1
|
Stafin K, Śliwa P, Pia Tkowski M, Matýsek D. Chitosan as a Templating Agent of Calcium Phosphate Crystalline Phases in Biomimetic Mineralization: Theoretical and Experimental Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63155-63169. [PMID: 39526983 DOI: 10.1021/acsami.4c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Highlighting the essential role of chitosan (CS), known for its biocompatibility, biodegradability, and ability to promote cell adhesion and proliferation, this study explores its utility in modulating the biomimetic mineralization of calcium phosphate (CaP). This approach holds promise for developing biomaterials suitable for bone regeneration. However, the interactions between the CS surface and in situ precipitated CaP still require further exploration. In the theoretical section, molecular dynamics (MD) simulations demonstrate that, at an appropriate pH level during the prenucleation stage, calcium ions (Ca2+) and hydrogen phosphate ions (HPO42-) form Posner-like clusters. Additionally, the interaction between these clusters and the CS molecule enhances system stability. Together, these phenomena facilitate the transition to subsequent heterogeneous nucleation on the surface of the organic matrix, which is a more controlled process than homogeneous nucleation in solution. Dynamic simulation results suggest that CS acts as a stabilizing matrix at pH 8.0 during biomimetic mineralization. In the experimental section, the effects of pH and the molecular weight of CS were investigated, with a focus on their impact on the crystal structure of the resulting material. X-ray diffraction and scanning electron microscopy analyses reveal that, under conditions of approximately pH 8.0 and a CS molecular weight of 20 000 g/mol, and controlled ion concentration, ultrasound radiation, and temperature, the dominant CaP phases in the material are carbonate-doped hydroxyapatite (CHA) and octacalcium phosphate (OCP). These findings suggest that CS, when adjusted for molecular weight and pH, facilitates the formation of CaP crystal phases that closely resemble the natural inorganic composition of bone, highlighting its protective and regulatory roles in the growth and maturation of crystals during mineralization. The theoretical predictions and experimental outcomes confirm the crucial role of CS as a templating agent, enabling the development of a biomimetic mineralization pathway. CS's ability to guide this process may prove valuable in the design of materials for bone tissue engineering, particularly in developing effective materials for bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Marek Pia Tkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Dalibor Matýsek
- Faculty of Mining and Geology, Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
2
|
Hu Z, Zhang Y, Zhang J, Zheng R, Yang Y, Kong F, Li H, Yang X, Yang S, Kong X, Zhao R. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Regen Biomater 2024; 11:rbae125. [PMID: 39569077 PMCID: PMC11578599 DOI: 10.1093/rb/rbae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Biomineralization-based cell-material living composites ex vivo showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both in vitro and in vivo results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining in situ, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based ex vivo tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.
Collapse
Affiliation(s)
- Zhaofan Hu
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jingjing Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ran Zheng
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yang Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fei Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haoran Li
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xinyan Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 311399, PR China
| | - Shuhui Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou, Zhejiang 312451, PR China
| |
Collapse
|
3
|
Enax J, Fandrich P, Schulze zur Wiesche E, Epple M. The Remineralization of Enamel from Saliva: A Chemical Perspective. Dent J (Basel) 2024; 12:339. [PMID: 39590389 PMCID: PMC11592461 DOI: 10.3390/dj12110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The natural remineralization of enamel is of major importance for oral health. In principle, early erosions (demineralization) induced by acidic beverages and foods as well as initial caries lesions can be covered and remineralized by the deposition of calcium phosphate, i.e., tooth mineral. This remineralization effect is characterized by the presence of calcium and phosphate ions in saliva that form hydroxyapatite on the enamel surface. Although it is apparently a simple crystallization, it turns out that remineralization under in vivo conditions is actually a very complex process. Calcium phosphate can form a number of solid phases of which hydroxyapatite is only one. Precipitation involves the formation of metastable phases like amorphous calcium phosphate that convert into biological apatite in a number of steps. Nanoscopic clusters of calcium phosphate that can attach on the enamel surface are also present in saliva. Thus, remineralization under strictly controlled in vitro conditions (e.g., pH, ion concentrations, no additives) is already complex, but it becomes even more complicated under the actual conditions in the oral cavity. Here, biomolecules are present in saliva, which interact with the forming calcium phosphate mineral. For instance, there are salivary proteins which have the function of inhibiting crystallization to avoid overshooting remineralization. Finally, the presence of bacteria and an extracellular matrix in plaque and the presence of proteins in the pellicle have strong influences on the precipitation on the enamel surface. The current knowledge on the remineralization of the enamel is reviewed from a chemical perspective with a special focus on the underlying crystallization phenomena and the effects of biological compounds that are present in saliva, pellicle, and plaque. Basically, the remineralization of enamel follows the same principles as calculus formation. Notably, both processes are far too complex to be understood on a microscopic basis under in vivo conditions, given the complicated process of mineral formation in the presence of a plethora of foreign ions and biomolecules.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Pascal Fandrich
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Erik Schulze zur Wiesche
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5–7, 45117 Essen, Germany
| |
Collapse
|
4
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
5
|
G G, Fernandez FB, Varma P R H, Komath M. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Biomed Mater 2024; 19:065009. [PMID: 39255821 DOI: 10.1088/1748-605x/ad792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The microstructure of a porous bioceramic bone graft, especially the pore architecture, plays a crucial role in the performance of the graft. Conventional bioceramic grafts typically feature a random, closed-pore structure, limiting biological activity to the periphery of the graft. This can lead to delay in full integration with the host site. Bioceramic forms with open through pores can perform better because their inner regions are accessible for natural bone remodeling. This study explores the influence of open through pores in a bioceramic graft on the migration and retention of the local cellsin vitro, which will correlate to the rate of healingin vivo.Hydroxyapatite ceramic forms with aligned channels were fabricated using slip casting technique, employing sacrificial fibers. The sorption characteristics across the graft were evaluated using human osteosarcoma cell line. Seven-day cultures showed viable cells within the channels, confirmed by live/dead assay, scanning electron microscope analysis, and cytoskeletal staining, indicating successful cell colonization. The channel architecture effectively enhances cell migration and retention throughout its entire structure, suggesting potential applications in bone tissue engineering based on the results obtained.
Collapse
Affiliation(s)
- Gayathry G
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Francis B Fernandez
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Harikrishna Varma P R
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| | - Manoj Komath
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram 695012 Kerala, India
| |
Collapse
|
6
|
Dong H, Qiu L, Zhu C, Fan W, Liu L, Deng Q, Zhang H, Yang W, Cai K. Preparation of calcium phosphate ion clusters through atomization method for biomimetic mineralization of enamel. J Biomed Mater Res A 2024; 112:1412-1423. [PMID: 38461494 DOI: 10.1002/jbm.a.37706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Dental enamel is a mineralized extracellular matrix, and enamel defect is a common oral disease. However, the self-repair capacity of enamel is limited due to the absence of cellular components and organic matter. Efficacy of biomimetic enamel mineralization using calcium phosphate ion clusters (CPICs), is an effective method to compensate for the limited self-healing ability of fully developed enamel. Preparing and stabilizing CPICs presents a significant challenge, as the addition of certain stabilizers can diminish the mechanical properties or biosafety of mineralized enamel. To efficiently and safely repair enamel damage, this study quickly prepared CPICs without stabilizers using the atomization method. The formed CPICs were evenly distributed on the enamel surface, prompting directional growth and transformation of hydroxyapatite (HA) crystals. The study revealed that the mended enamel displayed comparable morphology, chemical composition, hardness, and mechanical properties to those of the original enamel. The approach of repairing dental enamel by utilizing ultrasonic nebulization of CPICs is highly efficient and safe, therefore indicating great promise.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Lin Qiu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Chen Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Li Liu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Quanfu Deng
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Huan Zhang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Azril A, Huang KY, Liu HY, Liao WA, Liu WL, Hobley J, Jeng YR. Clinical implications of linking microstructure, spatial biochemical, spatial biomechanical, and radiological features in ligamentum flavum degeneration. JOR Spine 2024; 7:e1365. [PMID: 39132509 PMCID: PMC11310575 DOI: 10.1002/jsp2.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
Background The ligamentum flavum (LF) degeneration is a critical factor in spinal stenosis, leading to nerve compression and pain. Even with new treatment options becoming available, it is vital to have a better understanding of LF degeneration to ensure the effectiveness of these treatments. Objective This study aimed to provide insight into LF degeneration by examining the connections between various aspects of LF degeneration, including histology, microstructure, chemical composition, and biomechanics. Method We analyzed 30 LF samples from 27 patients with lumbar vertebrae, employing magnetic resonance imaging (MRI) to link lumbar disc degeneration grades with fibrosis levels in the tissue. X-ray diffraction (XRD) analysis assessed microstructural alterations in the LF matrix component due to degeneration progression. Instrumented nanoindentation combined with Raman spectroscopy explored the spatial microbiomechanical and biochemical characteristics of the LF's ventral and dorsal regions. Results Our outcomes revealed a clear association between the severity of LF fibrosis grades and increasing LF thickness. XRD analysis showed a rise in crystalline components and hydroxyapatite molecules with progressing degeneration. Raman spectroscopy detected changes in the ratio of phosphate, proteoglycan, and proline/hydroxyproline over the amide I band, indicating alterations in the extracellular matrix composition. Biomechanical testing demonstrated that LF tissue becomes stiffer and less extensible with increasing fibrosis. Discussion Notably, the micro-spatial assessment revealed the dorsal side of the LF experiencing more significant mechanical stress, alongside more pronounced biochemical and biomechanical changes compared to the ventral side. Degeneration of the LF involves complex processes that affect tissue histology, chemical composition, and biomechanics. It is crucial to fully understand these changes to develop new and effective treatments for spinal stenosis. These findings can improve diagnostic accuracy, identify potential biomarkers and treatment targets, guide personalized treatment strategies, advance tissue engineering approaches, help make informed clinical decisions, and educate patients about LF degeneration.
