)
- Federico Guerrero-Ruiz
- Centro
de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics
Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Itziar Otaegi
- POLYMAT
and Department of Advanced Polymers and Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics
Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sebastian Bonardd
- Centro
de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics
Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Jon Maiz
- Centro
de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics
Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
33
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
34
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
35
|
Kito T, Hayashi M. Trapping bond exchange phenomenon revealed for off-stoichiometry cross-linking of phase-separated vitrimer-like materials. SOFT MATTER 2024; 20:2961-2968. [PMID: 38469887 DOI: 10.1039/d4sm00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Vitrimer materials combined with nano-phase separated structures have attracted attention, expanding the tuning range of physical properties, such as flow and creep properties. We recently demonstrated a preparation of vitrimer-like materials with phase-separated nanodomains in which dissociative bond exchange via trans-N-alkylation of quaternized pyridine was operated. In this study, we demonstrate a new finding about the bond exchange mechanism: that is, the trapping bond exchange phenomenon. The component polymer is a poly(acrylate) containing pyridine side groups randomly along the chain, which is cross-linked by diiodo molecules via pyridine-iodo quaternization, where the quaternized pyridines are aggregated to form nano-size domains. When the cross-linking reaction is performed at an off-stoichiometric pyridine : iodo ratio (i.e., an excess of pyridine groups), free pyridine groups are located in the matrix phase. Since the bond exchange in the present system progresses in an inter-domain manner, the dissociated unit bearing pendant iodo is trapped by the free pyridine groups in the matrix, which generates other small aggregates. This trapping phenomenon greatly affects the relaxation and creep properties, which are very different from those found in conventional knowledge about vitrimer physics.
Collapse
Affiliation(s)
- Takumi Kito
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan.
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
36
|
Asatryan R, Hudzik J, Swihart M. Intramolecular Catalytic Hydrogen Atom Transfer (CHAT). J Phys Chem A 2024; 128:2169-2190. [PMID: 38451855 DOI: 10.1021/acs.jpca.3c06794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Intramolecular catalysis (IntraCat) is the acceleration of a process at one site of a molecule catalyzed by a functional group in the same molecule; an external agent such as a solvent typically facilitates it. Here, we report a general first-principles-based IntraCat mechanism, which strictly occurs within a single molecule with no coreagent being involved─we call it intramolecular catalytic transfer of hydrogen atoms (CHAT). A reactive part of a molecule (chat catalyst moiety or chat agent, represented by -OOH, -COOH, -SH, -CH2OH, -HPO4, or another bifunctional H-donor/acceptor group) catalyzes an interconversion process, such as keto-enol or amino-imino tautomerization, and cyclization in the same molecule, while being regenerated in the process. It can thus be regarded as an intramolecular version of the intermolecular H atom transfer processes mediated by an external molecular catalyst, e.g., dihydrogen, water, or a carboxylic acid. Earlier, we proposed a general mechanistic systematization of intermolecular processes, illustrated in the simplest case of the H2-mediated reactions classified as dihydrogen catalysis [Asatryan, R.; et al. Catal. Rev.: Sci. Eng., 2014, 56, 403-475]. Following this systematization, the CHAT catalysis belongs to the category of relay transfer of H atoms, albeit in an intramolecular manner. A broader class of intramolecular processes includes all types of H-transfer reactions stimulated by an H-migration, which we call self-catalyzed H atom transfer (SC-HAT). The CHAT mechanism comprises a subset of SC-HAT in which the catalytic moiety is regenerated (i.e., acts as a true catalyst and not a reagent). We provide several characteristic examples of CHAT mechanism based on detailed analysis of the corresponding potential energy surfaces. All such cases showed a dramatically reduced activation barrier relative to the corresponding uncatalyzed H-transfer reactions. For example, we show that CHAT can facilitate long-range H-migration in larger molecules and can occur multiple times in one molecule with multiple interconverting groups. It also facilitates amino-imino tautomerization of unsaturated GABA-analogues and peptides, as well as intramolecular cyclization processes to form heterocycles, e.g., oxygenated rings. CHAT pathways may also explain the pH-dependent increase of mutarotation rate of glucose-6-phosphate demonstrated in pioneering experiments that introduced the classical IntraCat concept. In addition, we identify a ground electronic state CHAT pathway as an alternative to the UV-promoted long-range molecular crane keto-enol conversion with a remarkably low activation energy. To initially assess the possible impact of the new keto-enol conversion pathway on combustion of n-alkanes, we present a detailed kinetic analysis of isomerization and decomposition of pentane-2,4-ketohydroperoxide (2,4-KHP). The results are compared with key alternative reactions, including direct dissociation and Korcek channels (for which a new alkyl group migration channel is also identified), revealing the competitiveness of the CHAT pathway across a range of conditions. Taken together, this work provides insight into a general class of reaction pathways that has not previously being systematically considered and that may occur in a broad range of contexts from combustion to atmospheric chemistry to biochemistry.
