1
|
Gieling J, Wéry G, Lopes C, de Meester J, Brandel C, Cartigny Y, Leyssens T, Baier DM. Mechanochemical Deracemization: A Sustainable Approach to Enantiopurity. Chemistry 2025:e202404120. [PMID: 39749642 DOI: 10.1002/chem.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully. Key parameters such as milling material, ball number and size, the use of a bulk material and liquid-assisted grinding (LAG) were systematically investigated, revealing their crucial role. Quantitative enantiomeric excesses (ee) were achieved, while reaction times were reduced by up to 97 % and solvent consumption by as much as 100 %. This work establishes MCDR as a versatile, sustainable pathway to enantiopure compounds. By highlighting the generalizability of this approach and its huge potential for minimizing waste, this study provides the foundation for future advancements in mechanochemical deracemization.
Collapse
Affiliation(s)
- Job Gieling
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Guillaume Wéry
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Chrystal Lopes
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Joséphine de Meester
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Clément Brandel
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Yohann Cartigny
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Tom Leyssens
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Daniel M Baier
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
2
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Cao Y, Zhao Y, Tan T, Liu F, Alaasar M. Manipulation of Supramolecular Chirality in Bicontinuous Networks of Bent-Shaped Polycatenar Dimers. Chemistry 2025; 31:e202403586. [PMID: 39431520 DOI: 10.1002/chem.202403586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Bicontinuous cubic liquid crystalline (LC) phases are of particular interest due their possible applications in electronic devices and special supramolecular chirality. Herein, we report the design and synthesis of first examples of achiral bent-shaped polycatenar dimers, capable of displaying mirror symmetry breaking in their cubic and isotropic liquid phases. The molecules have a taper-shaped 3,4,5-trialkoxybenzoate segment connected to rod-like building unit terminated with one terminal flexible chain. The two segments were connected using an aliphatic spacer with seven methylene units to induce bending of the whole structure. Investigated by the small-angle X-ray scattering (SAXS), a double network achiral cubic phase Cub/Ia3 ‾ ${\bar{3}}$ d, which is a meso-structure, and a chiral triple network cubic phase Cub/I23[*] are formed. The molecules self-assemble into molecular helices and progress along the networks. Interestingly, different linking groups such as ester or azo linkages and core fluorination lead to distinct local helicity, resulting in an alkyl chain volume dependent phase transition sequence Ia3 ‾ ${\bar{3}}$ d(L) - I23* - Ia3 ‾ ${\bar{3}}$ d(S). The re-entry of Ia3 ‾ ${\bar{3}}$ d phase and loss of supramolecular chirality is attributed to the delicate influence of steric effect at the mono-substitute end and interhelix interaction. Besides, aromatic core fluorination was proved to be a successful tool stabilizing the cubic phases in these dimers.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangzhou, 510641, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yangyang Zhao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianyi Tan
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mohamed Alaasar
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Street 2, Halle, 069120, Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
4
|
Casimo G, Micca Longo G, Longo S. Beyond Homochirality: Computer Modeling Hints of Heterochiral Proteins in Early and Extraterrestrial Life. ASTROBIOLOGY 2025; 25:22-31. [PMID: 39786977 DOI: 10.1089/ast.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Agent-based simulations are set to describe the early biotic selection of oligomers made of monomers of different chirality. The simulations consider the spatial distribution of agents and resources, the balance of biomass of different chirality, and the balance of chemical energy. Following the well-known Wald's hypothesis, a disadvantage is attributed to the change in chirality along the biochemical sequence. A racemic amino acid budget is considered, based on findings in meteorites and the results of Miller's experiments. It is also hypothesized that the very first life forms were heterotrophic. Given these assumptions, our simulations showed that biological sequences were not strictly homochiral and had few chirality changes. These results suggest that the current dominance of homochiral species may have been preceded by a more structurally varied biochemistry. This might be reflected in the few known heterochiral proteins, whose structures are based neither on alpha-helices nor on beta-sheets. Extraterrestrial life forms might be based on such heterochiral proteins.
Collapse
Affiliation(s)
- Gianluigi Casimo
- Dipartimento di Bioscienze, Biotecnologie e Ambientale, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Gaia Micca Longo
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Savino Longo
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto per la Scienza e Tecnologia dei Plasmi - Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
5
|
Newcombe EA, Due AD, Sottini A, Elkjær S, Theisen FF, Fernandes CB, Staby L, Delaforge E, Bartling CRO, Brakti I, Bugge K, Schuler B, Skriver K, Olsen JG, Kragelund BB. Stereochemistry in the disorder-order continuum of protein interactions. Nature 2024; 636:762-768. [PMID: 39604735 PMCID: PMC11655355 DOI: 10.1038/s41586-024-08271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Intrinsically disordered proteins can bind via the formation of highly disordered protein complexes without the formation of three-dimensional structure1. Most naturally occurring proteins are levorotatory (L)-that is, made up only of L-amino acids-imprinting molecular structure and communication with stereochemistry2. By contrast, their mirror-image dextrorotatory (D)-amino acids are rare in nature. Whether disordered protein complexes are truly independent of chiral constraints is not clear. Here, to investigate the chiral constraints of disordered protein-protein interactions, we chose as representative examples a set of five interacting protein pairs covering the disorder-order continuum. By observing the natural ligands and their stereochemical mirror images in free and bound states, we found that chirality was inconsequential in a fully disordered complex. However, if the interaction relied on the ligand undergoing extensive coupled folding and binding, correct stereochemistry was essential. Between these extremes, binding could be observed for the D-ligand with a strength that correlated with disorder in the final complex. These findings have important implications for our understanding of the molecular processes that lead to complex formation, the use of D-peptides in drug discovery and the chemistry of protein evolution of the first living entities on Earth.