Collapse
Affiliation(s)
- Azril Azril
- Department of Biomedical Engineering National Cheng Kung University Tainan City Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics National Cheng Kung University Hospital, College of Medicine Tainan City Taiwan
| | - Hsin-Yi Liu
- Department of Biomedical Engineering National Cheng Kung University Tainan City Taiwan
| | - Wei-An Liao
- Department of Pathology National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan City Taiwan
| | - Wen-Lung Liu
- Department of Orthopedics National Cheng Kung University Hospital, College of Medicine Tainan City Taiwan
| | - Jonathan Hobley
- Department of Biomedical Engineering National Cheng Kung University Tainan City Taiwan
| | - Yeau-Ren Jeng
- Department of Biomedical Engineering National Cheng Kung University Tainan City Taiwan
- Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan City Taiwan
- Medical Device Innovation Center National Cheng Kung University Tainan City Taiwan
| |
Collapse
|
8
|
Yokoi T, Watanabe M, Kawashita M. Octacalcium phosphate with incorporated terephthalate ion derivatives: novel guest molecules and unique fluorescence properties. Dalton Trans 2024; 53:14163-14170. [PMID: 38984514 DOI: 10.1039/d4dt01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Octacalcium phosphate (OCP), an inorganic compound with a layered structure that can incorporate various carboxylic acids, exhibits fluorescence when aromatic carboxylate ions are present in the interlayers. However, the incorporation of carboxylate ions into OCP involves molecular selectivity, and the synthesis of novel OCP materials with incorporated terephthalate ion derivatives is particularly challenging. In this study, we incorporated 4-(carboxymethyl)benzoate and 1,4-phenylenediacetate ions into OCP for the first time and investigated the resulting fluorescence properties. The relationship between the (100) interplanar spacing and size of the incorporated dicarboxylate ions revealed that 4-(carboxymethyl)benzoate ions have a relaxed structure in the OCP interlayers, whereas the structure of the 1,4-phenylenediacetate ions is elongated by approximately 10% relative to that of the stable conformation. OCP with incorporated 1,4-phenylenediacetate ions showed blue fluorescence at 286 nm under 254 nm excitation. In contrast, distinct from previously reported fluorescent OCPs, OCP with incorporated 4-(carboxymethyl)benzoate ions exhibited two-colour fluorescence, with pink emission under 254 nm excitation and blue emission under 312 and 365 nm excitation. This OCP material exhibiting fluorescence at two wavelengths in the visible-light range offers new possibilities for practical applications. In particular, these unique fluorescence characteristics combined with the excellent biological properties of OCP can be exploited to develop novel biofriendly fluorescent probes. These findings contribute to an improved understanding of fundamental calcium phosphate chemistry and should encourage further research on functional OCP materials.
Collapse
Affiliation(s)
- Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Masahiro Watanabe
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
9
|
Dong H, Wang D, Deng H, Yin L, Wang X, Yang W, Cai K. Application of a calcium and phosphorus biomineralization strategy in tooth repair: a systematic review. J Mater Chem B 2024; 12:8033-8047. [PMID: 39045831 DOI: 10.1039/d4tb00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomineralization is a natural process in which organisms regulate the growth of inorganic minerals to form biominerals with unique layered structures, such as bones and teeth, primarily composed of calcium and phosphorus. Tooth decay significantly impacts our daily lives, and the key to tooth regeneration lies in restoring teeth through biomimetic approaches, utilizing mineralization strategies or materials that mimic natural processes. This review delves into the types, properties, and transformations of calcium and phosphorus minerals, followed by an exploration of the mechanisms behind physiological and pathological mineralization in living organisms. It summarizes the mechanisms and commonalities of biomineralization and discusses the advancements in dental biomineralization research, guided by insights into calcium and phosphorus mineral biomineralization. This review concludes by addressing the current challenges and future directions in the field of dental biomimetic mineralization.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Danyang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Hanyue Deng
- Duke Kunshan University - Media Art - Creative Practice Kunshan, Jiangsu 215316, China
| | - Lijuan Yin
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Xiongying Wang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
10
|
Qi ML, Long Z, Liu XC, Zhang H, Li J, Yao S. Crystallization of smooth amorphous calcium phosphate microspheres to core-shell hydroxyapatite microspheres. RSC Adv 2024; 14:25369-25377. [PMID: 39139250 PMCID: PMC11320051 DOI: 10.1039/d4ra04078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Calcium phosphates (Ca-P) represent a significant class of biological minerals found in natural hard tissues. Crystallization through phase transformation of a metastable precursor is an effective strategy to guide the growth of crystalline Ca-P with exceptional functionality. Despite extensive research on Ca-P, the exact process during the crystallization of amorphous particles to hydroxyapatite (HA) remains elusive. Herein, pure HA microspheres with a core-shell structure are crystallized via dissolution and re-crystallization of smooth amorphous calcium phosphate (ACP) microspheres. The transformation is initiated with the increase of the hydrothermal treatment time in the presence of sodium trimetaphosphate and l-glutamic. The underlying mechanisms along with the kinetics of such transformation are explored. Nanocrystalline areas are formed on the smooth ACP microspheres and crystallization advances via nanometre-sized clusters formed by directional arrangement of nanocrystalline whiskers. Our findings shed light on a crucial but unclear stage in the genesis of HA crystals, specifically under the conditions of hydrothermal synthesis.
Collapse
Affiliation(s)
- Mei-Li Qi
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Zhaoxuan Long
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
| | - Xiao-Cun Liu
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200092 China
| | - Jin Li
- School of Civil Engineering, Shandong Jiaotong University Ji'nan 250357 China
- Jinan Key Laboratory for Low-Carbon and Eco-Friendly Road Materials, Shandong Jiaotong University Ji'nan 250357 China
| | - Shengkun Yao
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University Ji'nan 250014 China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University Ji'nan 250358 China
| |
Collapse
|
11
|
Yang Q, Zheng W, Zhao Y, Shi Y, Wang Y, Sun H, Xu X. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent Mater 2024; 40:1282-1295. [PMID: 38871525 DOI: 10.1016/j.dental.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.
