1
|
Kumar P, Holmberg K, Soni I, Islam N, Kumar M, Shandilya P, Sillanpää M, Chauhan V. Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights. Adv Colloid Interface Sci 2024; 333:103303. [PMID: 39303355 DOI: 10.1016/j.cis.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The global corrosion cost is estimated to be around 2.5 trillion USD, which is more than 3 % of the global GDP. Against this background, large efforts have been made to find effective corrosion inhibitors. Ionic liquids (ILs) are nowadays regarded as reliable functional materials and one of the most promising classes of anticorrosion agents. Not only are they efficient in preventing corrosion of iron and other metals, but they are also relatively inexpensive, need no solvents, and are non-toxic to humans This review addresses both experimental and theoretical investigations conducted to IL-based corrosion inhibitors (CIs). It covers various ILs used, synthesis methods, and their performance in diverse corrosive environments. Electrochemical techniques like EIS and potentiodynamic polarization, along with computational approaches including quantum chemical calculations and DFT, provide valuable insights into corrosion inhibition mechanisms and the interactions between anticorrosion agents-surfaces. The synergistic combination of experimental and theoretical approaches enhances our understanding of corrosion inhibition, enabling the design and optimization of effective and sustainable corrosion protection strategies. This review consolidates the existing knowledge on ionic liquid-based corrosion inhibitors, highlights the key findings from both experimental and theoretical investigations, and points out possible directions for further studies in this area.
Collapse
Affiliation(s)
- Pankaj Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India
| | - Krister Holmberg
- Applied Surface Chemistry, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Isha Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India
| | - Nasarul Islam
- Department of Chemistry, Government Degree College, 193502 Bandipora, India
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, HP 176215, India
| | - Pooja Shandilya
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Mika Sillanpää
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University, Institute of Engineering and Technology, Rajpura 140401, Punjab, India
| | - Vinay Chauhan
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, India.
| |
Collapse
|
2
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406439. [PMID: 39444066 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
- Intervention Department, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dan Yao
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Mengsi Cai
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoying Huang
- Joint Centre of Translational Medicine, Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
3
|
Ding TT, Wang ZJ, Tao MT, Gu ZW, Chen RJ, Xu YQ, Liu SS. An innovative mixture sampling strategy with uniform design: Application to global sensitivity analysis of mixture toxicity. ENVIRONMENT INTERNATIONAL 2024; 191:108968. [PMID: 39213918 DOI: 10.1016/j.envint.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Global sensitivity analysis combined with quantitative high-throughput screening (GSA-qHTS) uses random starting points of the trajectories in mixture design, which may lead to potential contingency and a lack of representativeness. Moreover, a scenario in which all factor levels were at stimulatory effects was not considered, thereby hindering a comprehensive understanding of GSA-qHTS. Accordingly, this study innovatively introduced an optimised experimental design, uniform design (UD), to generate non-random and representative sample points with smaller uniformity deviation as starting points of multiple trajectories. By combining UD with the previously optimised one-factor-at-a-time (OAT) method, a novel mixture design method was developed (UD-OAT). The single toxicity tests showed that three pyridinium and five imidazolium ionic liquids (ILs) exerted stimulatory effects on Vibrio qinghaiensis sp.-Q67; thus, four stimulatory effective concentrations of each IL were selected as factor levels. The UD-OAT generated 108 mixture samples with equal frequency and without repetition. High-throughput microplate toxicity analysis revealed that all 108 mixtures exhibited inhibitory effects. Among these, type B mixtures exhibited increasing toxicities that subsequently decreased, unlike type C mixtures, which consistently increased over time. GSA successfully identified three of the eight ILs as important factors influencing the toxicities of the mixtures. When individual ILs produced stimulatory effects, mixtures containing two to three ILs exhibited either stimulatory effects or none. In contrast, mixtures containing five to eight ILs exhibited inhibitory effects, while those containing four ILs showed a transition from stimulatory to inhibitory effects. This study provides a novel mixture design method for studying mixture toxicity and fills the application gap of GSA-qHTS. The phenomenon of individuals being beneficial while mixtures can be harmful challenges traditional mixture risk assessments.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ru-Jun Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Homa J, Stachowiak W, Olejniczak A, Chrzanowski Ł, Niemczak M. Ecotoxicity studies reveal that organic cations in dicamba-derived ionic liquids can pose a greater environmental risk than the herbicide itself. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171062. [PMID: 38401717 DOI: 10.1016/j.scitotenv.2024.171062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.