Collapse
Affiliation(s)
- Estella A Newcombe
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Amanda D Due
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andrea Sottini
- Department of Biochemistry and Department of Physics, University of Zurich, Zurich, Switzerland
| | - Steffie Elkjær
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Frederik Friis Theisen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Catarina B Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lasse Staby
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Christian R O Bartling
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of Zurich, Zurich, Switzerland
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Johan G Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
- Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Chen C, Ma Y, Yao K, Ji Q, Liu W. Enantioselective adsorption on chiral ceramics with medium entropy. Nat Commun 2024; 15:10105. [PMID: 39572550 PMCID: PMC11582819 DOI: 10.1038/s41467-024-54414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Chiral metal surfaces provide an environment for enantioselective adsorption in various processes such as asymmetric catalysis, chiral recognition, and separation. However, they often suffer from limitations such as reduced enantioselectivity caused by kink coalescence and atomic roughness. Here, we present an approach using medium-entropy ceramic (MEC), specifically (CrMoTa)Si2 with a C40 hexagonal crystal structure, which overcomes the trade-off between thermal stability and enantioselectivity. Experimental confirmation is provided by employing quartz crystal microbalance (QCM), where the electrode is coated with MEC films using non-reactive magnetron sputtering technology. The chiral nature is verified through transmission electron microscopy and circular dichroism. Density-functional theory (DFT) calculations show that the stability of MEC films is significantly higher than that of high-index Cu surfaces. Through a combination of high-throughput DFT calculations and theoretical modeling, we demonstrate the high enantioselectivity (42% e.e.) of the chiral MEC for serine, a prototype molecule for studying enantioselective adsorption. The QCM results show that the adsorption amount of L-serine is 1.58 times higher than that of D-serine within a concentration range of 0-60 mM. These findings demonstrate the potential application of MECs in chiral recognition.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yinglin Ma
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, Jiangsu, China
| | - Kunda Yao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, Jiangsu, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
7
|
Zeng H, Yu P, Zhang J, Wan X. Regioselective and Homochiral Supramolecular Polymerization of Nanotadpole Aggremers of Poly(phenylacetylene) Derivatives. Angew Chem Int Ed Engl 2024:e202417792. [PMID: 39530433 DOI: 10.1002/anie.202417792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Biological homochirality is a signature of life. Supramolecular polymerization is effective to achieve high hierarchical homochirality in nature, but has not been well-explored. Herein, we report regioselective and homochiral supramolecular polymerization of chiral nanotadpole aggregates made of either synthetic helical poly(phenylacetylene)s or chirality-amplified co-assembly of chiral and achiral poly(phenylacetylene)s. The twisted nanotadpole aggregates with high screw-sense preference polymerized as monomers (aggremers) into supramolecular chains in a head-to-tail regioselective and stepwise manner. Supramolecular copolymerization of enantiomeric aggremers favored formation of homochiral hierarchical supramolecular structures as visualized by TEM. Chiral hexagonal columnar mesophase of aggremers was responsive for the stereoselectivity. The work opens a gate to controllably and effectively construct functional chiral supramolecular materials and deepens the understanding of hierarchical biological homochirality.
Collapse
Affiliation(s)
- Hua Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peiyao Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
He Z, Guo J, Wang Y, Ma H, Cheng X, Zhang W. Dynamically Switchable Global Chirality in Racemic Polymer Systems. Angew Chem Int Ed Engl 2024:e202417495. [PMID: 39526783 DOI: 10.1002/anie.202417495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Any polymers composed of racemic segments are obviously optically inactive and lack any chiroptical applications. Here, we present an intriguing method for precisely generating global chirality in racemic copolymer assemblies without any external asymmetrical intervention via step-wise polymerization-induced chiral self-assembly (PICSA). Global supramolecular chirality of the nanoaggregates could be dynamically switched by the two diametrically opposed chiral conflict effects: "first come, first serve" effect and "late-comer lives above" effect, which can be controlled by the precisely specified the number and sequence of enantiomeric segments. Significantly, the supramolecular stacking manners of the racemic mesogenic building units as well as the liquid crystallinity of the solvophobic core play a crucial role for the chiral communication pathway of enantiomeric mesogens. Furthermore, such switchable global chirality in racemic polymers is broadly applicable and well regulable. We propose that this research may challenge the notion that racemic systems lack optical activity while highlighting their potential applications in functional racemic polymer materials and providing insights into the evolution of racemates towards homochirality on early Earth.