Collapse
Affiliation(s)
- Qingyi Yang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Wenqian Zheng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yuping Zhao
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yaru Shi
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
12
|
Pantović Pavlović MR, Ignjatović NL, Gudić S, Vrsalović L, Božić KĐ, Popović ME, Pavlović MM. Modified Titanium Surface with Nano Amorphous Calcium Phosphate@Chitosan Oligolactate as Ion Loading Platform with Multifunctional Properties for Potential Biomedical Application. Ann Biomed Eng 2024; 52:2221-2233. [PMID: 38662122 DOI: 10.1007/s10439-024-03521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Titanium (Ti) is widely used in medical and dental implants. Calcium phosphate (CPs) coatings enhance Ti implants' osteoinductive properties, and additives further improve these coatings. Recently, a nano amorphous calcium phosphate (nACP) coating decorated with chitosan oligolactate (ChOL) and selenium (Se) showed immunomodulatory effects. This study investigates the surface morphology, composition, bioactivity, mechanical properties, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates. Amorphous calcium phosphate (ACP) was synthesized, and the nACP@ChOL-Se hybrid coating was deposited on Ti substrates using in situ anaphoretic deposition. Physico-chemical characterization was used to analyze the surface of the coating (scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy). The distribution of Se within the coating was examined with energy-dispersive X-ray spectroscopy (EDS). Bioactivity was evaluated in simulated body fluid (SBF), and adhesion was tested using a scratch test method. In vitro testing determined the release mechanism of Se. SEM images illustrated the surface morphology, while AFM provided a detailed analysis of surface roughness. XRD analysis revealed structural and phase composition, and EDS confirmed Se distribution within the coating. The coating exhibited bioactivity in SBF and showed good adhesion according to the scratch test. In vitro testing uncovered the release mechanism of Se from the coating. This study successfully characterized the surface morphology, composition, bioactivity, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates, offering insights for developing immunomodulatory coatings for medical and dental applications.
Collapse
Affiliation(s)
- Marijana R Pantović Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Senka Gudić
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Ladislav Vrsalović
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Katarina Đ Božić
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Marko E Popović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Miroslav M Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia.
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
13
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
14
|
Shrestha B, Maria Rajan S, Aati S, Yusiharni E, Kujan O, Saunders M, Fawzy A. The Synergistic Effect of High Intensity Focused Ultrasound on In-vitro Remineralization of Tooth Enamel by Calcium Phosphate Ion Clusters. Int J Nanomedicine 2024; 19:5365-5380. [PMID: 38859951 PMCID: PMC11164203 DOI: 10.2147/ijn.s464998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Background Remineralization of dental enamel is an important intervention strategy for the treatment of demineralized lesions. Existing approaches have limitations such as failure to adequately reproduce both the ideal structural and mechanical properties of the native tooth. The ability of ultrasound to control and accelerate the crystallization processes has been widely reported. Therefore, a new approach was explored for in-vitro enamel remineralization involving the synergistic effect of high-intensity focused ultrasound (HIFU) coupled with calcium phosphate ion clusters (CPICs). Methods The demineralized enamel was treated with CPICs, with or without subsequent HIFU exposure for different periods (2.5, 5, and 10 min). The specimens were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The surface hardness and crystallographic properties of the treated specimens were evaluated using Vickers microhardness testing and X-ray diffraction (XRD), respectively. Results SEM revealed distinct, organized, and well-defined prismatic structures, showing clear evidence of remineralization in the combined CPIC/HIFU treatment groups. AFM further revealed a decrease in the surface roughness values with increasing HIFU exposure time up to 5 min, reflecting the obliteration of interprismatic spaces created during demineralization. The characteristic Raman band at 960 cm-1 associated with the inorganic phase of enamel dominated well in the HIFU-treated specimens. Importantly, microhardness testing further demonstrated that new mineral growth also recovered the mechanical properties of the enamel in the HIFU-exposed groups. Critical to our aspirations for developing this into a clinical process, these results were achieved in only 5 min. Conclusion HIFU exposure can synergise and significantly accelerate in-vitro enamel remineralization process via calcium phosphate ion clusters. Therefore, this synergistic approach has the potential for use in future clinical interventions.
Collapse
Affiliation(s)
- Barsha Shrestha
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sheetal Maria Rajan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sultan Aati
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Emielda Yusiharni
- UWA XRD Facility, Material & Environmental Analysis Platform, The University of Western Australia, Perth, WA, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Amr Fawzy
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
16
|
Machado TR, Zanardo CE, Vilela RRC, Miranda RR, Moreno NS, Leite CM, Longo E, Zucolotto V. Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications. J Mater Chem B 2024; 12:4945-4961. [PMID: 38685886 DOI: 10.1039/d3tb02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO32- content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band. The heat-treated samples also exhibited excitation-dependent PL under excitation wavelengths typically used in bioimaging (λexc = 405, 488, 561, and 640 nm). Citrate functionalization improved the PL intensity of the nanoparticles by inhibiting non-radiative deactivation mechanisms in solution. Additionally, it resulted in an increased colloidal stability and reduced aggregation, high stability of the metastable amorphous phase and the PL emission for at least 96 h in water and supplemented culture medium. MTT assay of HepaRG cells, incubated for 24 and 48 h with the nanoparticles in concentrations ranging from 10 to 320 μg mL-1, evidenced their high biocompatibility. Internalization studies using the nanoparticles self-activated luminescence showed that cellular uptake of the nanoparticles is both time (4-24 h) and concentration (160-320 μg mL-1) dependent. Experiments using confocal laser scanning microscopy allowed the successful imaging of the nanoparticles inside cells via their intrinsic PL after 4 h of incubation. Our results highlight the potential use of citrate-functionalized carbonated ACP nanoparticles for use in internalization assays and bioimaging procedures.
Collapse
Affiliation(s)
- Thales R Machado
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Carlos E Zanardo
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Raquel R C Vilela
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Renata R Miranda
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Natália S Moreno
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Celisnolia M Leite
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Elson Longo
- CDMF - Center for the Development of Functional Materials, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Pal A, Oyane A, Inose T, Nakamura M, Nishida E, Miyaji H. Fabrication of Ciprofloxacin-Immobilized Calcium Phosphate Particles for Dental Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2035. [PMID: 38730839 PMCID: PMC11084973 DOI: 10.3390/ma17092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Calcium phosphate (CaP) particles immobilizing antibacterial agents have the potential to be used as dental disinfectants. In this study, we fabricated CaP particles with immobilized ciprofloxacin (CF), a commonly prescribed antibacterial agent, via a coprecipitation process using a supersaturated CaP solution. As the aging time in the coprecipitation process increased from 2 to 24 h, the CaP phase in the resulting particles transformed from amorphous to low-crystalline hydroxyapatite, and their Ca/P elemental ratio, yield, and CF content increased. Despite the higher CF content, the particles aged for 24 h displayed a slower release of CF in a physiological salt solution, most likely owing to their crystallized matrix (less soluble hydroxyapatite), than those aged for 2 h, whose matrix was amorphous CaP. Both particles exhibited antibacterial and antibiofilm activities along with an acid-neutralizing effect against the major oral bacteria, Streptococcus mutans, Porphyromonas gingivalis, and Actinomyces naeslundii, in a dose-dependent manner, although their dose-response relationship was slightly different. The aging time in the coprecipitation process was identified as a governing factor affecting the physicochemical properties of the resulting CF-immobilized CaP particles and their functionality as a dental disinfectant.
Collapse
Affiliation(s)
- Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (T.I.); (M.N.)
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (T.I.); (M.N.)
| | - Tomoya Inose
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (T.I.); (M.N.)
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.P.); (T.I.); (M.N.)
| | - Erika Nishida
- Department of General Dentistry, Faculty of Dental Medicine, Hokkaido University, N13 W7 Kita-ku, Sapporo 060-8586, Japan; (E.N.); (H.M.)
| | - Hirofumi Miyaji
- Department of General Dentistry, Faculty of Dental Medicine, Hokkaido University, N13 W7 Kita-ku, Sapporo 060-8586, Japan; (E.N.); (H.M.)
| |
Collapse
|
19
|
Andrilli LHS, Sebinelli HG, Cominal JG, Bolean M, Hayann L, Millán JL, Ramos AP, Ciancaglini P. Differential effects of the lipidic and ionic microenvironment on NPP1's phosphohydrolase and phosphodiesterase activities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184292. [PMID: 38342362 DOI: 10.1016/j.bbamem.2024.184292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.