Collapse
Affiliation(s)
- Jan Homa
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| |
Collapse
|
5
|
Chen X, Li Z, Yang C, Yang D. Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges. Asian J Pharm Sci 2024; 19:100900. [PMID: 38590797 PMCID: PMC10999516 DOI: 10.1016/j.ajps.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2024] Open
Abstract
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Wu F, Wang Y, Zhao Y, Zeng S, Wang Z, Tang M, Zeng W, Wang Y, Chang X, Xiang J, Xie Z, Han B, Liu Z. Upcycling poly(succinates) with amines to N-substituted succinimides over succinimide anion-based ionic liquids. Nat Commun 2024; 15:712. [PMID: 38267443 PMCID: PMC10808099 DOI: 10.1038/s41467-024-44892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The chemical transformation of waste polymers into value-added chemicals is of significance for circular economy and sustainable development. Herein, we report upcycling poly(succinates) (PSS) with amines into N-substituted succinimides over succinimide anion-based ionic liquids (ILs, e.g, 1,8-diazabicyclo[5.4.0]undec-7-ene succinimide, [HDBU][Suc]). Assisted with H2O, [HDBU][Suc]) showed the best performance, which could achieve complete transformation of a series of PSS into succinimide derivatives and corresponding diols under mild and metal-free conditions. Mechanism investigation indicates that the cation-anion confined hydrogen-bonding interactions among IL, H2O, ester group, and amino/amide groups, strengthens nucleophilicity of the N atoms in amino/amide groups, and improves electrophilicity of carbonyl C atom in ester group. The attack of the amino/amide N atom on carbonyl C of ester group results in cleavage of carbonyl C-O bond in polyester and formation of amide group. This strategy is also effective for aminolysis of poly(trimethylene glutarate) to glutarimides, and poly(1,4-butylene adipate) to caprolactone diimides.
Collapse
Affiliation(s)
- Fengtian Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Economic Development Zone, Guanglan Avenue 418, Nanchang, 330013, P. R. China
| | - Yuepeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqian Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Economic Development Zone, Guanglan Avenue 418, Nanchang, 330013, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
7
|
Michel ME, Wen CC, Yee SW, Giacomini KM, Hamdoun A, Nicklisch SCT. TICBase: Integrated Resource for Data on Drug and Environmental Chemical Interactions with Mammalian Drug Transporters. Clin Pharmacol Ther 2023; 114:1293-1303. [PMID: 37657924 DOI: 10.1002/cpt.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.
