1
|
Ryu JH, Mangal U, Kwon JS, Seo JY, Byun SY, Lee YH, Jang S, Hwang G, Ku H, Shin Y, Kim D, Choi SH. Integrating Phosphate Enhances Biomineralization Effect of Methacrylate Cement in Vital Pulp Treatment with Improved Human Dental Pulp Stem Cells Stimulation. Adv Healthc Mater 2024:e2402397. [PMID: 39367544 DOI: 10.1002/adhm.202402397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Indexed: 10/06/2024]
Abstract
Vital pulp treatment (VPT) is crucial for preserving the health and function of the tooth in cases where the pulp tissue remains vital despite exposure. Various materials are introduced for this purpose. However, challenges such as low strength, high solubility, and tooth discoloration persist. Methylmethacrylate-based cement (MC) offers excellent sealing ability, feasibility, and mechanical properties, making it a promising alternative for VPT. Phosphate-based glass (PBG) has the potential to promote hard tissue regeneration by releasing key inducers, phosphorus (P) and calcium (Ca), for reparative odontogenesis. This study investigates PBG-integrated MC (PIMC) by characterizing its properties, assessing human dental pulp stem cell activity related to initial inflammatory adaptation and odontogenic differentiation, and evaluating hard tissue formation using an in vivo dog pulpotomy model. Results indicate that a 5% PBG-integrated MC (5PIMC) maintains the physicochemical properties of MC. Furthermore, 5PIMC demonstrates cytocompatibility, excellent expression of osteo/odontogenic markers, and resistance to inflammatory markers, significantly outperforming MC. Enhanced hard tissue formation is observed in the dental pulp of mongrel dog teeth treated with 5PIMC. These findings suggest that 5PIMC could be an optimal and suitable material for reparative odontogenesis through VPT.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Seong-Yun Byun
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyemin Ku
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yooseok Shin
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Wan Z, Gao Y, Wang Y, Zhang X, Gao X, Zhou T, Zhang Z, Li Z, Lin Y, Wang B, Chen K, Wang Y, Duan C, Yuan Z. High-purity butoxydibutylborane catalysts enable the low-exothermic polymerization of PMMA bone cement with enhanced biocompatibility and osseointegration. J Mater Chem B 2024; 12:8911-8918. [PMID: 39145600 DOI: 10.1039/d4tb00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.
Collapse
Affiliation(s)
- Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
| | - Yingbo Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xianghao Zhang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Xiyin Gao
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tuanfeng Zhou
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zhishan Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Zijian Li
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Yunfei Lin
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Bing Wang
- Department of Orthopaedic Surgery, Peking University First Hospital, Beijing 100034, P. R. China
| | - Kun Chen
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Wang
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Chenggang Duan
- Department of Oral and Maxillofacial Surgery, The First Clinical Division, The Third Clinical Division, and The Fifth Clinical Division, Peking University School of Stomatology, 100020 Beijing, P. R. China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, P. R. China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
3
|
Zhang C, Cai X, Li M, Peng J, Mei J, Wang F, Zhang R, Zhou Y, Fang S, Xia D, Zhao J. Preclinical Evaluation of Bioactive Small Intestinal Submucosa-PMMA Bone Cement for Vertebral Augmentation. ACS Biomater Sci Eng 2024; 10:2398-2413. [PMID: 38477550 PMCID: PMC11005825 DOI: 10.1021/acsbiomaterials.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.