Collapse
Affiliation(s)
- Luiz H S Andrilli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Heitor G Sebinelli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juçara G Cominal
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larwsk Hayann
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Luís Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Ana P Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Pietro Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Xu J, Vecstaudza J, Wesdorp MA, Labberté M, Kops N, Salerno M, Kok J, Simon M, Harmand MF, Vancíková K, van Rietbergen B, Misciagna MM, Dolcini L, Filardo G, Farrell E, van Osch GJ, Locs J, Brama PA. Incorporating strontium enriched amorphous calcium phosphate granules in collagen/collagen-magnesium-hydroxyapatite osteochondral scaffolds improves subchondral bone repair. Mater Today Bio 2024; 25:100959. [PMID: 38327976 PMCID: PMC10847994 DOI: 10.1016/j.mtbio.2024.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This study aimed to improve the bone repair potential of this scaffold by incorporating newly developed strontium (Sr) ion enriched amorphous calcium phosphate (Sr-ACP) granules (100-150 μm). Sr concentration of Sr-ACP was determined with ICP-MS at 2.49 ± 0.04 wt%. Then 30 wt% ACP or Sr-ACP granules were integrated into the scaffold prototypes. The ACP or Sr-ACP granules were well embedded and distributed in the collagen matrix demonstrated by micro-CT and scanning electron microscopy/energy dispersive x-ray spectrometry. Good cytocompatibility of ACP/Sr-ACP granules and ACP/Sr-ACP enriched scaffolds was confirmed with in vitro cytotoxicity assays. An overall promising early tissue response and good biocompatibility of ACP and Sr-ACP enriched scaffolds were demonstrated in a subcutaneous mouse model. In a goat osteochondral defect model, significantly more bone was observed at 6 months with the treatment of Sr-ACP enriched scaffolds compared to scaffold-only, in particular in the weight-bearing femoral condyle subchondral bone defect. Overall, the incorporation of osteogenic Sr-ACP granules in Col/Col-Mg-HAp scaffolds showed to be a feasible and promising strategy to improve subchondral bone repair.
Collapse
Affiliation(s)
- Jietao Xu
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
| | - Marinus A. Wesdorp
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Margot Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Karin Vancíková
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, Netherlands
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048, Riga, Latvia
| | - Pieter A.J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| |
Collapse
|
21
|
Williams TD, Adler T, Smokoff L, Kaur A, Rodriguez B, Prakash KJ, Redzematovic E, Baker TS, Rapoport BI, Yoon ES, Beall DP, Dordick JS, De Leacy RA. Bone Cements Used in Vertebral Augmentation: A State-of-the-art Narrative Review. J Pain Res 2024; 17:1029-1040. [PMID: 38505504 PMCID: PMC10949389 DOI: 10.2147/jpr.s437827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024] Open
Abstract
Vertebral compression fractures (VCFs) are common in osteoporotic patients, with a frequency projected to increase alongside a growing geriatric population. VCFs often result in debilitating back pain and decreased mobility. Cement augmentation, a minimally invasive surgical technique, is widely used to stabilize fractures and restore vertebral height. Acrylic-based cements and calcium phosphate cements are currently the two primary fill materials utilized for these procedures. Despite their effectiveness, acrylic bone cements and calcium phosphate cements have been associated with various intraoperative and postoperative incidents impacting VCF treatment. Over the past decade, discoveries in the field of biomedical engineering and material science have shown advancements toward addressing these limitations. This narrative review aims to assess the potential pitfalls and barriers of the various types of bone cements.
Collapse
Affiliation(s)
- Tyree D Williams
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| | - Talia Adler
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Columbia University School of General Studies, New York, NY, USA
| | - Lindsey Smokoff
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Columbia University School of General Studies, New York, NY, USA
| | - Anmoldeep Kaur
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neuroscience, Smith College, Northampton, MA, USA
| | - Benjamin Rodriguez
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Turner S Baker
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
- Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin I Rapoport
- Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| | | | | | | | - Reade A De Leacy
- Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA
| |
Collapse
|
22
|
Chao YW, Lee YL, Tseng CS, Wang LUH, Hsia KC, Chen H, Fustin JM, Azeem S, Chang TT, Chen CY, Kung FC, Hsueh YP, Huang YS, Chao HW. Improved CaP Nanoparticles for Nucleic Acid and Protein Delivery to Neural Primary Cultures and Stem Cells. ACS NANO 2024; 18:4822-4839. [PMID: 38285698 PMCID: PMC10867895 DOI: 10.1021/acsnano.3c09608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.
Collapse
Affiliation(s)
- Yu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yen-Lurk Lee
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Ching-San Tseng
- Department
of Anatomy, School of Medicine, China Medical
University, Taichung 40402, Taiwan
| | - Lily Ueh-Hsi Wang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Kuo-Chiang Hsia
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Huatao Chen
- Department
of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key
Laboratory of Animal Biotechnology of the Ministry of Agriculture
and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jean-Michel Fustin
- The
University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester M13 9PL, U.K.
| | - Sayma Azeem
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
| | - Tzu-Tung Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Chiung-Ya Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Fan-Che Kung
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Ping Hsueh
- Institute
of Molecular Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Yi-Shuian Huang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
- Taiwan
International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia
Sinica, Taipei 115201, Taiwan
- Institute
of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsu-Wen Chao
- Department
of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
23
|
Tolmacheva N, Bhattacharyya A, Noh I. Calcium Phosphate Biomaterials for 3D Bioprinting in Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:95. [PMID: 38392140 PMCID: PMC10886915 DOI: 10.3390/biomimetics9020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional bioprinting is a promising technology for bone tissue engineering. However, most hydrogel bioinks lack the mechanical and post-printing fidelity properties suitable for such hard tissue regeneration. To overcome these weak properties, calcium phosphates can be employed in a bioink to compensate for the lack of certain characteristics. Further, the extracellular matrix of natural bone contains this mineral, resulting in its structural robustness. Thus, calcium phosphates are necessary components of bioink for bone tissue engineering. This review paper examines different recently explored calcium phosphates, as a component of potential bioinks, for the biological, mechanical and structural properties required of 3D bioprinted scaffolds, exploring their distinctive properties that render them favorable biomaterials for bone tissue engineering. The discussion encompasses recent applications and adaptations of 3D-printed scaffolds built with calcium phosphates, delving into the scientific reasons behind the prevalence of certain types of calcium phosphates over others. Additionally, this paper elucidates their interactions with polymer hydrogels for 3D bioprinting applications. Overall, the current status of calcium phosphate/hydrogel bioinks for 3D bioprinting in bone tissue engineering has been investigated.
Collapse
Affiliation(s)
- Nelli Tolmacheva
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Medical Electronics Research Center, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
24
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
25
|
Antoniac I, Manescu (Paltanea) V, Antoniac A, Paltanea G. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering. Regen Biomater 2023; 10:rbad095. [PMID: 38020233 PMCID: PMC10664085 DOI: 10.1093/rb/rbad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included in vitro and in vivo tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of in vivo or in vitro studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
26
|
Kühl J, Gorb S, Kern M, Klüter T, Kühl S, Seekamp A, Fuchs S. Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure. Front Bioeng Biotechnol 2023; 11:1268049. [PMID: 37790253 PMCID: PMC10544914 DOI: 10.3389/fbioe.2023.1268049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Critical-sized bone defects resulting from trauma, inflammation, and tumor resections are individual in their size and shape. Implants for the treatment of such defects have to consider biomechanical and biomedical factors, as well as the individual conditions within the implantation site. In this context, 3D printing technologies offer new possibilities to design and produce patient-specific implants reflecting the outer shape and internal structure of the replaced bone tissue. The selection or modification of materials used in 3D printing enables the adaption of the implant, by enhancing the osteoinductive or biomechanical properties. In this study, scaffolds with bone spongiosa-inspired structure for extrusion-based 3D printing were generated. The computer aided design process resulted in an up scaled and simplified version of the bone spongiosa. To enhance the osteoinductive properties of the 3D printed construct, polycaprolactone (PCL) was combined with 20% (wt) calcium phosphate nano powder (CaP). The implants were designed in form of a ring structure and revealed an irregular and interconnected porous structure with a calculated porosity of 35.2% and a compression strength within the range of the natural cancellous bone. The implants were assessed in terms of biocompatibility and osteoinductivity using the osteosarcoma cell line MG63 and patient-derived mesenchymal stem cells in selected experiments. Cell growth and differentiation over 14 days were monitored using confocal laser scanning microscopy, scanning electron microscopy, deoxyribonucleic acid (DNA) quantification, gene expression analysis, and quantitative assessment of calcification. MG63 cells and human mesenchymal stem cells (hMSC) adhered to the printed implants and revealed a typical elongated morphology as indicated by microscopy. Using DNA quantification, no differences for PCL or PCL-CaP in the initial adhesion of MG63 cells were observed, while the PCL-based scaffolds favored cell proliferation in the early phases of culture up to 7 days. In contrast, on PCL-CaP, cell proliferation for MG63 cells was not evident, while data from PCR and the levels of calcification, or alkaline phosphatase activity, indicated osteogenic differentiation within the PCL-CaP constructs over time. For hMSC, the highest levels in the total calcium content were observed for the PCL-CaP constructs, thus underlining the osteoinductive properties.