Collapse
Affiliation(s)
- Matthew E Michel
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | | | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Wang L, Du YQ, Deng XQ, Cai JY, Liang WW, Hu XL. Intergenerational toxic effects of 1-methyl-3-octylimidazolium chloride and 1-dodecylpyridinium chloride on the water flea, Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121501-121512. [PMID: 37953428 DOI: 10.1007/s11356-023-30928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Ionic liquids (ILs) are generally considered eco-friendly alternatives to conventional industrial solvents, but they are hard to degrade and easily accumulate in the environment. Therefore, their long-term toxicities are especially vital to estimate their potential risk. However, the chronic toxicities of ILs over generations lacked intensive investigation. In the present work, acute toxicity and chronic toxicity of 1-methyl-3-octylimidazolium chloride ([Omim]Cl) and 1-dodecylpyridinium chloride ([DPy]Cl) were studied on Moina macrocopa with the first exposed generation (F0) and two successive recovery generation (F1 to F2). The acute results showed that both [Omim]Cl and [DPy]Cl exhibited high toxicity to M. macrocopa. The chronic results indicated that the exposure of [Omim]Cl and [DPy]Cl could inhibit the survivorship, body length, and reproduction of M. macrocopa and exhibited a significant dose-related decrease. Furthermore, these two types of ILs presented intergenerational toxicity in the water flea. And the toxic effects of [Omim]Cl disappeared in the recovery tests of F2 generation, while the [DPy]Cl toxic effects continued. Our research suggested a potential risk for the aquatic ecosystem induced by ILs. And the damage done by these chemicals to the aquatic environment is worthy of attention.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
9
|
Lisiecka N, Ciesielski T, Sopata O, Parus A, Woźniak-Karczewska M, Simpson M, Frankowski R, Zgoła-Grześkowiak A, Kloziński A, Siwińska-Ciesielczyk K, Klapiszewski Ł, Niemczak M, Owsianiak M, Heipieper HJ, Chrzanowski Ł. Sorption of ionic liquids in soil enriched with polystyrene microplastic reveals independent behavior of cations and anions. CHEMOSPHERE 2023; 341:139927. [PMID: 37633614 DOI: 10.1016/j.chemosphere.2023.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Recently, much attention has been focused on the application of the Ionic Liquids (ILs) with herbicidal activity in agriculture. It has been suggested that through the appropriate selection of cations and anions, one can adjust the properties of ILs, particularly the hydrophobicity, solubility, bioavailability, toxicity. In practical agricultural conditions, it will be beneficial to reduce the mobility of herbicidal anions, such as the commonly applied 2,4-dichlorophenoxyacetic acid [2,4-D] in the soil. Furthermore, microplastics are becoming increasingly prevalent in the soil, potentially stimulating herbicidal sorption. Therefore, we investigated whether cations in ILs influence the mobility of anions in OECD soil supplemented with polystyrene microplastic (PS). For this purpose, we used the 2,4-D based ILs consisting of: a hydrophilic choline cation [Chol][2,4-D] and a hydrophobic choline cation with a C12chain [C12Chol][2,4-D]. Characterization of selected micropolystyrene was carried out using the BET sorption-desorption isotherm, particle size distribution and changes in soil sorption parameters such as soil sorption capacity and cation exchange capacity. Based on the batch sorption experiment, the effect of microplastic on the sorption of individual cations and anions in soil contaminated with micropolystyrene was evaluated. The results obtained indicate that the introduction of a 1-10% (w/w) PS resulted in an 18-23% increase of the soil sorption capacity. However, the sorption of both ILs' cations increased only by 3-5%. No sorption of the [2,4-D] anion was noted. This suggests that cations and anions forming ILs, behave independently of each other in the environment. The results indicate the fact that ILs upon introduction into the environment are not a new type of emerging contaminant, but rather a typical mixture of ions. It is worth noting that when analyzing the behavior of ILs in the environment, it is necessary to follow the fate of both cations and anions.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Tomasz Ciesielski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Olga Sopata
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Anna Parus
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Simpson
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Robert Frankowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Arkadiusz Kloziński
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Łukasz Klapiszewski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
10
|
Cui S, Gao Y, Huang Y, Shen L, Zhao Q, Pan Y, Zhuang S. Advances and applications of machine learning and deep learning in environmental ecology and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122358. [PMID: 37567408 DOI: 10.1016/j.envpol.2023.122358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Machine learning (ML) and deep learning (DL) possess excellent advantages in data analysis (e.g., feature extraction, clustering, classification, regression, image recognition and prediction) and risk assessment and management in environmental ecology and health (EEH). Considering the rapid growth and increasing complexity of data in EEH, it is of significance to summarize recent advances and applications of ML and DL in EEH. This review summarized the basic processes and fundamental algorithms of the ML and DL modeling, and indicated the urgent needs of ML and DL in EEH. Recent research hotspots such as environmental ecology and restoration, environmental fate of new pollutants, chemical exposures and risks, chemical hazard identification and control were highlighted. Various applications of ML and DL in EEH demonstrate their versatility and technological revolution, and present some challenges. The perspective of ML and DL in EEH were further outlined to promote the innovative analysis and cultivation of the ML-driven research paradigm.