Collapse
Affiliation(s)
- Chi Zhang
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiongxiong Cai
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Mei Li
- Key
Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang
Province, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Jing Peng
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jin Mei
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Fangfang Wang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Rui Zhang
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Yingjie Zhou
- Institute
of Biomaterials, The First Affiliated Hospital
of Ningbo University, Ningbo 315010, China
| | - Shuyu Fang
- Department
of Clinical Laboratory, The First Affiliated
Hospital of Ningbo University, Ningbo 315010, China
| | - Dongdong Xia
- Department
of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, China
| | - Jiyuan Zhao
- Zhejiang
Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Gamal S, Mikhail M, Salem N, El-Wakad MT, Abdelbaset R. Effect of using nano-particles of magnesium oxide and titanium dioxide to enhance physical and mechanical properties of hip joint bone cement. Sci Rep 2024; 14:2838. [PMID: 38310142 PMCID: PMC10838278 DOI: 10.1038/s41598-024-53084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
In this work, the effect of adding Magnesium Oxide (MgO) and Titanium Dioxide (TiO2) nanoparticles to enhance the properties of the bone cement used for hip prosthesis fixation. Related to previous work on enhanced bone cement properties utilizing MgO and TiO2, samples of composite bone cement were made using three different ratios (0.5%:1%, 1.5%:1.5%, and 1%:0.5%) w/w of MgO and TiO2 to determine the optimal enhancement ratio. Hardness, compression, and bending tests were calculated to check the mechanical properties of pure and composite bone cement. The surface structure was studied using Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy (FE-SEM). Setting temperature, porosity, and degradation were calculated for each specimen ratio to check values matched with the standard range of bone cement. The results demonstrate a slight decrease in porosity up to 2.2% and degradation up to 0.17% with NP-containing composites, as well as acceptable variations in FTIR and setting temperature. The compression strength increased by 2.8% and hardness strength increased by 1.89% on adding 0.5%w/w of MgO and 1.5%w/w TiO2 NPs. Bending strength increases by 0.35% on adding 1.5% w/w of MgO and 0.5% w/w TiO2 NPs, however, SEM scan shows remarkable improvement for surface structure.
Collapse
Affiliation(s)
- Safaa Gamal
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
- Mechatronics Engineering Department, Canadian International College, Cairo, Egypt.
| | - Mina Mikhail
- Mechatronics Engineering Department, Canadian International College, Cairo, Egypt
| | - Nancy Salem
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Mohamed Tarek El-Wakad
- Biomedical Engineering Department, Faculty of Engineering and Technology, Future University, Cairo, Egypt
| | - Reda Abdelbaset
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers (Basel) 2024; 16:367. [PMID: 38337256 DOI: 10.3390/polym16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.
Collapse
Affiliation(s)
- Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
6
|
Kumari S, Mishra RK, Parveen S, Avinashi SK, Hussain A, Kumar S, Banerjee M, Rao J, Kumar R, Gautam RK, Gautam C. Fabrication, structural, and enhanced mechanical behavior of MgO substituted PMMA composites for dental applications. Sci Rep 2024; 14:2128. [PMID: 38267527 PMCID: PMC10808548 DOI: 10.1038/s41598-024-52202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The most common denture material used for dentistry is poly-methyl-methacrylate (PMMA). Usually, the polymeric PMMA material has numerous biological, mechanical and cost-effective shortcomings. Hence, to resolve such types of drawbacks, attempts have been made to investigate fillers of the PMMA like alumina (Al2O3), silica (SiO2), zirconia (ZrO2) etc. For the enhancement of the PMMA properties a suitable additive is required for its orthopedic applications. Herein, the main motive of this study was to synthesize a magnesium oxide (MgO) reinforced polymer-based hybrid nano-composites by using heat cure method with superior optical, biological and mechanical characteristics. For the structural and vibrational studies of the composites, XRD and FT-IR were carried out. Herein, the percentage of crystallinity for all the fabricated composites were also calculated and found to be 14.79-30.31. Various physical and optical parameters such as density, band gap, Urbach energy, cutoff energy, cutoff wavelength, steepness parameter, electron-phonon interaction, refractive index, and optical dielectric constant were also studied and their values are found to be in the range of 1.21-1.394 g/cm3, 5.44-5.48 eV, 0.167-0.027 eV, 5.68 eV, 218 nm, 0.156-0.962, 4.273-0.693, 1.937-1.932, and 3.752-3.731 respectively. To evaluate the mechanical properties like compressive strength, flexural strength, and fracture toughness of the composites a Universal Testing Machine (UTM) was used and their values were 60.3 and 101 MPa, 78 and 40.3 MPa, 5.85 and 9.8 MPa-m1/2 respectively. Tribological tests of the composites were also carried out. In order to check the toxicity, MTT assay was also carried out for the PM0 and PM15 [(x)MgO + (100 - x) (C5O2H8)n] (x = 0 and 15) composites. This study provides a comprehensive insight into the structural, physical, optical, and biological features of the fabricated PMMA-MgO composites, highlighting the potential of the PM15 composite with its enhanced density, mechanical strength, and excellent biocompatibility for denture applications.