Collapse
Affiliation(s)
- Julie Kühl
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Material, University Medical Center, Kiel, Germany
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sebastian Kühl
- Department of Electrical and Information Engineering, Kiel University, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| |
Collapse
|
27
|
Du Q, Sun J, Zhou Y, Yu Y, Kong W, Chen C, Zhou Y, Zhao K, Shao C, Gu X. Fabrication of ACP-CCS-PVA composite membrane for a potential application in guided bone regeneration. RSC Adv 2023; 13:25930-25938. [PMID: 37664206 PMCID: PMC10472212 DOI: 10.1039/d3ra04498j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate-carboxylated chitosan-polyvinyl alcohol (ACP-CCS-PVA) composite membranes are fabricated by freeze-thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS-PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content.
Collapse
Affiliation(s)
- Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Yadong Yu
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Weijing Kong
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yifeng Zhou
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Ke Zhao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| |
Collapse
|
28
|
Feng Y, Wu D, Knaus J, Keßler S, Ni B, Chen Z, Avaro J, Xiong R, Cölfen H, Wang Z. A Bioinspired Gelatin-Amorphous Calcium Phosphate Coating on Titanium Implant for Bone Regeneration. Adv Healthc Mater 2023; 12:e2203411. [PMID: 36944062 PMCID: PMC11468875 DOI: 10.1002/adhm.202203411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Biocompatible and bio-active coatings can enhance and accelerate osseointegration via chemical binding onto substrates. Amorphous calcium phosphate (ACP) has been shown as a precursor to achieve mineralization in vertebrates and invertebrates under the control of biological macromolecules. This work presents a simple bioinspired Gelatin-CaPO4 (Gel-CaP) composite coating on titanium surfaces to improve osseointegration. The covalently bound Gel-CaP composite is characterized as an ACP-Gel compound via SEM, FT-IR, XRD, and HR-TEM. The amorphous compound coating exhibits a nanometer range thickness and improved elastic modulus, good wettability, and nanometric roughness. The amount of grafted carboxyl groups and theoretical thickness of the coatings are also investigated. More importantly, MC3T3 cells, an osteoblast cell line, show excellent cell proliferation and adhesion on the Gel-CaP coating. The level of osteogenic genes is considerably upregulated on Ti with Gel-CaP coatings compared to uncoated Ti, demonstrating that Gel-CaP coatings possess a unique osteogenic ability. To conclude, this work offers a new perspective on functional, bioactive titanium coatings, and Gel-CaP composites can be a low-cost and promising candidate in bone regeneration.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Di Wu
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| | - Jennifer Knaus
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sascha Keßler
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bing Ni
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - ZongKun Chen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Johnathan Avaro
- EMPAMaterial and Science TechnologyLerchenfeldstrasse 59014St. GallenSwitzerland
| | - Rui Xiong
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Helmut Cölfen
- Department of ChemistryPhysical ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Zuolin Wang
- Department of ImplantologyStomatological Hospital and Dental School of Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and Regeneration200072ShanghaiChina
| |
Collapse
|
29
|
Glazov IE, Krut’ko VK, Safronova TV, Sazhnev NA, Kil’deeva NR, Vlasov RA, Musskaya ON, Kulak AI. Formation of Hydroxyapatite-Based Hybrid Materials in the Presence of Platelet-Poor Plasma Additive. Biomimetics (Basel) 2023; 8:297. [PMID: 37504185 PMCID: PMC10807031 DOI: 10.3390/biomimetics8030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Biomaterials based on hydroxyapatite with controllable composition and properties are promising in the field of regenerative bone replacement. One approach to regulate the phase composition of the materials is the introduction of biopolymer-based additives into the synthesis process. The purpose of present study was to investigate the formation of hydroxyapatite-based hybrid materials in the presence of 6-24% platelet-poor plasma (PPP) additive, at a [Ca2+]/[PO43-] ratio of 1.67, pH 11, and varying maturing time from 4 to 9 days. The mineral component of the materials comprised 53% hydroxyapatite/47% amorphous calcium phosphate after 4 days of maturation and 100% hydroxyapatite after 9 days of maturation. Varying the PPP content between 6% and 24% brought about the formation of materials with rather defined contents of amorphous calcium phosphate and biopolymer component and the desired morphology, ranging from typical apatitic conglomerates to hybrid apatite-biopolymer fibers. The co-precipitated hybrid materials based on hydroxyapatite, amorphous calcium phosphate, and PPP additive exhibited increased solubility in SBF solution, which defines their applicability for repairing rhinoplastic defects.
Collapse
Affiliation(s)
- Ilya E. Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 9/1, 220012 Minsk, Belarus; (V.K.K.); (O.N.M.); (A.I.K.)
| | - Valentina K. Krut’ko
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 9/1, 220012 Minsk, Belarus; (V.K.K.); (O.N.M.); (A.I.K.)
| | - Tatiana V. Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Nikita A. Sazhnev
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, Kosygin Russian State University, Malaya Kaluzhskaya, 1, 119071 Moscow, Russia; (N.A.S.); (N.R.K.)
| | - Natalia R. Kil’deeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, Kosygin Russian State University, Malaya Kaluzhskaya, 1, 119071 Moscow, Russia; (N.A.S.); (N.R.K.)
| | - Roman A. Vlasov
- Medical Center “Lode”, Gikalo Str., 1, 220005 Minsk, Belarus;
| | - Olga N. Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 9/1, 220012 Minsk, Belarus; (V.K.K.); (O.N.M.); (A.I.K.)
| | - Anatoly I. Kulak
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str., 9/1, 220012 Minsk, Belarus; (V.K.K.); (O.N.M.); (A.I.K.)
| |
Collapse
|
30
|
Deng L, Dhar BR. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. CHEMOSPHERE 2023; 330:138685. [PMID: 37060960 DOI: 10.1016/j.chemosphere.2023.138685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
Phosphorus (P) is one of the important elements for human, animal, and plant life. Due to the development of the circular economy in recent years, the recovery of P from wastewater has received more attention. Recovery of P from domestic, industrial, and agricultural wastewater in the form of calcium phosphate (CaP) by precipitation/crystallization process presents a low-cost and effective method. Recovered CaP could be used as P fertilizer and for other industrial applications. This review summarizes the effects of supersaturation, pH, seed materials, calcium (Ca) source, and wastewater composition, on the precipitation/crystallization process. The recovery efficiency and value proposition of recovered CaP were assessed. This in-depth analysis of the literature reports identified the process parameters that are worth further optimization. The review also provides perspectives on future research needs on expanding the application field of recovered CaP and finding other more economical and environmentally friendly Ca sources.
Collapse
Affiliation(s)
- Linyu Deng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
31
|
Inkret S, Erceg I, Ćurlin M, Kalčec N, Peranić N, Vinković Vrček I, Domazet Jurašin D, Dutour Sikirić M. Comparison of bovine serum albumin and chitosan effects on calcium phosphate formation in the presence of silver nanoparticles. RSC Adv 2023; 13:17384-17397. [PMID: 37304776 PMCID: PMC10251191 DOI: 10.1039/d3ra02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
The precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps. Amorphous calcium phosphate (ACP) was the first precipitated solid, which transformed into a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) after 60 min of ageing. Both biomacromolecules inhibited ACP transformation, with Chi being a stronger inhibitor due to its flexible molecular structure. As the concentration of the biomacromolecules increased, the amount of OCP decreased both in the absence and presence of AgNPs. In the presence of cit-AgNPs and two highest BSA concentrations, a change in the composition of the crystalline phase was observed. Calcium hydrogen phosphate dihydrate was formed in the mixture with CaDHA. An effect on the morphology of both the amorphous and crystalline phases was observed. The effect depended on the specific combination of biomacromolecules and differently stabilized AgNP. The results obtained suggest a simple method for fine-tuning the properties of precipitates using different classes of additives. This could be of interest for the biomimetic preparation of multifunctional composites for bone tissue engineering.