Collapse
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jason Hudzik
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mark Swihart
- Department of Chemical and Biological Engineering, and Center for Hybrid Rocket Exascale Simulation Technology (CHREST), University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
Demchuk Z, Zhao X, Shen Z, Zhao S, Sokolov AP, Cao PF. Tuning the Mechanical and Dynamic Properties of Elastic Vitrimers by Tailoring the Substituents of Boronic Ester. ACS MATERIALS AU 2024; 4:185-194. [PMID: 38496049 PMCID: PMC10941276 DOI: 10.1021/acsmaterialsau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 03/19/2024]
Abstract
Elastic vitrimers, i.e., elastic polymers with associative dynamic covalent bonds, can afford elastomers with recyclability while maintaining their thermal and chemical stability. Herein, we report a series of boronic ester-based vitrimers with tunable mechanical properties and recyclability by varying the substitute groups of boronic acid in polymer networks. The dynamic polymer networks are formed by reacting diol-containing tetra-arm poly(amidoamine) with boronic acid-terminated tetra-arm poly(ethylene glycol), which possesses different substituents adjacent to boronic acid moieties. Varying the substituent adjacent to the boronic ester unit will significantly affect the binding strength of the boronic ester, therefore affecting their dynamics and mechanical performance. The electron-withdrawing substituents noticeably suppress the dynamics of boronic ester exchange and increase the activation energy and relaxation time while enhancing the mechanical strength of the resulting elastic vitrimers. On the other hand, the presence of electron-rich substituent affords relatively reduced glass transition temperature (Tg), faster relaxation, and prominent recyclability and malleability at lower temperatures. The developed pathway will guide the rational design of elastomers with well-tunable dynamics and processabilities.