Collapse
Affiliation(s)
- Savita Kumari
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Rajat Kumar Mishra
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Shama Parveen
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | | | - Ajaz Hussain
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Saurabh Kumar
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Monisha Banerjee
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Jitendra Rao
- Department of Prosthodontics, King George Medical University, Shah Mina Road, Chowk, Lucknow, Uttar Pradesh, 226003, India
| | - Rupesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh Kumar Gautam
- Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Chandkiram Gautam
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
7
|
Zhang L, Zhang H, Zhou H, Tan Y, Zhang Z, Yang W, Zhao L, Zhao Z. A Ti 3C 2 MXene-integrated near-infrared-responsive multifunctional porous scaffold for infected bone defect repair. J Mater Chem B 2023; 12:79-96. [PMID: 37814804 DOI: 10.1039/d3tb01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Infected bone defect repair has long been a major challenge in orthopedic surgery. Apart from bacterial contamination, excessive generation of reactive oxygen species (ROS), and lack of osteogenesis ability also threaten the defect repair process. However, few strategies have been proposed to address these issues simultaneously. Herein, we designed and fabricated a near-infrared (NIR)-responsive, hierarchically porous scaffold to address these limitations in a synergetic manner. In this design, polymethyl methacrylate (PMMA) and polyethyleneimine (PEI) were used to fabricate the porous PMMA/PEI scaffolds via the anti-solvent vapor-induced phase separation (VIPS) process. Then, Ti3C2 MXenes were anchored on the scaffolds through the dopamine-assisted co-deposition process to obtain the PMMA/PEI/polydopamine (PDA)/MXene scaffolds. Under NIR laser irradiation, the scaffolds were able to kill bacteria through the direct contact-killing and synergetic photothermal effect of Ti3C2 MXenes and PDA. Moreover, MXenes and PDA also endowed the scaffolds with excellent ROS-scavenging capacity and satisfying osteogenesis ability. Our experimental results also confirmed that the PMMA/PEI/PDA/MXene scaffolds significantly promoted new bone formation in an infected mandibular defect model. We believe that our study provides new insights into the treatment of infected bone defects.
Collapse
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yi Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Fan X, Du J, Li Y, Duan K, Liu G. Electrophoretic deposition of magnesium oxide coating on micro-arc oxidized titanium for antibacterial activity and biocompatibility. J Orthop Surg Res 2023; 18:901. [PMID: 38012792 PMCID: PMC10680288 DOI: 10.1186/s13018-023-04390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Titanium (Ti) dental implants face risks of early failure due to bacterial adhesion and biofilm formation. It is thus necessary to endow the implant surface with antibacterial ability. In this study, magnesium oxide (MgO) coatings were prepared on Ti by combining micro-arc oxidation (MAO) and electrophoretic deposition (EPD). The MgO nanoparticles homogeneously deposited on the microporous surface of MAO-treated Ti, yielding increasing coverage with the EPD time increased to 15 to 60 s. After co-culture with Porphyromonas gingivalis (P. gingivalis) for 24 h, 48 h, and 72 h, the coatings produced antibacterial rates of 4-53 %, 27-71 %, and 39-79 %, respectively, in a dose-dependent manner. Overall, EPD for 45 s offered satisfactory comprehensive performance, with an antibacterial rate 79 % at 72 h and a relative cell viability 85 % at 5 d. Electron and fluorescence microscopies revealed that, both the density of adherent bacterial adhesion on the surface and the proportion of viable bacteria decreased with the EPD time. The morphology of cells on the surface of each group was intact and there was no significant difference among the groups. These results show that, the MgO coating deposited on MAO-treated Ti by EPD had reasonably good in vitro antibacterial properties and cytocompatibility.