Collapse
Affiliation(s)
- Suzana Inkret
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Ina Erceg
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Marija Ćurlin
- School of Medicine, Catholic University of Croatia 10000 Zagreb Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Nikolina Peranić
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Darija Domazet Jurašin
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| |
Collapse
|
32
|
Gelli R, Ridi F. Reconsidering the role of albumin towards amorphous calcium phosphate-based calciprotein particles formation and stability from a physico-chemical perspective. Colloids Surf B Biointerfaces 2023; 227:113372. [PMID: 37257300 DOI: 10.1016/j.colsurfb.2023.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The formation of calciprotein particles (CPPs) in serum is a physiological phenomenon fundamental to prevent the rise of ectopic calcifications. CPPs are colloidal hybrid particles made of amorphous calcium phosphate stabilized by a protein, fetuin-A. Since albumin is the most abundant protein present in serum, we aimed at understanding if it plays a synergic action together with fetuin-A towards CPPs formation and stability. CPPs were prepared using a constant fetuin-A concentration (5 µM) and different concentrations of albumin (0-606 µM). The stability of CPPs, their crystallization and sedimentation were followed in situ by combining turbidimetry, precipitation analysis and dynamic light scattering. The morphology was investigated by scanning electron microscopy and cryo-transmission electron microscopy, while crystallinity was inspected by infrared spectroscopy. The effect of albumin on the amount of formed CPPs was also studied, as well as the amount of protein adsorbed on CPPs. We found that albumin is not able to prolong the lifetime of the amorphous phase, but it is very effective in delaying the sedimentation of CPPs after crystallization. Albumin also significantly decreases the amount and size of CPPs when present in their synthetic medium, likely playing a fundamental role in our organism together with fetuin-A towards the stabilization of CPPs.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
33
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:life13040954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
34
|
Righi S, Prato E, Magnani G, Lama V, Biandolino F, Parlapiano I, Carella F, Iafisco M, Adamiano A. Calcium phosphates from fish bones in sunscreen: An LCA and toxicity study of an emerging material for circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160751. [PMID: 36493829 DOI: 10.1016/j.scitotenv.2022.160751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The use of sustainable and natural materials is an ever-increasing trend in cosmetic. Natural calcium phosphate (CaP-N) from food by-products and especially from fisheries (i.e., bones), has been suggested as a sustainable option to chemicals commonly used in cosmetic products, in particular to UV-filters in sunscreens. However, the environmental benefits and impacts of its production and use are still uncertain as they have never been quantified. In this paper, we report on toxicological characterization of CaP-N produced from incineration of fish meal in a pilot scale plant. Furthermore, we quantified the environmental burdens linked to the partial substitution of UV-filters by CaP-N through the life cycle assessment (LCA) comparing CaP-N with zinc oxide nanoparticles (ZnO NPs) as alternative option. CaP-N consists in a biphasic mixture 53:47 of hydroxyapatite:β-tricalcium phosphate, and is made of round particles with a diameter in the range of a few microns. Toxicity tests on 4 aquatic species (Dunaliella tertiolecta, Tigriopus fulvus, Corophium insidiosum and Gammarus aequicauda) revealed that CaP-N does not produce any adverse effect, all the species showing EC/LC50 values higher than 100 mg L-1. Moreover, during the 96 h acute toxicity test on C. insidiosum, which is a tube-building species, the specimens built their tubes with the available CaP-N, further attesting the non-toxicity of the material. The LCA study showed that the environmental performance of CaP-N is better than that of ZnO NPs for 11 out of 16 impact categories analysed in this study, especially for the categories Ecotoxicity and Eutrophication of freshwaters (an order of magnitude lower), and with the exception of fossil resources for which CaP-N has a significantly higher impact than ZnO NPs (+140 %). Concluding, our study demonstrates that the replacement of ZnO NPs with CaP-N thermally extracted from fish bones in cosmetic products can increase their safety and sustainability.
Collapse
Affiliation(s)
- Serena Righi
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giulia Magnani
- Dipartimento di Chimica Giacomo Ciamician Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Virginia Lama
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Francesca Biandolino
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Isabella Parlapiano
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Francesca Carella
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
35
|
Wang L, Yang J, Bi J, Sun K, Li A, Mao J. Competition and Neutralization: Thermally Induced Crystallization and Phase Evolution of Amorphous Calcium Phosphate with Cosubstitution of Larger and Smaller Divalent Cations. ACS OMEGA 2023; 8:7602-7606. [PMID: 36872959 PMCID: PMC9979222 DOI: 10.1021/acsomega.2c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The presented study evaluated the effect of cosubstitution of larger and smaller divalent cations on the thermally induced crystallization of amorphous calcium phosphate (ACP). The predesigned combinations of larger (Sr2+ and Ba2+) and smaller (Mg2+, Cu2+, and Co2+) divalent cations were carried out and their effects on the thermodynamic equilibrium between α/β-tricalcium phosphate (TCP) were outlined. The coexistence of larger and smaller divalent cations shielded the formation of α-TCP and shifted the thermodynamic equilibrium toward the β-TCP, which implied that the smaller cations dominated the crystalline phase. However, the retarded crystallization induced by the larger cations still remained and allowed ACP to maintain its amorphous nature partly or completely until a higher temperature.
Collapse
Affiliation(s)
- Lu Wang
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| | - Junxing Yang
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| | - Jianqiang Bi
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| | - Kangning Sun
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| | - Aimin Li
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| | - Junjie Mao
- Key
Laboratory for Liquid-Solid Structural Evolution and Processing of
Materials, Ministry of Education, Shandong
University, Jinan 250061, People’s Republic
of China
- School
of Materials Science & Engineering, Shandong University, Jinan 250061, People’s Republic
of China
| |
Collapse
|
36
|
Garskaite E, Balciunas G, Drienovsky M, Sokol D, Sandberg D, Bastos AC, Salak AN. Brushite mineralised Scots pine ( Pinus sylvestris L.) sapwood - revealing mineral crystallization within a wood matrix by in situ XRD. RSC Adv 2023; 13:5813-5825. [PMID: 36816063 PMCID: PMC9932638 DOI: 10.1039/d3ra00305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD, brushite) crystals were synthesised within Scots pine sapwood via a wet-chemistry route from aqueous solutions of Ca(CH3COO)2 and NH4H2PO4 salts. SEM/EDS analysis was used to assess the saturation of the wood cell lumina and cell wall as well as morphological features and elemental composition of the co-precipitated mineral. Brushite mineral crystallization and crystallite growth within the wood matrix was studied by in situ XRD. The chemical composition of the mineral before and after the dissolution was evaluated using FTIR spectroscopy. The overall impact of brushite on the thermal behaviour of wood was studied by TGA/DSC and TGA/DTA/MS analysis under oxidative and pyrolytic conditions. Bending and compression strength perpendicular and parallel to the fibre directions as well as bending strengths in longitudinal and transverse directions of the mineralised wood were also evaluated. Results indicate the viability of the wet-chemistry processing route for wood reinforcement with crystalline calcium phosphate (CaP)-based minerals, and imply a potential in producing hybrid bio-based materials that could be attractive in the construction sector as an environmentally friendly building material.