Collapse
Affiliation(s)
- Zoriana Demchuk
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiao Zhao
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zhiqiang Shen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sheng Zhao
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P. Sokolov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Peng-Fei Cao
- State
Key Laboratory of Organic–Inorganic Composites, College of
Materials Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Tan Y, Wang K, Dong Y, Gong S, Lu Y, Shi SQ, Li J. Programmable and Shape-Color Synchronous Dual-Response Wood with Thermal Stimulus. ACS NANO 2024; 18:6718-6730. [PMID: 38277220 DOI: 10.1021/acsnano.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Stimuli-responsive materials exhibit huge potential in sensors, actuators, and electronics; however, their further development for reinforcement, visualization, and biomass-incorporation remains challenging. Herein, based on the impregnation of thermochromic microcapsule (TCM)-doped dynamic covalent vitrimers, a programmable shape-color dual-responsive wood (SRW-TC) was demonstrated with robust anisotropic structures and exchangeable covalent adaptable networks. Under mild conditions, the resultant SRW-TC displays feasible shape memorability and programmability, resulting from the rigidity-flexibility shift induced by the glass-transition temperature (34.99 °C) and transesterification reaction triggered by the topology freezing transition temperature (149.62 °C). Furthermore, the obtained SRW-TC possesses satisfactory mechanical performance (tensile strength of 45.70 MPa), thermal insulation (thermal conductivity of 0.27 W/m K), anisotropic light management, and benign optical properties (transmittance of 51.73% and haze of 99.67% at 800 nm). Importantly, the incorporation of compatible TCM enables SRW-TC to visualize shape memory feasibility and rigidity/flexibility switching and respond to the external thermal stimulus through the thermal-induced shape-color synchronous dual-responsiveness, which successfully demonstrates the applications of sensing temperature, grasping objects, encrypting/decoding icon messages, and so on. The proposed facile and highly effective strategy could serve as a guideline for developing high-performance multifunctional wood composite with promising intelligent applications in performance visualization, environmental sensing, materials interactivity, information dual-encryption, local precision shape and color regulation, etc.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Gong
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
39
|
Pettazzoni L, Ximenis M, Leonelli F, Vozzolo G, Bodo E, Elizalde F, Sardon H. Oxime metathesis: tuneable and versatile chemistry for dynamic networks. Chem Sci 2024; 15:2359-2364. [PMID: 38362428 PMCID: PMC10866338 DOI: 10.1039/d3sc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
Oxime chemistry has emerged as a versatile tool for use in a wide range of applications. In particular, the combination of oximes with esters and urethanes has enabled the realisation of Covalent Adaptable Networks (CANs) with improved and tunable dynamic properties. Nevertheless, an exclusively oxime-based chemistry has not yet been explored in the fabrication of CANs. In this work, we investigate the mechanism of the acid-catalysed dynamic exchange of oximes. We propose a metathesis mechanism that is well supported by both experimental and computational studies, which highlight the importance of the substituent effect on the exchange reaction kinetics. Then, as a proof of concept, we incorporate oxime groups into a cross-linked polymeric material and demonstrate the ability of oxime-based polymers to be reprocessed under acid catalysis while maintaining their structural integrity.
Collapse
Affiliation(s)
- Luca Pettazzoni
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Marta Ximenis
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Francesca Leonelli
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Giulia Vozzolo
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Enrico Bodo
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Fermin Elizalde
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Haritz Sardon
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country. UPV/EHU Donostia-San Sebastián 20018 Spain
| |
Collapse
|
40
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
41
|
Korotkov R, Shutov V, Orlov A, Bornosuz N, Kulemza D, Onuchin D, Shcherbina A, Gorbunova I, Sirotin I. The Kinetic Study of the Influence of Common Modifiers on the Curing Process of Epoxy Vitrimers. Polymers (Basel) 2024; 16:392. [PMID: 38337281 DOI: 10.3390/polym16030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
An analysis of the influence of common modifiers on the kinetics of the curing process of epoxy-anhydride vitrimers was carried out. As common modifiers to enhance the "vitrimeric" nature of the material, zinc acetylacetonate as a transesterification catalyst and glycerol as a modifier of hydroxyl group content were chosen. The curing process of all obtained compositions was studied by differential scanning calorimetry (DSC) followed by the application of the isoconversional approach. It was shown that additives significantly affect the curing process. The resulting cured polymers were shown to be chemically recyclable by dissolution in the mixture of ethylene glycol and N-methylpirrolidone in a volume ratio of nine to one. The introduction of both zinc acethylacetonate and glycerol to the neat formulation led to a decrease in the dissolution time by 85.7% (from 35 h for the neat epoxy-anhydride formulation to 5 h for the modified formulation). In order to show the opportunity of the secondary use of recyclates, the mixtures based on the basic composition containing 10 wt. % of secondary polymers were also studied. The introduction of a recycled material to neat composition led to the same curing behavior as glycerol-containing systems.