Collapse
Affiliation(s)
- Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yizhou Huang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiming Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaru Pan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
11
|
Li HY, Chu YH. Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review. Molecules 2023; 28:6817. [PMID: 37836660 PMCID: PMC10574798 DOI: 10.3390/molecules28196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Ionic liquids (ILs) are a class of low-melting molten salts (<100 °C) constituted entirely of ions, and their research has gained tremendous attention in line with their remarkably growing applications (>124,000 publications dated 30 August 2023 from the Web of ScienceTM). In this review, we first briefly discussed the recent developments and unique characteristics of ILs and zwitterionic liquids (ZILs). Compared to molecular solvents and other conventional organic compounds, (zwitter) ionic liquids carry negligible volatility and are potentially recyclable and reusable. For structures, both ILs and ZILs can be systematically tailor-designed and engineered and are synthetically fine-tunable. As such, ionic liquids, including chiral, supported, task-specific ILs, have been widely used as powerful ionic solvents as well as valuable additives and catalysts for many chemical reactions. Moreover, ILs have demonstrated their value for use as polymerase chain reaction (PCR) enhancers for DNA amplification, chemoselective artificial olfaction for targeted VOC analysis, and recognition-based affinity extraction. As the major focus of this review, we extensively discussed that small-molecule thermoresponsive ILs (TILs) and ZILs (zwitterionic TILs) are new types of smart materials and can be expeditiously discovered through the structure and phase separation (SPS) relationship study by the combinatorial approach. Using this SPS platform developed in our laboratory, we first depicted the rapid discovery of N,N-dialkylcycloammonium and 1,3,4-trialkyl-1,2,3-triazolium TILs that concomitantly exhibited LCST (lower critical solution temperature) phase transition in water and displayed biochemically attractive Tc values. Both smart IL materials were suited for applications to proteins and other biomolecules. Zwitterionic TILs are ZILs whose cations and anions are tethered together covalently and are thermoresponsive to temperature changes. These zwitterionic TIL materials can serve as excellent extraction solvents, through temperature change, for biomolecules such as proteins since they differ from the common TIL problems often associated with unwanted ion exchanges during extractions. These unique structural characteristics of zwitterionic TIL materials greatly reduce and may avoid the denaturation of proteins under physiological conditions. Lastly, we argued that both rational structural design and combinatorial library synthesis of small-molecule TIL materials should take into consideration the important issues of their cytotoxicity and biosafety to the ecosystem, potentially causing harm to the environment and directly endangering human health. Finally, we would concur that before precise prediction and quantitative simulation of TIL structures can be realized, combinatorial chemistry may be the most convenient and effective technology platform to discover TIL expeditiously. Through our rational TIL design and combinatorial library synthesis and screening, we have demonstrated its power to discover novel chemical structures of both TILs and zwitterionic TILs. Undoubtedly, we will continue developing new small-molecule TIL structures and studying their applications related to other thermoresponsive materials.
Collapse
Affiliation(s)
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan;
| |
Collapse
|
12
|
Huang HH, Jia J, Ren L, Wang S, Yue T, Yan B, Chu YH. A zwitterionic solution for smart ionic liquids to evade cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131430. [PMID: 37080032 DOI: 10.1016/j.jhazmat.2023.131430] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
By linking the cation and anion motifs of ionic liquids (ILs), zwitterionic liquids (ZILs) exhibit at least 146-2740 and 112-1550 folds less cytotoxicity in human gastric and colon cells than those of the structurally related ILs. Computer simulation shows that ZIL molecules hardly penetrate the cell membranes in contrast to ILs. These findings reveal a novel mechanism for ZILs to evade cytotoxicity, establishing a structure-based design principle for the next generation of sustainable ZILs.