Collapse
Affiliation(s)
- Edita Garskaite
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology Forskargatan 1 SE-931 87 Skellefteå Sweden
| | - Giedrius Balciunas
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Vilnius Gediminas Technical University Linkmenu g. 28 Vilnius LT-08217 Lithuania
| | - Marian Drienovsky
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava Ulica Jana Bottu 2781/25 91724 Trnava Slovakia
| | - Denis Sokol
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University Naugarduko 24 Vilnius LT-03225 Lithuania
| | - Dick Sandberg
- Wood Science and Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology Forskargatan 1 SE-931 87 Skellefteå Sweden
| | - Alexandre C Bastos
- Department of Materials and Ceramics Engineering and CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| | - Andrei N Salak
- Department of Materials and Ceramics Engineering and CICECO - Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
37
|
Skriabin AS, Shakurov AV, Vesnin VR, Lukina YS, Tsygankov PA, Bionyshev-Abramov LL, Serejnikova NB, Vorob’ev EV. Titanium Membranes with Hydroxyapatite/Titania Bioactive Ceramic Coatings: Characterization and In Vivo Biocompatibility Testing. ACS OMEGA 2022; 7:47880-47891. [PMID: 36591210 PMCID: PMC9798509 DOI: 10.1021/acsomega.2c05718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/01/2022] [Indexed: 06/12/2023]
Abstract
Titanium membranes and meshes are used for the repair of trauma, tumors, and hernia in dentistry and maxillofacial and abdominal surgery. But such membranes demonstrate the limited effectiveness of integration in recipients due to their bioinertness. In this study, we prepared titania oxide (by microarc oxidation) and/or HAp (by electrophoresis deposition) coatings with alginate soaking. We used annealing at 700 °C for 2.5 h for HAp crystallinity increasing with achievement of an acceptable Ca2+ release rate. The feedstock HAp and prepared coatings were characterized by X-ray diffraction, IR spectroscopy, electron and optical confocal microscopy, and thermal analysis, as well as the in vitro study of solubility in saline and in vivo tests with the animal model of subcutaneous implantation (with Wistar rats). Biocompatible compounds were found for all deposited coatings. We noted that the best biological response was detected for the annealed Ca-P/TiO2 bilayer with alginate binding. In this case, the coating crystallinity was ≈40.5-50.0%. The Ca2+ release rate was 2.042 ± 0.058%/mm2 at 168 h after immersion in saline. Thin and mature tissue capsules with minimal inflammation and vascularization were found in histological sections. We did not detect any unwanted responses around the implants, including inflammation infiltration, suppuration, bacterial infections, tissue lyses, and, finally, implant rejection. This information is expected to be useful for understanding the properties of bioactive ceramic coatings and improving the quality of medical care in dentistry and maxillofacial surgery and other applications of titanium membranes in medicine.
Collapse
Affiliation(s)
- Andrei S. Skriabin
- Bauman
Moscow State Technical University National Research University of
Technology, 2-Ya Baumanskaya 5, Moscow105005, Russia
| | - Alexey V. Shakurov
- Bauman
Moscow State Technical University National Research University of
Technology, 2-Ya Baumanskaya 5, Moscow105005, Russia
| | - Vladimir R. Vesnin
- Bauman
Moscow State Technical University National Research University of
Technology, 2-Ya Baumanskaya 5, Moscow105005, Russia
| | - Yulia S. Lukina
- Bauman
Moscow State Technical University National Research University of
Technology, 2-Ya Baumanskaya 5, Moscow105005, Russia
- FSBI
National Medical Research Center for Traumatology and Orthopedics
named after N N Priorov of the Ministry of Health of the Russian Federation, Priorova 10, Moscow127299, Russia
| | - Petr A. Tsygankov
- Universidad
Industrial de Santander, Carrera 27 # Calle 9, Bucaramanga68000, Colombia
| | - Leonid L. Bionyshev-Abramov
- FSBI
National Medical Research Center for Traumatology and Orthopedics
named after N N Priorov of the Ministry of Health of the Russian Federation, Priorova 10, Moscow127299, Russia
| | - Natalya B. Serejnikova
- I
M Sechenov First Moscow State Medical University Institute of Regenerative
Medicine, Trubetskaya,
8, Moscow119991, Russia
| | - Evgeny V. Vorob’ev
- Bauman
Moscow State Technical University National Research University of
Technology, 2-Ya Baumanskaya 5, Moscow105005, Russia
| |
Collapse
|
38
|
Enax J, Meyer F, Schulze zur Wiesche E, Epple M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4075. [PMID: 36432359 PMCID: PMC9693044 DOI: 10.3390/nano12224075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The human body needs calcium and phosphate as essential nutrients to grow bones and teeth, but they are also necessary for many other biochemical purposes (e.g., the biosynthesis of phospholipids, adenosine triphosphate, ATP, or DNA). The use of solid calcium phosphate in particle form as a food additive is reviewed and discussed in terms of bioavailability and its safety after ingestion. The fact that all calcium phosphates, such as hydroxyapatite and tricalcium phosphate, are soluble in the acidic environment of the stomach, regardless of the particle size or phase, means that they are present as dissolved ions after passing through the stomach. These dissolved ions cannot be distinguished from a mixture of calcium and phosphate ions that were ingested separately, e.g., from cheese or milk together with soft drinks or meat. Milk, including human breast milk, is a natural source of calcium and phosphate in which calcium phosphate is present as nanoscopic clusters (nanoparticles) inside casein (protein) micelles. It is concluded that calcium phosphates are generally safe as food additives, also in baby formula.
Collapse
Affiliation(s)
- Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Erik Schulze zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
39
|
Glazov IE, Krut’ko VK, Musskaya ON, Kulak AI. Low-Temperature Formation and Identification of Biphasic Calcium Carbonate Phosphates. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
41
|
Sedelnikova M, Bakina O, Ugodchikova A, Tolkacheva T, Khimich M, Uvarkin P, Kashin A, Miller A, Egorkin V, Schmidt J, Sharkeev Y. The Role of Microparticles of β-TCP and Wollastonite in the Creation of Biocoatings on Mg0.8Ca Alloy. METALS 2022; 12:1647. [DOI: 10.3390/met12101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The introduction of particles into the composition of coatings can significantly expand the range of properties and possibilities of the modified materials. In this work, the coatings containing microparticles of β-tricalcium phosphate (β-TCP) and wollastonite separately and in combination with each other were created on the surface of an Mg0.8Ca alloy. The morphology and microstructure of the coatings were examined by scanning and transmission electron microscopy. Their phase composition was determined with the help of X-ray diffraction analysis. The coating-to-substrate adhesion evaluation was carried out via the scratch-test method. Potentiodynamic polarization curves of the coatings were obtained during their immersion in 0.9% NaCl solution and their electrochemical properties were determined. Cytotoxic properties of the coatings were investigated by means of the MTT assay and flow cytometry in the course of the biological studies. In addition, NIH/3T3 cell morphology was analyzed using scanning electron microscopy. The structure, morphology, physical and mechanical, corrosive, and biological properties of the coatings depended on the type of particles they contained. Whereas the coating with β-TCP microparticles had higher adhesive properties, the coatings with wollastonite microparticles, as well as the combined coating, were less soluble and more biocompatible. In addition, the wollastonite-containing coating had the highest corrosion resistance.