Collapse
Affiliation(s)
- Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaying Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Niu X, Zhang J, Yuan M, Liu Y, Wang Y, Li H, Wang K. Chiral nanoenzymes: synthesis and applications. Mikrochim Acta 2024; 191:723. [PMID: 39495306 DOI: 10.1007/s00604-024-06803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Chiral nanoenzymes are a new type of material that possesses both chiral nanostructures and enzymatic catalytic activity. These materials exhibit selectivity in their catalytic activity towards organisms due to the introduction of chiral features in nanomaterials and have inherent chiral discrimination in organisms. As synthetic enzymes, chiral nanoenzymes offer significant advantages over natural enzymes. Due to their unique chiral structure and distinctive physicochemical properties, chiral nanoenzymes play an important role in various fields, including biology, medicine, and environmental protection. Their strong stereospecificity and biocompatibility make them useful in disease therapy, biosensing, and chiral catalysis, setting them apart from conventional and natural enzymes. In recent years, the design of synthetic methods and biological applications of chiral nanoenzymes has received significant attention and extensive research among scientists. This paper provides a systematic review of the research progress in the discovery, development, and application of chiral nanoenzymes in the last decade. Additionally, it presents various applications of chiral nanoenzymes, such as disease therapy, biosensing, and chiral catalysis. Finally, the challenges and future prospects of chiral nanoenzymes are discussed.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| |
Collapse
|
10
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
11
|
Abbas A, Ahmad MS, Cheng YH, AlFaify S, Choi S, Irfan RM, Numan A, Khalid M. A comprehensive review on the enantiomeric separation of chiral drugs using metal-organic frameworks. CHEMOSPHERE 2024; 364:143083. [PMID: 39154761 DOI: 10.1016/j.chemosphere.2024.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.
Collapse
Affiliation(s)
- Anees Abbas
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Graphite Technology, No. 9 Sinosteel Avenue 313100 Changxing, Zhejiang, China
| | - Muhammad Sheraz Ahmad
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - S AlFaify
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | | | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Applied Physics, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
12
|
Hong T, Zhou Q, Liu Y, Guan J, Zhou W, Tan S, Cai Z. From individuals to families: design and application of self-similar chiral nanomaterials. MATERIALS HORIZONS 2024; 11:3975-3995. [PMID: 38957038 DOI: 10.1039/d4mh00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiaqi Guan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 215000, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
13
|
Kumar R, Trodden B, Klimash A, Bousquet M, Chaubey SK, Fairbairn NJ, Russell BA, Wynne K, Karimullah AS, Gadegaard N, Skabara PJ, Hedley GJ, Hashiyada S, Movsesyan A, Govorov AO, Kadodwala M. Electromagnetic Enantiomer: Chiral Nanophotonic Cavities for Inducing Chemical Asymmetry. ACS NANO 2024; 18:22220-22232. [PMID: 39107108 PMCID: PMC11342365 DOI: 10.1021/acsnano.4c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Chiral molecules, a cornerstone of chemical sciences with applications ranging from pharmaceuticals to molecular electronics, come in mirror-image pairs called enantiomers. However, their synthesis often requires complex control of their molecular geometry. We propose a strategy called "electromagnetic enantiomers" for inducing chirality in molecules located within engineered nanocavities using light, eliminating the need for intricate molecular design. This approach works by exploiting the strong coupling between a nonchiral molecule and a chiral mode within a nanocavity. We provide evidence for this strong coupling through angular emission patterns verified by numerical simulations and with complementary evidence provided by luminescence lifetime measurements. In simpler terms, our hypothesis suggests that chiral properties can be conveyed on to a molecule with a suitable chromophore by placing it within a specially designed chiral nanocavity that is significantly larger (hundreds of nanometers) than the molecule itself. To demonstrate this concept, we showcase an application in display technology, achieving efficient emission of circularly polarized light from a nonchiral molecule. The electromagnetic enantiomer concept offers a simpler approach to chiral control, potentially opening doors for asymmetric synthesis.
Collapse
Affiliation(s)
- Rahul Kumar
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ben Trodden
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Anastasia Klimash
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Manon Bousquet
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Shailendra K. Chaubey
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nicola J. Fairbairn
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ben A. Russell
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Klaas Wynne
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Affar S. Karimullah
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nikolaj Gadegaard
- James
Watt School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, U.K.
| | - Peter J. Skabara
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Gordon J. Hedley
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - Shun Hashiyada
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department
of Electrical, Electronic, and Communication Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo 112-8551, Japan
| | - Artur Movsesyan
- Department
of Physics and Astronomy and Nano scale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610056, China
| | - Alexander O. Govorov
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Malcolm Kadodwala
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
14
|
Martínez-Parra JM, Gómez-Ojea R, Daudey GA, Calvelo M, Fernández-Caro H, Montenegro J, Bergueiro J. Exo-chirality of the α-helix. Nat Commun 2024; 15:6987. [PMID: 39143054 PMCID: PMC11325010 DOI: 10.1038/s41467-024-51072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The structure of helical polymers is dictated by the molecular chirality of their monomer units. Particularly, macromolecular helices with monomer sequence control have the potential to generate chiral topologies. In α-helical folded peptides, the sequential repetition of amino acids generates a chiral layer defined by the amino acid side chains projected outside the amide backbone. Despite being closely related to peptides' structural and functional properties, to the best of our knowledge, a general exo-helical symmetry model has not been yet described for the α-helix. Here, we perform the theoretical, computational, and spectroscopic elucidation of the α-helix principal exo-helical topologies. Non-canonical labeled amino acids are employed to spectroscopically characterize the different exo-helical topologies in solution, which precisely match the theorical prediction. Backbone-to-chromophore distance also shows the expected impact in the exo-helices' geometry and spectroscopic fingerprint. Theoretical prediction and spectroscopic validation of this exo-helical topological model provides robust experimental evidence of the chiral potential on the surface of helical peptides and outlines an entirely new structural scenario for the α-helix.