Collapse
Affiliation(s)
- Xinli Fan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiaheng Du
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Luzhou, 646000, Sichuan, China
| | - Yaohua Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Ke Duan
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Luzhou, 646000, Sichuan, China.
| | - Gangli Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Sui P, Yu T, Sun S, Chao B, Qin C, Wang J, Wang E, Zheng C. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol 2023; 11:1303678. [PMID: 37954022 PMCID: PMC10634476 DOI: 10.3389/fbioe.2023.1303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Vertebral compression fractures are becoming increasingly common with aging of the population; minimally invasive materials play an essential role in treating these fractures. However, the unacceptable processing-performance relationships of materials and their poor osteoinductive performance have limited their clinical application. In this review, we describe the advances in materials used for minimally invasive treatment of vertebral compression fractures and enumerate the types of bone cement commonly used in current practice. We also discuss the limitations of the materials themselves, and summarize the approaches for improving the characteristics of bone cement. Finally, we review the types and clinical efficacy of new vertebral implants. This review may provide valuable insights into newer strategies and methods for future research; it may also improve understanding on the application of minimally invasive materials for the treatment of vertebral compression fractures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changjun Zheng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
11
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
12
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Choi YS, Kim YH, An HM, Bae SK, Lee YK. Efficacy of Silver Nanoparticles-Loaded Bone Cement against an MRSA Induced-Osteomyelitis in a Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040811. [PMID: 37109771 PMCID: PMC10146363 DOI: 10.3390/medicina59040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The purpose of this study was to assess the cytotoxicity and antibacterial effects of AgNP-impregnated Tetracalcium phosphate-dicalcium phosphate dihydrate (TTCP-DCPD). Materials and Methods: Using in vitro experiments, the cytotoxicity of AgNP-impregnated TTCP-DCPD against fibroblasts and osteocytes was assessed in terms of cell viability by water-soluble tetrazolium salt assay. To assess antibacterial effects, a disc diffusion test was used; osteomyelitis was induced first in vivo, by injection of methicillin-resistant Staphylococcus aureus into the tibia of rats. AgNP-impregnated TTCP-DCPD bone cement was then applied at various silver concentrations for 3 or 12 weeks. Antibacterial effects were assessed by culturing and reverse transcription-polymerase chain reaction (RT-PCR). For histological observation, the bone tissues were stained using hematoxylin and eosin. Results: Cell viability was decreased by the impregnated bone cement but did not differ according to AgNP concentration. The diameter of the growth-inhibited zone of MRSA was between 4.1 and 13.3 mm on the disks treated with AgNP, indicating antimicrobial effects. In vivo, the numbers of bacterial colonies were reduced in the 12-week treatment groups compared to the 3-week treatment groups. The groups treated with a higher (10×) dose of AgNP (G2-G5) showed a tendency of lower bacterial colony counts compared to the group without AgNP (G1). The PCR analysis results showed a tendency of decreased bacterial gene expression in the AgNP-impregnated TTCP-DCPD groups (G2-G5) compared to the group without AgNP (G1) at 3 and 12 weeks. In the H&E staining, the degree of inflammation and necrosis of the AgNP-impregnated TTCP-DCPD groups (G2-G5) showed a tendency to be lower at 3 and 12 weeks compared to the control group. Our results suggest that AgNP-impregnated TTCP-DCPD cement has antimicrobial effects. Conclusions: This study indicates that AgNP-impregnated TTCP-DCPD bone cement could be considered to treat osteomyelitis.