Collapse
Affiliation(s)
- Mariya Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Olga Bakina
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Anna Ugodchikova
- Laboratory of Plasma Synthesis of Materials, Troitsk Institute for Innovation & Fusion Research, Moscow Region, 108840 Troitsk, Russia
| | - Tatiana Tolkacheva
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Margarita Khimich
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Pavel Uvarkin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Alexander Kashin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Andrey Miller
- Shared Use Center “Nanotech”, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
| | - Vladimir Egorkin
- Laboratory of Electrochemical Processes, Institute of Chemistry FEB RAS, 100-Letiya Vladivostoka Prospect 159, 690022 Vladivostok, Russia
| | - Juergen Schmidt
- Department of Electrochemistry, Innovent Technology Development, Pruessingstrasse 27 B, D-07745 Jena, Germany
| | - Yurii Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, 634055 Tomsk, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin Prospect 30, 634050 Tomsk, Russia
| |
Collapse
|
42
|
Nakamura M, Bunryo W, Narazaki A, Oyane A. High Immobilization Efficiency of Basic Protein within Heparin-Immobilized Calcium Phosphate Nanoparticles. Int J Mol Sci 2022; 23:ijms231911530. [PMID: 36232830 PMCID: PMC9569611 DOI: 10.3390/ijms231911530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Previously, we achieved one-pot fabrication of heparin-immobilized calcium phosphate (CaP) nanoparticles with high dispersibility by a precipitation process in a highly supersaturated reaction solution. In this study, we revealed that the heparin-immobilized CaP nanoparticles have a greater co-immobilizing capacity for basic proteins than for acidic proteins. In this process, heparin acted as not only a particle-dispersing agent but also as an immobilizing agent for basic proteins; it remarkably (approximately three-fold) improved the immobilization efficiency of cytochrome C (a model basic protein) within the CaP nanoparticles. The content of cytochrome C immobilized within the nanoparticles was increased with an increase in cytochrome C concentration in the reaction solution and by aging the nanoparticles. The obtained nanoparticles were dispersed well in water owing to their large negative zeta potentials derived from heparin, irrespective of the content of cytochrome C. Similar results were obtained also for another basic protein, lysozyme, but not for an acidic protein, albumin; the immobilization efficiency of albumin within the nanoparticles was decreased by heparin. These findings provide new insights into the co-immobilization strategy of proteins within heparin-immobilized CaP nanoparticles and will be useful in the design and fabrication of nanocarriers for protein delivery applications.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-861-4604
| | - Wakako Bunryo
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Aiko Narazaki
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| |
Collapse
|
43
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
44
|
Veschi EA, Bolean M, da Silva Andrilli LH, Sebinelli HG, Strzelecka-Kiliszek A, Bandorowicz-Pikula J, Pikula S, Granjon T, Mebarek S, Magne D, Millán JL, Ramos AP, Buchet R, Bottini M, Ciancaglini P. Mineralization Profile of Annexin A6-Harbouring Proteoliposomes: Shedding Light on the Role of Annexin A6 on Matrix Vesicle-Mediated Mineralization. Int J Mol Sci 2022; 23:8945. [PMID: 36012211 PMCID: PMC9409191 DOI: 10.3390/ijms23168945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.
Collapse
Affiliation(s)
- Ekeveliny Amabile Veschi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Luiz Henrique da Silva Andrilli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | | | | | - Slawomir Pikula
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Thierry Granjon
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - David Magne
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | | | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
| | - Rene Buchet
- University of Lyon, University Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Massimo Bottini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto 14040-901, SP, Brazil
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
45
|
Cho KR, Jo SB, Kim B, Kim W, Park JH, Ji Y, Kim YJ, Singh RK, Lee JH, Kim HW. Erosion-Driven Enamel Crystallite Growth Phenomenon at the Tooth Surface In Vitro. ACS APPLIED BIO MATERIALS 2022; 5:3753-3765. [PMID: 35913850 DOI: 10.1021/acsabm.2c00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The erosion of tooth enamel is a common oral disease. The erosion pattern and location and the effects of nanoscale chemical composition on the erosion susceptibility of enamel have been well documented. However, the enamel remineralization accompanied by erosion and its underlying physicochemical mechanisms still remain poorly understood. Here, using rat molars selected for its good relevancy to human teeth, we investigated the remineralization behavior of the outermost enamel surface at the nanoscale level during erosion in diluted hydrochloric acid solutions. While particles on the outermost enamel surface that represent the termination of crystallites protruding to the surface from the near-surface core eroded by acid-attack, the lateral-growth of the particles (i.e., the main remineralization picture of the surface enamel) occurred concurrently. Ionic analyses indicate that the particle growth is driven by the local increase in pH near the eroding enamel surface as a result of the combination of the PO43- and CO32- released from the enamel surface with H+. As the pH increases eventually to the equilibrium pH level (∼5.5), a local supersaturation of solute ions is induced, resulting in particle growth. A simple growth model based on the experimental results together with an assumption that the particle growth is a diffusional process suggests that the particle growth rate is controlled by the degree of supersaturation and accommodation site for solute ions, which are affected by the pH of solution eroding the enamel surface. The remineralization mechanism presented by our study can explain how the enamel on being acid-exposed or tooth decay progress by beverage or food can naturally remineralize in the oral cavity and how remineralization can foster different surface topology at the nanoscale, depending on the pH value of etchant before the dental filling material is applied.
Collapse
Affiliation(s)
- Kang Rae Cho
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Department of Chemical and Biological Engineering, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| | - Bupmo Kim
- Department of Chemical Engineering & Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Wooyul Kim
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Jeung Hun Park
- Andlinger Center for Energy and the Environment, and Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Yu Jin Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| | - Rajendra Kumar Singh
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Department of Biomateials Science, College of Dentistry, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.,Department of Biomateials Science, College of Dentistry, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
46
|
Zuev DM, Golubchikov DO, Evdokimov PV, Putlyaev VI. Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, Pei D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front Bioeng Biotechnol 2022; 10:911180. [PMID: 35651546 PMCID: PMC9149242 DOI: 10.3389/fbioe.2022.911180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic biomaterials for reconstructing damaged bone. Accompanied by bone healing process, implanted materials are gradually degraded while bone ultimately returns to its original geometry and function. In this progress report, we reviewed the complex and tight relationship between the bone healing response and CaP-based biomaterials, with the emphasis on the in vivo degradation mechanisms of such material and their osteoinductive properties mediated by immune responses, osteoclastogenesis and osteoblasts. A deep understanding of the interaction between biological healing process and biomaterials will optimize the design of CaP-based biomaterials, and further translate into effective strategies for biomaterials customization.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yilong Cheng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| |
Collapse
|
48
|
Synthesis, structural and luminescent properties of Mn-doped calcium pyrophosphate (Ca 2P 2O 7) polymorphs. Sci Rep 2022; 12:7116. [PMID: 35504944 PMCID: PMC9065112 DOI: 10.1038/s41598-022-11337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
In the present work, three different Mn2+-doped calcium pyrophosphate (CPP, Ca2P2O7) polymorphs were synthesized by wet co-precipitation method followed by annealing at different temperatures. The crystal structure and purity were studied by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (SS-NMR), and electron paramagnetic resonance (EPR) spectroscopies. Scanning electron microscopy (SEM) was used to investigate the morphological features of the synthesized products. Optical properties were investigated using photoluminescence measurements. Excitation spectra, emission spectra, and photoluminescence decay curves of the samples were studied. All Mn-doped polymorphs exhibited a broadband emission ranging from approximately 500 to 730 nm. The emission maximum was host-dependent and centered at around 580, 570, and 595 nm for γ-, β-, and α-CPP, respectively.
Collapse
|
49
|
Epple M, Enax J, Meyer F. Prevention of Caries and Dental Erosion by Fluorides-A Critical Discussion Based on Physico-Chemical Data and Principles. Dent J (Basel) 2022; 10:6. [PMID: 35049604 PMCID: PMC8774499 DOI: 10.3390/dj10010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dental erosion is a common problem in dentistry. It is defined as the loss of tooth mineral by the attack of acids that do not result from caries. From a physico-chemical point of view, the nature of the corroding acids only plays a minor role. A protective effect of fluorides, to prevent caries and dental erosion, is frequently claimed in the literature. The proposed modes of action of fluorides include, for example, the formation of an acid-resistant fluoride-rich surface layer and a fluoride-induced surface hardening of the tooth surface. We performed a comprehensive literature study on the available data on the interaction between fluoride and tooth surfaces (e.g., by toothpastes or mouthwashes). These data are discussed in the light of general chemical considerations on fluoride incorporation and the acid solubility of teeth. The analytical techniques available to address this question are presented and discussed with respect to their capabilities. In summary, the amount of fluoride that is incorporated into teeth is very low (a few µg mm-2), and is unlikely to protect a tooth against an attack by acids, be it from acidic agents (erosion) or from acid-producing cariogenic bacteria.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (F.M.)
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (F.M.)
| |
Collapse
|
50
|
Yan Y, Fang Y, Li J, Yang Y, Chen F, Wu S, Hooper T, Jaiswal A, White T. Transformation of amorphous calcium phosphate to monoclinic nano-hydroxylapatite. CrystEngComm 2022. [DOI: 10.1039/d2ce00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transformation product of amorphous calcium phosphate without inhibitors at room temperature is monoclinic HAp rather than the more common hexagonal HAp.
Collapse
Affiliation(s)
- Yao Yan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yanan Fang
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Jun Li
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Thomas Hooper
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ankit Jaiswal
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tim White
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|