Collapse
Affiliation(s)
- Jose M Martínez-Parra
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Rebeca Gómez-Ojea
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Geert A Daudey
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Martin Calvelo
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Hector Fernández-Caro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Julian Bergueiro
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Bagdžiūnas G. Can Chirality Answer Whether We Are Alone? Chirality 2024; 36:e23708. [PMID: 39054794 DOI: 10.1002/chir.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Detecting biosignatures of life in extraterrestrial environments remains one of the primary objectives of scientific inquiry. Currently, both remote and direct detection methods are primarily aimed at identifying key molecular classes fundamental to terrestrial biology. However, a more universally applicable spectroscopic approach could involve searching for homochiral molecules. Thus, this perspective delves into the significance of homochirality as a critical factor in the origin of life. Without homochirality, the formation of self-recognizing and self-replicating complex molecules would be hindered. The various hypotheses concerning the origin of homochiral molecules have been explored and analyzed within this context. This perspective emphasizes the potential for discovering extraterrestrial microscopic life through the detection of homochiral molecules using chirodetecting methods such as chromatography and chiroptical spectroscopy or circular polarimetry as a promising remote technique. This discussion highlights the importance of homochirality in the broader search for life beyond Earth and underscores the need for innovative methodologies and instrumentation in astrobiological research. These techniques can be an effective method for detecting homochirality on future planetary missions.
Collapse
Affiliation(s)
- Gintautas Bagdžiūnas
- Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
16
|
Rodrigues R, Bou Debes D, Mendes M, Guerra P, Mestre G, Eden S, Cornetta LM, Ingólfsson O, da Silva FF. Experimental and Theoretical Study on Electron Ionization and Fragmentation of Propylene Oxide─the First Chiral Molecule Detected in the Interstellar Medium. J Phys Chem A 2024; 128:4795-4805. [PMID: 38860325 DOI: 10.1021/acs.jpca.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Propylene oxide, CH3CHOCH2, is the first chiral molecule detected in space and the third C3 oxide detected toward the Sagittarius B2 (Sgr B2 (N)) molecular cloud, the others being propanal, CH3CH2CHO, and acetone, (CH3)2CO. With homochirality being ubiquitous in the building blocks of living matter, the formation and decay paths of propylene oxide in space are of specific interest. Motivated by the significant role of photo- and secondary electrons in astrochemistry, we have studied electron ionization and fragmentation of propylene oxide. Ion appearance energies are determined and compared to threshold values for the respective processes calculated at the G4MP2 level of theory, and potential reaction pathways are computed at the DFT level of theory. Electron ionization is found to destabilize propylene oxide, leading to barrierless opening of the C1-C2 bond of the epoxy ring, hydrogen transfer, and fragmentation over the methyl vinyl ether or rupture of the C2-O bond of the epoxy ring and fragmentation of the allyl alcohol cation as an intermediate, rather than direct bond ruptures.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- CEFITEC, Departamento de Física, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Daniel Bou Debes
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
| | - Mónica Mendes
- CEFITEC, Departamento de Física, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Pedro Guerra
- CEFITEC, Departamento de Física, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Gonçalo Mestre
- CEFITEC, Departamento de Física, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Samuel Eden
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
| | - Lucas M Cornetta
- Instituto de Física da Universidade de São Paulo, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Oddur Ingólfsson
- Department of Chemistry and Science Institute, University of Iceland, Dunhagi 3, Reykjavik IS-107, Iceland
| | - F Ferreira da Silva
- CEFITEC, Departamento de Física, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|
17
|
Liu B, Fang R, Li W, Wu X, Liu T, Lin M, Sun J, Chen X. Fast Catalyst-Free Synthesis of Stereoselective Polypeptides via Hierarchical Chiral Assembly. J Am Chem Soc 2024. [PMID: 38858162 DOI: 10.1021/jacs.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Understanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine N-carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism. The polymerization of l and d enantiomers yielded predominantly right- and left-handed superhelical assemblies in a one-pot preparation, respectively. Notably, stereoselective polypeptide segments were efficiently prepared through hierarchical assembly-driven polymerization of racemic monomers in the absence of a catalyst. This research offers an innovative strategy for the convenient preparations of stereoenriched polypeptides and, more importantly, sheds light on the plausible emergence of homochiral peptides in the origin of life.