Collapse
Affiliation(s)
- Young Suk Choi
- Department of Biology, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| | - Young Hwan Kim
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| | - Hye Min An
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
- Department of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
| | - Sung Kyoung Bae
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
- Department of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
| | - Young Koo Lee
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Qiao D, Cheng S, Xing Z, Zhang Q, Song S, Yan F, Zhang Y. Bio-inspired glycosylated nano-hydroxyapatites enhance endogenous bone regeneration by modulating macrophage M2 polarization. Acta Biomater 2023; 162:135-148. [PMID: 36967053 DOI: 10.1016/j.actbio.2023.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023]
Abstract
A macrophage-associated immune response is vital in bone regeneration. Mannose receptor (MR), a macrophage pattern-recognition receptor, is crucial for the maintenance of immune homeostasis. Here, we designed MR-targeted glycosylated nano-hydroxyapatites (GHANPs) to reprogram macrophages into polarized M2s, promoting bone regeneration by improving the osteoimmune microenvironment. The prepared GHANPs induced macrophage M2 polarization, which then promoted osteoblastic differentiation of stem cells. Further, the mechanistic study showed that GHANPs might influence macrophage polarization by modulating cell metabolism, including enhancing mitochondrial oxidative phosphorylation and activating autophagy. Finally, a rat cranial defect model was used to verify the effect of GHANPs on endogenous bone regeneration in vivo, revealing that GHANPs promoted bone regeneration within the defect and increased the ratio of M2/M1 macrophages in early bone repair. Our results indicate that the MR-targeted macrophage M2 polarization strategy is promising in endogenous bone regeneration. STATEMENT OF SIGNIFICANCE: Macrophage is a pivotal immunity component for bone regeneration. A switch to M2 macrophage has been considered to contribute to osteogenesis. For inducing macrophage M2 polarization, an effective strategy to overcome off-target effects and insufficient specificity is a critical challenge. The mannose receptor on the surface of macrophages has been involved in regulating macrophage directional polarization. The glucomannan presented on the nano-hydroxyapatite rods acts as ligands targeting macrophage mannose receptors to promote their M2 polarization, improving the immunomicroenvironment and achieving bone regeneration. This approach has the advantage of easy preparation, specific regulation, and safety.
Collapse
Affiliation(s)
- Dan Qiao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China
| | - Shuyu Cheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210093, People's Republic of China
| | - Qian Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China
| | - Shiyuan Song
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, People's Republic of China.
| |
Collapse
|
15
|
Orthopedical Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
16
|
Zhang Y, Li C, Zhang W, Deng J, Nie Y, Du X, Qin L, Lai Y. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact Mater 2022; 16:218-231. [PMID: 35415289 PMCID: PMC8965852 DOI: 10.1016/j.bioactmat.2021.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023] Open
Abstract
Patients with bone defects suffer from a high rate of disability and deformity. Poor contact of grafts with defective bones and insufficient osteogenic activities lead to increased loose risks and unsatisfied repair efficacy. Although self-expanding scaffolds were developed to enhance bone integration, the limitations on the high transition temperature and the unsatisfied bioactivity hindered greatly their clinical application. Herein, we report a near-infrared-responsive and tight-contacting scaffold that comprises of shape memory polyurethane (SMPU) as the thermal-responsive matrix and magnesium (Mg) as the photothermal and bioactive component, which fabricated by the low temperature rapid prototyping (LT-RP) 3D printing technology. As designed, due to synergistic effects of the components and the fabrication approach, the composite scaffold possesses a homogeneously porous structure, significantly improved mechanical properties and stable photothermal effects. The programmed scaffold can be heated to recover under near infrared irradiation in 60s. With 4 wt% Mg, the scaffold has the balanced shape fixity ratio of 93.6% and shape recovery ratio of 95.4%. The compressed composite scaffold could lift a 100 g weight under NIR light, which was more than 1700 times of its own weight. The results of the push-out tests and the finite element analysis (FEA) confirmed the tight-contacting ability of the SMPU/4 wt%Mg scaffold, which had a signficant enhancement compared to the scaffold without shape memory effects. Furthermore, The osteopromotive function of the scaffold has been demonstrated through a series of in vitro and in vivo studies. We envision this scaffold can be a clinically effective strategy for robust bone regeneration.