Collapse
Affiliation(s)
- Hsin-Heng Huang
- Department of Chemistry and Biochemistry and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, 621301, Taiwan, ROC
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Luyao Ren
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Shenqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, 621301, Taiwan, ROC.
| |
Collapse
|
13
|
Wei P, Xiao Y, Liu C, Yan B. Thyroid endocrine disruption induced by [C 8mim]Br: An integrated in vivo, in vitro, and in silico study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106535. [PMID: 37086652 DOI: 10.1016/j.aquatox.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Conventional thyroid-disrupting chemicals (TDCs) such as polybrominated diphenyl ethers, polychlorinated biphenyls, and bisphenols perturb animal's thyroid endocrine system by mimicking the action of endogenous thyroid hormones (THs), since they share a similar backbone structure of coupled benzene rings with THs. 1-methyl-3-octylimidazolium bromide ([C8mim]Br), a commonly used ionic liquid (IL), has no structural similarity to THs. Whether it interferes with thyroid function and how its mode of action differs from conventional TDCs is largely unknown. Herein, zebrafish embryo-larvae experiments (in vivo), GH3 cell line studies (in vitro), and molecular simulation analyses (in silico) were carried out to explore the effect of [C8mim]Br on thyroid homeostasis and its underlying mechanism. Molecular docking results suggested that [C8mim]+ likely bound to retinoid X receptors (RXRs), which may compromise the formation of TH receptor/RXR heterodimers. This then perturbed the negative regulation of thyroid-stimulating hormone β (tshβ) transcription by T3 in GH3 cell line. The resulting enhancement of tshβ expression further caused hyperthyroidism and developmental toxicity in larval zebrafish. These findings provided a crucial aspect of the ecological risks of ILs, and presented a new insight into the thyroid-disrupting mechanisms for emerging pollutants that do not have structural similarity to THs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Li J, Zhang M, He J, Ni P. Exploring anionic homopolymerization and copolymerization of vinyl monomers in deep eutectic solvent. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39288-39318. [PMID: 36745344 DOI: 10.1007/s11356-023-25562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Collapse
|
16
|
Makarov D, Fadeeva Y, Safonova E, Shmukler L. Predictive modeling of antibacterial activity of ionic liquids by machine learning methods. Comput Biol Chem 2022; 101:107775. [DOI: 10.1016/j.compbiolchem.2022.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
|
17
|
Li X, Zhao F, Fu C, Yang Y, Xu Q, Hao Y, Shi X, Chen D, Bi X, Gong Z, Wu S, Zhang H. Early- and whole-life exposures to florfenicol disrupts lipid metabolism and induces obesogenic effects in zebrafish (Danio rerio). CHEMOSPHERE 2022; 308:136429. [PMID: 36115475 DOI: 10.1016/j.chemosphere.2022.136429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Florfenicol (FF), a widely used veterinary antibiotic, has been frequently detected in both aquatic environments and human body fluids. As a result, there is a growing concern on its health risks. Previous studies have revealed various toxicities of FF on animals, while there are relatively limited researches on its metabolic toxicity. Herein, by employing zebrafish as an in vivo model, endpoints at multiple levels of biological organization were measured to investigate the metabolic toxicity, especially disturbances on lipid metabolism, of this emerging pollutant. Our results indicated that early-life exposure (from 2 h past fertilization (hpf) to 15 days past fertilization (dpf)) to FF significantly increased body mass index (BMI) values, staining areas of visceral lipids, and triacylglycerol (TAG) and total cholesterol (TC) contents of larvae. Further, by analyzing expression patterns of genes encoding key proteins regulating lipid metabolism, our data suggested that promoted intestinal absorption and hepatic de novo synthesis of lipids, suppressed TAG decomposition, and inhibited FFA oxidation all contributed to TAG accumulation in larvae. Following whole-life exposure (from 2 hpf to 120 dpf), BMI values, TAG and TC contents all increased significantly in males, and significant increases of hepatic TAG levels were also observed in females. Moreover, FF exposure interfered with lipid homeostasis of males and females in a gender-specific pattern. Our study revealed the obesogenic effects of FF at environmentally relevant concentrations (1, 10, and 100 μg/L) and therefore will benefit assessment of its health risks. Additionally, our results showed that FF exposure caused a more pronounced obesogenic effect in zebrafish larvae than adults, as suggested by significant increases of all endpoints at individual, tissular, and molecular levels in larvae. Therefore, our study also advances the application of zebrafish larval model in assessing metabolic toxicity of chemicals, due to the higher susceptibility of larvae than adults.