Collapse
Affiliation(s)
- Borui Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Rui Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Wenlong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xiaoyu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Tianli Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012 Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| |
Collapse
|
18
|
Inda A, Oiwa R, Hayami S, Yamamoto HM, Kusunose H. Quantification of chirality based on electric toroidal monopole. J Chem Phys 2024; 160:184117. [PMID: 38738609 DOI: 10.1063/5.0204254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Chirality ubiquitously appears in nature; however, its quantification remains obscure owing to the lack of microscopic description at the quantum-mechanical level. We propose a way of evaluating chirality in terms of the electric toroidal monopole, a practical entity of time-reversal even pseudoscalar (parity-odd) objects reflecting relevant electronic wave functions. For this purpose, we analyze a twisted methane molecule at the quantum-mechanical level, showing that the electric toroidal monopoles become a quantitative indicator for chirality. In the twisted methane, we clarify that the handedness of chirality corresponds to the sign of the expectation value of the electric toroidal monopole and that the most important ingredient is the modulation of the spin-dependent imaginary hopping between the hydrogen atoms, while the relativistic spin-orbit coupling within the carbon atom is irrelevant for chirality.
Collapse
Affiliation(s)
- A Inda
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - R Oiwa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - S Hayami
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - H M Yamamoto
- Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - H Kusunose
- QuaRC, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
- Department of Physics, Meiji University, Kanagawa 214-8571, Japan
| |
Collapse
|
19
|
Liu Y, Hao A, Xing P. Ultrasensitive Solvatochirochromism of Single Benzene Chromophores. Chemistry 2024; 30:e202400059. [PMID: 38409631 DOI: 10.1002/chem.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Solvents influence the structure, aggregation and folding behaviors of solvatochromic compounds. Ultrasensitive solvent mediated chiroptical response is conducive to the fabrication of molecular platform for sensing and recognition, which however, remains great challenges in conceptual or applicable design. Here we report a cysteine-based single benzene chromophore system that shows ultrasensitivity to solvents. Compared to the ratiometrically responsive systems, the chiroptical activities could be triggered or inverted depending on the substituents of chiral entities with an ultralow solvent volume fraction (<1 vol %). One drop of dipolar solvents shall significantly induce the emergence or inversion of chiroptical signals in bulky phases. Based on the experimental and computational studies, the ultrasensitivity is contributed to the intimate interplay between solvents and chiral compounds that anchors the specific chiral conformation. It illustrates that structurally simple organic compounds without aggregation or folding behaviors possess pronounced solvatochiroptical properties, which sheds light on the next-generation of chiroptical sensors and switches.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| |
Collapse
|
20
|
Qiu L, Cooks RG. Oxazolone mediated peptide chain extension and homochirality in aqueous microdroplets. Proc Natl Acad Sci U S A 2024; 121:e2309360120. [PMID: 38165938 PMCID: PMC10786291 DOI: 10.1073/pnas.2309360120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Peptide formation from amino acids is thermodynamically unfavorable but a recent study provided evidence that the reaction occurs at the air/solution interfaces of aqueous microdroplets. Here, we show that i) the suggested amino acid complex in microdroplets undergoes dehydration to form oxazolone; ii) addition of water to oxazolone forms the dipeptide; and iii) reaction of oxazolone with other amino acids forms tripeptides. Furthermore, the chirality of the reacting amino acids is preserved in the oxazolone product, and strong chiral selectivity is observed when converting the oxazolone to tripeptide. This last fact ensures that optically impure amino acids will undergo chain extension to generate pure homochiral peptides. Peptide formation in bulk by wet-dry cycling shares a common pathway with the microdroplet reaction, both involving the oxazolone intermediate.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
21
|
Matsumoto A, Tateishi D, Nakajima T, Kurosaki S, Ogawa T, Kawasaki T, Soai K. Achiral 2-pyridone and 4-aminopyridine act as chiral inducers of asymmetric autocatalysis with amplification of enantiomeric excess via the formation of chiral crystals. Chirality 2024; 36:e23617. [PMID: 37621025 DOI: 10.1002/chir.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Enantiomorphous crystals of achiral 2-pyridone and 4-aminopyridine served as sources of chirality, to induce the asymmetric autocatalysis of 5-pyrimidyl alkanol during the asymmetric addition of diisopropylzinc to the corresponding pyrimidine-5-carbaldehyde, that is, the Soai reaction. Following a significant amplification of enantiomeric excess through asymmetric autocatalysis, highly enantioenriched 5-pyrimidyl alkanol could be synthesized with their corresponding absolute configurations to those of chiral crystals of 2-pyridone and 4-aminopyridine.
Collapse
Affiliation(s)
- Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Nara, Japan
| | - Daisuke Tateishi
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Shiori Kurosaki
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Ogawa
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
22
|
Guo Y, Cheng X, He Z, Zhou Z, Miao T, Zhang W. Simultaneous Chiral Fixation and Chiral Regulation Endowed by Dynamic Covalent Bonds. Angew Chem Int Ed Engl 2023; 62:e202312259. [PMID: 37738071 DOI: 10.1002/anie.202312259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The construction of chiral superstructures through the self-assembly of non-chiral polymers usually relies on the interplay of multiple non-covalent bonds, which is significantly limited by the memory ability of induced chirality. Although the introduction of covalent crosslinking can undoubtedly enhance the stability of chiral superstructures, the concurrent strong constraining effect hinders the application of chirality-smart materials. To address this issue, we have made a first attempt at the reversible fixation of supramolecular chirality by introducing dynamic covalent crosslinking into the chiral self-assembly of side-chain polymers. After chiral induction, the reversible [2+2] cycloaddition reaction of the cinnamate group in the polymer chains can be further controlled by light to manipulate inter-chain crosslinking and decrosslinking. Based on this photo-programmable and dynamic chiral fixation strategy, a novel pattern-embedded storage mechanism of chiral polymeric materials was established for the first time.