Collapse
Affiliation(s)
- Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junjie Deng
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangfu Du
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| |
Collapse
|
17
|
Cao H, Li L, Li L, Meng X, Liu Y, Cheng W, Zhang P, Gao Y, Qin L, Wang X. New use for old drug: Local delivery of puerarin facilitates critical-size defect repair in rats by promoting angiogenesis and osteogenesis. J Orthop Translat 2022; 36:52-63. [PMID: 35979175 PMCID: PMC9352809 DOI: 10.1016/j.jot.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022] Open
Abstract
Objectives Methods Results Conclusion The Translational Potential of this Article
Collapse
|
18
|
Yuan Z, Wan Z, Gao C, Wang Y, Huang J, Cai Q. Controlled magnesium ion delivery system for in situ bone tissue engineering. J Control Release 2022; 350:360-376. [PMID: 36002052 DOI: 10.1016/j.jconrel.2022.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Magnesium cation (Mg2+) has been an emerging therapeutic agent for inducing vascularized bone regeneration. However, the therapeutic effects of current magnesium (Mg) -containing biomaterials are controversial due to the concentration- and stage-dependent behavior of Mg2+. Here, we first provide an overview of biochemical mechanism of Mg2+ in various concentrations and suggest that 2-10 mM Mg2+in vitro may be optimized. This review systematically summarizes and discusses several types of controlled Mg2+ delivery systems based on polymer-Mg composite scaffolds and Mg-containing hydrogels, as well as their design philosophy and several parameters that regulate Mg2+ release. Given that the continuous supply of Mg2+ may prevent biomineral deposition in the later stage of bone regeneration and maturation, we highlight the controlled delivery of Mg2+ based dual- or multi-ions system, especially for the hierarchical therapeutic ion release system, which shows enhanced biomineralization. Finally, the remaining challenges and perspectives of Mg-containing biomaterials for future in situ bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
- Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China..
| |
Collapse
|
19
|
Bao J, Sun X, Chen Z, Yang J, Wang C. Study on the angiogenesis ability of Polymethyl methacrylate-mineralized collagen/Mg-Ca composite material in vitro and the bone formation effect in vivo. J Biomater Appl 2022; 37:814-828. [PMID: 35969489 DOI: 10.1177/08853282221121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium (Mg) and its alloys show high degrees of biocompatibility and biodegradability, used as biodegrad able materials in biomedical applications. In this study, Polymethyl methacrylate (PMMA) - mineralized collagen (nano-Hydroxyapatite/collagen; nHAC)/Mg-Ca composite materials were prepared, to study the angiogenesis ability of its composite materials on Human umbilical vein endothelial cells (HUVECs) and its osteogenesis effect in vivo. The results showed that the PMMA-nHAC reinforcement materials can promote the proliferation and adhesion in HUVECs of Mg matrix significantly, it can enhance the migration motility and VEGF expression of HUVECs. In vivo, Micro-CT examination showed that with coated samples presenting the highest bone formation. Histologically, the materials and their corrosion products caused no systematic or local cytotoxicological effects. Therefore, the Mg matrix composites prepared in the present study has good biocompatibility and PMMA-nHAC/Mg-Ca composite may be an ideal orthopedic material to improve the bone formation, and biodegradable magnesium based implants with bioactivity have potential applications in bone tissue.