Collapse
Affiliation(s)
- Roman Korotkov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
- Polymer Competence Center Leoben GmbH, 8700 Leoben, Austria
| | - Vyacheslav Shutov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Alexey Orlov
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Natalia Bornosuz
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Daria Kulemza
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Denis Onuchin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Anna Shcherbina
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Irina Gorbunova
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Igor Sirotin
- Faculty of Petrochemistry and Polymer Materials, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia
| |
Collapse
|
42
|
Sarrafan S, Li G. On Lightweight Shape Memory Vitrimer Composites. ACS APPLIED POLYMER MATERIALS 2024; 6:154-169. [PMID: 38230367 PMCID: PMC10788861 DOI: 10.1021/acsapm.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Lightweight materials are highly desired in many engineering applications. A popular approach to obtain lightweight polymers is to prepare polymeric syntactic foams by dispersing hollow particles, such as hollow glass microbubbles (HGMs), in a polymer matrix. Integrating shape memory vitrimers (SMVs) in fabricating these syntactic foams enhances their appeal due to the multifunctionality of SMVs. The SMV-based syntactic foams have many potential applications, including actuators, insulators, and sandwich cores. However, there is a knowledge gap in understanding the effect of the HGM volume fraction on different material properties and behaviors. In this study, we prepared an SMV-based syntactic foam to investigate the influence of the HGM volume fractions on a broad set of properties. Four sample groups, containing 40, 50, 60, and 70% HGMs by volume, were tested and compared to a control pure SMV group. A series of analyses and various chemical, physical, mechanical, thermal, rheological, and functional experiments were conducted to explore the feasibility of ultralight foams. Notably, the effect of HGM volume fractions on the rheological properties was methodically evaluated. The self-healing capability of the syntactic foam was also assessed for healing at low and high temperatures. This study proves the viability of manufacturing multifunctional ultralightweight SMV-based syntactic foams, which are instrumental for designing ultralightweight engineering structures and devices.
Collapse
Affiliation(s)
- Siavash Sarrafan
- Department of Mechanical & Industrial
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guoqiang Li
- Department of Mechanical & Industrial
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
43
|
Liu Z, Fang Z, Zheng N, Yang K, Sun Z, Li S, Li W, Wu J, Xie T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat Chem 2023; 15:1773-1779. [PMID: 37640848 DOI: 10.1038/s41557-023-01308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Polyurethane thermosets are indispensable to modern life, but their widespread use has become an increasingly pressing environmental burden. Current recycling approaches are economically unattractive and/or lead to recycled products of inferior properties, making their large-scale implementation unviable. Here we report a highly efficient chemical strategy for upcycling thermoset polyurethane foams that yields products of much higher economic values than the original material. Starting from a commodity foam, we show that the polyurethane network is chemically fragmented into a dissolvable mixture under mild conditions. We demonstrate that three-dimensional photo-printable resins with tunable material mechanical properties-which are superior to commercial high-performance counterparts-can be formulated with the addition of various network reforming additives. Our direct upcycling of commodity foams is economically attractive and can be implemented with ease, and the principle can be expanded to other commodity thermosets.