Collapse
Affiliation(s)
- Xinhui Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China.
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu 610072, PR China
| | - Yanyu Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Qianru Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Yinfei Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Zhilin Gong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Shujian Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Haifeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| |
Collapse
|
18
|
Luo H, Jiang K, Wang X, Yao H, Liang X, Li Y, Liu H. How multiple noncovalent interactions regulate the aggregation behavior of amphiphilic triblock copolymer/surface-active ionic liquid mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Egorova KS, Galushko AS, Dzhemileva LU, D’yakonov VA, Ananikov VP. Application of Bio-Profiles of Chemical Reactions for Analysis of Solvent Impact on Overall Toxicity of C–C Cross-Coupling Process. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Wang H, Wang X, Jia J, Qin Y, Chen S, Wang S, Martyniuk CJ, Yan B. Comparative toxicity of [C 8mim]Br and [C 8py]Br in early developmental stages of zebrafish (Danio rerio) with focus on oxidative stress, apoptosis, and neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103864. [PMID: 35430362 DOI: 10.1016/j.etap.2022.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The increasing production and usage of ionic liquids (ILs) have raised global ecotoxicological concerns regarding their release into the environment. While the effects of side chains on the IL-induced toxicity in various aquatic organisms have been well-recognized, the role of cationic cores in determining their ecotoxicity remains to be elucidated. Herein, the comparative bioavailability and toxicity of two ILs with different cationic cores but the same anion and side chain in zebrafish embryos were determined. 1-octyl-3-methylimidazolium bromide ([C8mim]Br) has higher accumulation in zebrafish, and triggered developmental toxicity by inducing oxidative stress and apoptosis. Meanwhile, 1-octyl-1-methylpyridium bromide ([C8py]Br) enhanced SOD activity and upregulated anti-apoptotic bcl-2 gene expression, contributing to its much lower neurodevelopmental toxicity. Our study demonstrates the vital role of cationic core in determining the developmental toxicity of ILs and highlights the need for further investigations into the toxicity of imidazolium and pyridinium based ILs in aquatic ecosystems.
Collapse
Affiliation(s)
- Huangyingzi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yingju Qin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Siying Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shenqing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
21
|
Ghirardello M, Costantini M, Vecchi A, Pacifico S, Pazzi D, Castiglione F, Mele A, Marra A. Synthesis of Chiral Ionic Liquids from Natural Monosaccharides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Maira Costantini
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Alessandra Vecchi
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Salvatore Pacifico
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Daniele Pazzi
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Franca Castiglione
- Department of Chemistry Materials and Chemical Engineering “G. Natta“ Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Andrea Mele
- Department of Chemistry Materials and Chemical Engineering “G. Natta“ Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM - UMR 5247) Université de Montpellier Pôle Chimie Balard Recherche 1919 Route de Mende 34293 Montpellier cedex 5 France
| |
Collapse
|