Collapse
Affiliation(s)
- Jiaxin Bao
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xirao Sun
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhan Chen
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jingxin Yang
- Beijing Key Laboratory of Information Service Engineering, 70541Beijing Union University, Beijing, China.,College of Robotics, 70541Beijing Union University, Beijing, China
| | - Chengyue Wang
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
20
|
Wang Y, Liu C, Liu H, Fu H, Li C, Yang L, Sun H. A Novel Calcium Phosphate-Based Nanocomposite for Augmentation of Cortical Bone Trajectory Screw Fixation. Int J Nanomedicine 2022; 17:3059-3071. [PMID: 35844971 PMCID: PMC9278980 DOI: 10.2147/ijn.s365149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the effect of cement augmentation of cortical bone trajectory (CBT) screws using a novel calcium phosphate–based nanocomposite (CPN). Material and Methods CBT screws were placed into cadaveric lumbar vertebrae. Depending on the material used for augmentation, they were divided into the following three groups: CPN, polymethylmethacrylate (PMMA), and control. Radiological imaging was used to evaluate the cement dispersion. Biomechanical tests were conducted to measure the stability of CBT screws. A rat cranial defect model was used to evaluate biodegradation and osseointegration of the CPN. Results After cement augmentation, the CPN tended to disperse into the distal part of the screws, whereas PMMA remained limited to the proximal part of the screws (P < 0.05). As for cement morphology, the CPN tended to form a concentrated mass, whereas PMMA arranged itself as a scattered cement cloud, but the difference was not significant (P > 0.05). The axial pullout test showed that the average maximal pullout force (Fmax) of CPN-augmented CBT screws was similar to that of the PMMA group (CPN, 1639.56 ± 358.21 N vs PMMA, 1778.45 ± 399.83 N; P = 0.745) and was significantly greater than that of the control group (1019.01 ± 371.98 N; P < 0.05). The average torque value in the CPN group was higher than that in the control group (CPN, 1.51 ± 0.78 N∙m vs control, 0.97 ± 0.58 N∙m) and lower than that in the PMMA group (1.93 ± 0.81 N∙m), but there were no statistically significant differences (P > 0.05). The CPN could be biodegraded and gradually replaced by newly formed bone tissue after 12 weeks in a rat cranial defect model. Conclusion The biocompatible CPN could be a valuable augmentation material to enhance CBT screw stability.
Collapse
Affiliation(s)
- Yuetian Wang
- Department of Orthopedics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu, People's Republic of China
| | - Huiling Liu
- Institute of Orthopedics, Department of Orthopedics, Soochow University, Suzhou, People's Republic of China
| | - Haoyong Fu
- Department of Orthopedics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chunde Li
- Department of Orthopedics, Peking University First Hospital, Beijing, People's Republic of China
| | - Lei Yang
- Institute of Orthopedics, Department of Orthopedics, Soochow University, Suzhou, People's Republic of China.,Center for Health Sciences and Engineering (CHSE), School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, People's Republic of China
| | - Haolin Sun
- Department of Orthopedics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
21
|
Wang P, Jiang Q. Orthopedical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_15-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Luo R, Huang Y, Yuan X, Yuan Z, Zhang L, Han J, Zhao Y, Cai Q. Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomed Mater 2021; 16. [PMID: 34544058 DOI: 10.1088/1748-605x/ac2886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
For craniofacial bone regeneration, how to promote vascularized bone regeneration is still a significant problem, and the controlled release of trace elements vital to osteogenesis has attracted attention. In this study, an ion co-delivery system was developed to promote angiogenesis and osteogenesis. Magnesium ions (Mg2+) and lanthanum ions (La3+) were selected as biosignal molecules because Mg2+can promote angiogenesis and both of them can enhance bone formation. Microspheres made of poly(lactide-co-glycolide) were applied to load La2(CO3)3, which was embedded into a MgO/MgCO3-loaded cryogel made of photocrosslinkable gelatin methacryloyl to enable co-delivery of Mg2+and La3+. Evaluations of angiogenesis and osteogenesis were conducted via bothin vitrocell culture using human bone marrow mesenchymal stromal cells andin vivoimplantation using a rat model with calvarial defect (5 mm in diameter). Compared to systems releasing only Mg2+or La3+, the combination system demonstrated more significant effects on blood vessels formation, thereby promoting the regeneration of vascularized bone tissue. At 8 weeks post-implantation, the new bone volume/total bone volume ratio reached a value of 40.1 ± 0.9%. In summary, a properly designed scaffold system with the capacity to release ions of different bioactivities in a desired pattern can be a promising strategy to meet vascularized bone regeneration requirements.