Collapse
Affiliation(s)
- Yuquan Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal Universitv, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
23
|
Eduardus, Shagam Y, Landau A, Faraji S, Schwerdtfeger P, Borschevsky A, Pašteka LF. Large vibrationally induced parity violation effects in CHDBrI . Chem Commun (Camb) 2023; 59:14579-14582. [PMID: 37990542 DOI: 10.1039/d3cc03787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The isotopically chiral molecular ion CHDBrI+ is identified as an exceptionally promising candidate for the detection of parity violation in vibrational transitions. The largest predicted parity-violating frequency shift reaches 1.8 Hz for the hydrogen wagging mode which has a sub-Hz natural line width and its vibrational frequency auspiciously lies in the available laser range. In stark contrast to this result, the parent neutral molecule is two orders of magnitude less sensitive to parity violation. The origin of this effect is analyzed and explained. Precision vibrational spectroscopy of CHDBrI+ is feasible as it is amenable to preparation at internally low temperatures and resistant to predissociation, promoting long interrogation times (Landau et al., J. Chem. Phys., 2023, 159, 114307). The intersection of these properties in this molecular ion places the first observation of parity violation in chiral molecules within reach.
Collapse
Affiliation(s)
- Eduardus
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
| | - Yuval Shagam
- Schulich Faculty of Chemistry, Solid State Institute and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Landau
- Schulich Faculty of Chemistry, Solid State Institute and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity (VSI), University of Groningen, Groningen, The Netherlands.
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
24
|
Sharma A. Sequential Amplification of Amino Acid Enantiomeric Excess by Conglomerate and Racemic Compound: Plausible Prebiotic Route Towards Homochirality. ORIGINS LIFE EVOL B 2023; 53:175-185. [PMID: 37831272 DOI: 10.1007/s11084-023-09642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Some amino acids can crystallize from aqueous solution both as conglomerates and racemic compounds: under high supersaturation following rapid evaporation, dissolved amino acids draining over porous sand-bars behave like conglomerates whereas in the resulting deeper pool of water, amino acid solution switches to the more common racemic-compound system. We show how the two forms might have sequentially combined under prebiotic conditions to form the basis of homochirality. The paper is a quantitative analysis of enantiomeric excess (EE) this dual behavior of amino acids is capable of producing in tandem: Initial amplification by preferential crystallization (PC) in conglomerate system (CS) followed by further amplification in the racemic compound system (RCS). Using aspartic acid as a model system, ternary phase diagram shows that a minimum supersaturation of 1.65 is required in the CS for the solution-EE to reach its maximum value of 50% at the RCS eutectic point. A relationship is derived for the dependence of this threshold supersaturation on the eutectic solubilities of CS and RCS. For given supersaturation in CS, a relation is also derived for minimum solution-EE that must be produced by PC before CS switches to RCS. Required PC-induced threshold solution-EE of 0.194, 0.070, 0.033 is calculated for supersaturation of 2, 5, 10 respectively in aspartic acid. Switching from CS to RCS further amplifies solution-EE, resulting in an overall growth of aspartic acid solution EE from near-zero in CS to around 50% in RCS.
Collapse
Affiliation(s)
- A Sharma
- Department of Physics, Alabama A&M University, Huntsville, AL, 35762, USA.
| |
Collapse
|
25
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
26
|
Hochberg D, Buhse T, Micheau JC, Ribó JM. Chiral selectivity vs. noise in spontaneous mirror symmetry breaking. Phys Chem Chem Phys 2023; 25:31583-31595. [PMID: 37882619 DOI: 10.1039/d3cp03311b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Mirror symmetry breaking bifurcations, that occur in nonlinear chemical systems leading to final chiral states with very large enantiomeric excess, can be exploited as an efficient chiral signal selector for even the smallest chiral polarizations. This effect of the chiral polarization requires the system's capacity for overcoming thermal noise, which is manifested as fluctuating reaction rate constants. Therefore, we investigate the chiral selectivity across a range of tiny parity-violating energy differences (PVED) in the presence of inevitable non-equilibrium temperature fluctuations. We use a stochastic differential equation simulation methodology (Ito process) that serves as a valuable tool in open systems for identifying the thresholds at which the chiral force induces chiral selectivity in the presence of non-equilibrium temperature fluctuations. This approach enables us to include and analyze chiral selectivity in the presence of other types of fluctuations, such as perturbations in the rate of fluid flow into and out of the reactor and in the clamped input concentrations. These concepts may be of practical interest (i.e., spontaneous deracemizations) but are also useful for a better understanding of the general principles governing the emergence of biological homochirality.