Collapse
Affiliation(s)
- Zenghe Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zizheng Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kexuan Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Sujing Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wei Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jingjun Wu
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Arbe A, Alegría A, Colmenero J, Bhaumik S, Ntetsikas K, Hadjichristidis N. Microscopic Evidence for the Topological Transition in Model Vitrimers. ACS Macro Lett 2023; 12:1595-1601. [PMID: 37947419 PMCID: PMC10666534 DOI: 10.1021/acsmacrolett.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
In addition to the glass transition, vitrimers undergo a topological transition from viscoelastic liquid to viscoelastic solid behavior when the network rearrangements facilitated by dynamic bond exchange reactions freeze. The microscopic observation of this transition is elusive. Model polyisoprene vitrimers based on imine dynamic covalent bonds were synthesized by reaction of α,ω-dialdehyde-functionalized polyisoprenes and a tris(2-aminoethyl)amine. In these dynamic networks nanophase separation of polymer and reactive groups leads to the emergence of a relevant length scale characteristic for the network structure. We exploited the scattering sensitivity to structural features at different length scales to determine how dynamical and topological arrests affect correlations at segmental and network levels. Chains expand obeying the same expansion coefficient throughout the entire viscoelastic region, i.e., both in the elastomeric regime and in the liquid regime. The onset of liquid-like behavior is only apparent at the mesoscale, where the scattering reveals the reorganization of the network triggered by bond exchange events. The such determined "microscopic" topological transition temperature is compared with the outcome of "conventional" methods, namely viscosimetry and differential scanning calorimetry. We show that using proper thermal (aging-like) protocols, this transition is also nicely revealed by the latter.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Angel Alegría
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología (UPV/EHU), Apartado 1072, 20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología (UPV/EHU), Apartado 1072, 20018 San Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Saibal Bhaumik
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Konstantinos Ntetsikas
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, Physical Science and Engineering
Division, KAUST Catalysis Center, King Abdullah
University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
45
|
Luo J, Zhao X, Ju H, Chen X, Zhao S, Demchuk Z, Li B, Bocharova V, Carrillo JMY, Keum JK, Xu S, Sokolov AP, Chen J, Cao PF. Highly Recyclable and Tough Elastic Vitrimers from a Defined Polydimethylsiloxane Network. Angew Chem Int Ed Engl 2023; 62:e202310989. [PMID: 37783669 DOI: 10.1002/anie.202310989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.
Collapse
Affiliation(s)
- Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Hao Ju
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN-37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | | | - Jong K Keum
- Center for Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
Yan C, Feng X, Konlan J, Mensah P, Li G. Overcoming the barrier: designing novel thermally robust shape memory vitrimers by establishing a new machine learning framework. Phys Chem Chem Phys 2023; 25:30049-30065. [PMID: 37906214 DOI: 10.1039/d3cp03631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Shape memory vitrimers (SMVs) are an emerging class of advanced materials that have garnered significant interest from researchers in the past five to six years. These materials can return to their original shape when exposed to a stimulus, while also healing damage they have sustained. However, achieving both high healing/recycling efficiency and a high glass transition temperature (Tg) in SMVs has been challenging, due to the conflicting requirements between molecular chain mobility and the formation and reaction of dynamic covalent bond exchange. Based on the understanding of chemo-physical properties, this study first leverages machine learning (ML), involving supervised and unsupervised learning approaches, to navigate this complex design space of SMVs. Furthermore, we elaborated the basic mathematical frameworks of ML approaches and comprehensively compared their performances. Based on the best performing model, we designed four types of thermally robust shape memory vitrimers (TRSMVs), which boast high recycling efficiency, elevated Tg, and exemplary shape memory effects, overcoming conventional barriers. One of the discovered samples exhibited outstanding performance with a Tg of 233.5 °C, a recycling efficiency of 84.1%, and a recovery stress of 33 MPa in experiments. It aligns well with ML predictions, showcasing the potential of our ML framework in driving innovative materials design and advancing the field of smart polymers.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Mechanical Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| | - Xiaming Feng
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - John Konlan
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick Mensah
- Department of Mechanical Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| | - Guoqiang Li
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
47
|
Alabiso W, Sölle B, Reisinger D, Guedes de la Cruz G, Schmallegger M, Griesser T, Rossegger E, Schlögl S. On-Demand Activation of Transesterification by Chemical Amplification in Dynamic Thiol-Ene Photopolymers. Angew Chem Int Ed Engl 2023; 62:e202311341. [PMID: 37677110 DOI: 10.1002/anie.202311341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Chemical amplification is a well-established concept in photoresist technology, wherein one photochemical event leads to a cascade of follow-up reactions that facilitate a controlled change in the solubility of a polymer. Herein, we transfer this concept to dynamic polymer networks to liberate both catalyst and functional groups required for bond exchange reactions under UV irradiation. For this, we exploit a photochemically generated acid to catalyse a deprotection reaction of an acid-labile tert-butoxycarbonyl group, which is employed to mask the hydroxy groups of a vinyl monomer. At the same time, the released acid serves as a catalyst for thermo-activated transesterifications between the deprotected hydroxy and ester moieties. Introduced in an orthogonally cured (450 nm) thiol-click photopolymer, this approach allows for a spatio-temporally controlled activation of bond exchange reactions, which is crucial in light of the creep resistance versus reflow ability trade-off of dynamic polymer networks.