Collapse
Affiliation(s)
- Ruochen Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, People's Republic of China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Janming Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
23
|
Li D, Yang Z, Zhao X, Luo Y, Ou Y, Kang P, Tian M. A bone regeneration strategy via dual delivery of demineralized bone matrix powder and hypoxia-pretreated bone marrow stromal cells using an injectable self-healing hydrogel. J Mater Chem B 2021; 9:479-493. [PMID: 33289774 DOI: 10.1039/d0tb01924k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Demineralized bone matrix (DBM) powder is a potential alternative bone grafting material due to its bone regeneration capacity when the supply of autogenous bone is insufficient. However, the use of DBM powder alone remains challenging in many aspects in the clinic, such as its unstable osteoinductivity due to inactivation of growth factors during the preparation process, lack of bone regeneration cells, and difficulty in handling. Herein, we report a strategy that adopts a dual delivery of DBM powder and hypoxia-pretreated bone marrow stromal cells (BMSCs) using an injectable self-healing hydrogel to enhance bone regeneration and repair a cranial bone defect in a rabbit model. The injectable self-healing hydrogel was prepared based on a double crosslinking architecture, which comprised a dynamically cross-linked Schiff-base network as a self-healing component and a borax ion cross-linked physical network that strengthened its mechanical properties. The handling of the DBM powder was improved by mixing with the hydrogel, and, more importantly, the expression of osteocalcin (OCN) and vascular endothelial growth factor (VEGF) of the encapsulated BMSCs in the hydrogel was significantly up-regulated after hypoxia-pretreatment. The in vivo study demonstrated that the use of the hydrogel alone cannot heal the cranial bone defect, while the hydrogel/BMSC composite could increase the bone formation but was inferior to the hydrogel/DBM composite. Finally, the hydrogel/DBM/BMSC composite exhibited the best bone defect repairing effects among all groups. Overall, our results demonstrate that this dual delivery approach is a promising strategy to enhance bone regeneration for bone defect repair.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Zhouyuan Yang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Xin Zhao
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Yue Luo
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Yi Ou
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Pengde Kang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
24
|
Peng W, Ren S, Zhang Y, Fan R, Zhou Y, Li L, Xu X, Xu Y. MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:668428. [PMID: 33842452 PMCID: PMC8026878 DOI: 10.3389/fbioe.2021.668428] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Electrospinning technique has attracted considerable attention in fabrication of cellulose nanofibrils or nanocellulose membranes, in which polycaprolactone (PCL) could be used as a promising precursor to prepare various cellulose nanofibril membranes for periodontal tissue regeneration. Conventional bio-membranes and cellulose films used in guided tissue regeneration (GTR) can prevent the downgrowth of epithelial cells, fibroblasts, and connective tissue in the area of tooth root but have limitations related to osteogenic and antimicrobial properties. Cellulose nanofibrils can be used as an ideal drug delivery material to encapsulate and carry some drugs. In this study, magnesium oxide (MgO) nanoparticles-incorporated PCL/gelatin core-shell nanocellulose periodontal membranes were fabricated using coaxial electrospinning technique, which was termed as Coaxial-MgO. The membranes using single-nozzle electrospinning technique, namely Blending-MgO and Blending-Blank, were used as control. The morphology and physicochemical property of these nanocellulose membranes were characterized by scanning electron microscopy (SEM), energy-dispersive spectrum of X-ray (EDS), transmission electron microscopy (TEM), contact angle, and thermogravimetric analysis (TGA). The results showed that the incorporation of MgO nanoparticles barely affected the morphology and mechanical property of nanocellulose membranes. Coaxial-MgO with core-shell fiber structure had better hydrophilic property and sustainable release of magnesium ion (Mg2+). CCK-8 cell proliferation and EdU staining demonstrated that Coaxial-MgO membranes showed better human periodontal ligament stem cells (hPDLSCs) proliferation rates compared with the other group due to its gelatin shell with great biocompatibility and hydrophilicity. SEM and immunofluorescence assay results illustrated that the Coaxial-MgO scaffold significantly enhanced hPDLSCs adhesion. In vitro osteogenic and antibacterial properties showed that Coaxial-MgO membrane enhanced alkaline phosphatase (ALP) activity, formation of mineralized nodules, osteogenic-related genes [ALP, collagen type 1 (COL1), runt-related transcription factor 2 (Runx2)], and high antibacterial properties toward Escherichia coli (E. coli) and Actinobacillus actinomycetemcomitans (A. a) when compared with controls. Our findings suggested that MgO nanoparticles-incorporated coaxial electrospinning PCL-derived nanocellulose periodontal membranes might have great prospects for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruyi Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|