Collapse
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | - Thomas Buhse
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, Mexico
| | - Jean-Claude Micheau
- Laboratoire Softmat (ex IMRCP), UMR au Centre National de la Recherche Scientifique No. 5623, Université Paul Sabatier, F-31062 Toulouse, France
| | - Josep M Ribó
- Department of Organic and Inorganic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Ikai T, Morita Y, Majima T, Takeda S, Ishidate R, Oki K, Suzuki N, Ohtani H, Aoi H, Maeda K, Okoshi K, Yashima E. Control of One-Handed Helicity in Polyacetylenes: Impact of an Extremely Small Amount of Chiral Substituents. J Am Chem Soc 2023; 145:24862-24876. [PMID: 37930639 PMCID: PMC10825823 DOI: 10.1021/jacs.3c09308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Controlling the one-handed helicity in synthetic polymers is crucial for developing helical polymer-based advanced chiral materials. We now report that an extremely small amount of chiral biphenylylacetylene (BPA) monomers (ca. 0.3-0.5 mol %) allows complete control of the one-handed helicity throughout the polymer chains mostly composed of achiral BPAs. Chiral substituents introduced at the 2-position of the biphenyl units of BPA positioned in the vicinity of the polymer backbones contribute to a significant amplification of the helical bias, as interpreted by theoretical modeling and simulation. The helical structures, such as the helical pitch and absolute helical handedness (right- or left-handed helix) of the one-handed helical copolymers, were unambiguously determined by high-resolution atomic force microscopy combined with X-ray diffraction. The exceptionally strong helix-biasing power of the chiral BPA provides a highly durable and practically useful chiral material for the separation of enantiomers in chromatography by copolymerization of an achiral functional BPA with a small amount of the chiral BPA (0.5 mol %) due to the robust helical scaffold of the one-handed helical copolymer.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Morita
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsuyoshi Majima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shoki Takeda
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryoma Ishidate
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Oki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hajime Ohtani
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Hiromi Aoi
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Katsuhiro Maeda
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kanazawa 920-1192, Japan
| | - Kento Okoshi
- Department
of Applied Chemistry and Bioscience, Chitose
Institute of Science and Technology, Chitose, Hokkaido 066-8655, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
28
|
Xu L, Zhou L, Li YX, Gao RT, Chen Z, Liu N, Wu ZQ. Thermo-responsive chiral micelles as recyclable organocatalyst for asymmetric Rauhut-Currier reaction in water. Nat Commun 2023; 14:7287. [PMID: 37949865 PMCID: PMC10638429 DOI: 10.1038/s41467-023-43092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Developing eco-friendly chiral organocatalysts with the combined advantages of homogeneous catalysis and heterogeneous processes is greatly desired. In this work, a family of amphiphilic one-handed helical polyisocyanides bearing phosphine pendants is prepared, which self-assembles into well-defined chiral micelles in water and showed thermo-responsiveness with a cloud point of approximately 38.4 °C. The micelles with abundant phosphine moieties at the interior efficiently catalyze asymmetric cross Rauhut-Currier reaction in water. Various water-insoluble substrates are transferred to target products in high yield with excellent enantioselectivity. The yield and enantiomeric excess (ee) of the product generated in water are up to 90% and 96%, respectively. Meanwhile, the yields of the same R-C reaction catalyzed by the polymer itself in organic solvents is <16%, with an ee < 72%. The homogeneous reaction of the chiral micelles in water turns to heterogeneous at temperatures higher than the cloud point, and the catalyst precipitation facilitates product isolation and catalyst recovery. The polymer catalyst is recycled 10 times while maintaining activity and enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, 235000, Huaibei, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, 130021, Changchun, Jilin, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
29
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
30
|
Abstract
As an active branch within the field of supramolecular polymers, chiral supramolecular polymers (SPs) are an excellent benchmark to generate helical structures that can clarify the origin of homochirality in Nature or help determine new exciting functionalities of organic materials. Herein, we highlight the most utilized strategies to build up chiral SPs by using chiral monomeric units or external stimuli. Selected examples of transfer of asymmetry, in which the point or axial chirality contained by the monomeric units is efficiently transferred to the supramolecular scaffold yielding enantioenriched helical structures, will be presented. The importance of the thermodynamics and kinetics associated with those processes is stressed, especially the influence that parameters such as the helix reversal and mismatch penalties exert on the achievement of amplification of asymmetry in co-assembled systems will also be considered. Remarkable examples of breaking symmetry, in which chiral supramolecular polymers can be attained from achiral self-assembling units by applying external stimuli like stirring, solvent or light, are highlighted. Finally, the specific and promising applications of chiral supramolecular polymers are presented with recent relevant examples.