Collapse
Affiliation(s)
- Walter Alabiso
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700, Leoben, Austria
| | - Bernhard Sölle
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700, Leoben, Austria
| | - David Reisinger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700, Leoben, Austria
| | - Gema Guedes de la Cruz
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, A-8700, Leoben, Austria
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry, Stremayrgasse 9/I (A), A-8010, Graz, Austria
| | - Thomas Griesser
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, A-8700, Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700, Leoben, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, A-8700, Leoben, Austria
| |
Collapse
|
48
|
Kassem H, Imbernon L, Stricker L, Jonckheere L, Du Prez FE. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917002 DOI: 10.1021/acsami.3c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Like any other thermosetting material, polyurethane foams (PUFs) contain permanent cross-links that hinder their reprocessability and make their recyclability a tedious and environmentally unfriendly process. Herein, we introduce acetoacetyl-formed amides, formed by the reaction of isocyanates with acetoacetate groups, as dynamic units in the backbone of PUFs. By extensive variation of the foam composition, optimum parameters have been found to produce malleable foams above temperatures of 130 °C, without the requirement of any solvent during the foaming process. The PU cross-linked material can be compression-molded at least three times, giving rise to PU elastomers and thus maintaining a cross-linked network structure. Characterization of the original foams shows comparable properties to standard PUFs, for example, having a density of 32 kg/m3, while they show similar chemical and thermal properties upon reprocessing to strong PU elastomers, exhibiting Tg ranging from -42 to -48 °C. This research provides a straightforward method to produce thermally reprocessable PUFs as a promising pathway to address the recycling issues of end-of-life foams.
Collapse
Affiliation(s)
- Hiba Kassem
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucie Imbernon
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucas Stricker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Laura Jonckheere
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
49
|
van Dam A, van Schendel R, Gangarapu S, Zuilhof H, Smulders MMJ. DFT Study of Imine-Exchange Reactions in Iron(II)-Coordinated Pincers. Chemistry 2023; 29:e202301795. [PMID: 37560922 DOI: 10.1002/chem.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
The imine bond is among the most applied motifs in dynamic covalent chemistry. Although its uses are varied and often involve coordination to a transition metal for stability, mechanistic studies on imine exchange reactions so far have not included metal coordination. Herein, we investigated the condensation and transimination reactions of an Fe2+ -coordinated diimine pyridine pincer, employing wB97XD/6-311G(2d,2p) DFT calculations in acetonitrile. We first experimentally confirmed that Fe2+ is strongly coordinated by these pincers, and is thus a justified model ion. When considering a four-membered ring-shaped transition state for proton transfers, the required activation energies for condensation and transimination reaction exceeded the values expected for reactions known to be spontaneous at room temperature. The nature of the incoming and exiting amines and the substituents on the para-position of the pincer had no effect on this. Replacing Fe2+ with Zn2+ or removing it altogether did not reduce it either. However, the addition of two ethylamine molecules lowered the energy barriers to be compatible with experiment (19.4 and 23.2 kcal/mol for condensation and transimination, respectively). Lastly, the energy barrier of condensation of a non-coordinated pincer was significantly higher than found for Fe2+ -coordinating pincers, underlining the catalyzing effect of metal coordination on imine exchange reactions.
Collapse
Affiliation(s)
- Annemieke van Dam
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Robin van Schendel
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Satesh Gangarapu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, P.R. China
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
50
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|