Collapse
Affiliation(s)
- Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| |
Collapse
|
31
|
Harold SE, Warf SL, Shields GC. Prebiotic dimer and trimer peptide formation in gas-phase atmospheric nanoclusters of water. Phys Chem Chem Phys 2023; 25:28517-28532. [PMID: 37847315 DOI: 10.1039/d3cp02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Insight into the origin of prebiotic molecules is key to our understanding of how living systems evolved into the complex network of biological processes on Earth. By modelling diglycine and triglycine peptide formation in the prebiotic atmosphere, we provide a plausible pathway for peptide growth. By examining different transition states (TSs), we conclude that the formation of diglycine and triglycine in atmospheric nanoclusters of water in the prebiotic atmosphere kinetically favors peptide growth by an N-to-C synthesis of glycines through a trans conformation. Addition of water stabilizes the TS structures and lowers the Gibbs free activation energies. At temperatures that model the prebiotic atmosphere, the free energies of activation with a six water nanocluster as part of the TS are predicted to be 16 kcal mol-1 relative to the prereactive complex. Examination of the trans vs. cis six water transition states reveals that a homodromic water network that maximizes the acceptor/donor nature of the six waters is responsible for enhanced kinetic favorability of the trans N-to-C pathway. Compared to the non-hydrated trans TS, the trans six-water TS accelerates the reaction of diglycine and glycine to form triglycine by 13 orders of magnitude at 217 K. Nature uses the trans N-to-C pathway to synthesize proteins in the ribosome, and we note the similarities in hydrogen bond stabilization between the transition state for peptide synthesis in the ribosome and the transition states formed in nanoclusters of water in the same pathway. These results support the hypothesis that small oligomers formed in the prebiotic atmosphere and rained onto earth's surface.
Collapse
Affiliation(s)
- Shannon E Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - Skyler L Warf
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| |
Collapse
|
32
|
Ye Z, Li Z, Feng J, Wu C, Fan Q, Chen C, Chen J, Yin Y. Dual-Responsive Fe 3O 4@Polyaniline Chiral Superstructures for Information Encryption. ACS NANO 2023; 17:18517-18524. [PMID: 37669537 DOI: 10.1021/acsnano.3c06461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Incorporating stimuli-responsive mechanisms into chiral assemblies of nanostructures offers numerous opportunities to create optical materials capable of dynamically modulating their chiroptical properties. In this study, we demonstrate the formation of chiral superstructures by assembling Fe3O4@polyaniline hybrid nanorods by using a gradient magnetic field. The resulting superstructures exhibit a dual response to changes in both the magnetic field and solution pH, enabling dynamic regulation of the position, intensity, and sign of its circular dichroism peaks. Such responsiveness allows for convenient control over the optical rotatory dispersion properties of the assemblies, which are further integrated into the design of a chiroptical switch that can display various colors and patterns when illuminated with light of different wavelengths and polarization states. Finally, an optical information encryption system is constructed through the controlled assembly of the hybrid nanorods to showcase the potential opportunities for practical applications brought by the resulting responsive chiral superstructures.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
33
|
Jansen SAH, Su H, Schnitzer T, Vantomme G, Meijer EW. Temperature Directs the Majority-Rules Principle in Supramolecular Copolymers Driven by Triazine-Benzene Interactions. Chemistry 2023; 29:e202301726. [PMID: 37403882 DOI: 10.1002/chem.202301726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Supramolecular copolymers have typically been studied in the extreme cases, such as self-sorting or highly mixed copolymer systems, while the intermediate systems have been less understood. We have reported the temperature-dependent microstructure in copolymers of triazine- and benzene-derivatives based on charge-transfer interactions with a highly alternating microstructure at low temperatures. Here, we investigate the temperature-dependent copolymerization further and increase the complexity by combining triazine- and benzene-derivatives with opposite preferred helicities. In this case, intercalation of the benzene-derivative into the triazine-derivative assemblies causes a helical inversion. The inversion of the net helicity was rationalized by comparing the mismatch penalties of the individual monomers, which indicated that the benzene-derivative dictates the helical screw-sense of the supramolecular copolymers. Surprisingly, this was not reflected in further investigations of slightly modified triazine- and benzene-derivatives, thus highlighting that the outcome is a subtle balance between structural features, where small differences can be amplified due to the competitive nature of the interactions. Overall, these findings suggest that the temperature-dependent microstructure of triazine- and benzene-based supramolecular copolymers determines the copolymer helicity of the presented system in a similar way as the mixed majority-rules phenomenon.
Collapse
Affiliation(s)
- Stef A H Jansen
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Hao Su
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
34
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
35
|
Wang SM, Wang YF, Huang L, Zheng LS, Nian H, Zheng YT, Yao H, Jiang W, Wang X, Yang LP. Chiral recognition of neutral guests by chiral naphthotubes with a bis-thiourea endo-functionalized cavity. Nat Commun 2023; 14:5645. [PMID: 37704639 PMCID: PMC10499783 DOI: 10.1038/s41467-023-41390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Developing chiral receptors with an endo-functionalized cavity for chiral recognition is of great significance in the field of molecular recognition. This study presents two pairs of chiral naphthotubes containing a bis-thiourea endo-functionalized cavity. Each chiral naphthotube has two homochiral centers which were fixed adjacent to the thiourea groups, causing the skeleton and thiourea groups to twist enantiomerically through chiral transfer. These chiral naphthotubes are highly effective at enantiomerically recognizing various neutral chiral molecules with an enantioselectivity up to 17.0. Furthermore, the mechanism of the chiral recognition has been revealed to be originated from differences in multiple non-covalent interactions. Various factors, such as the shape of cavities, substituents of guests, flexibility of host and binding modes are demonstrated to contribute to creating differences in the non-covalent interactions. Additionally, the driving force behind enantioselectivity is mainly attributed to enthalpic differences, and enthalpy -entropy compensation has also been observed to influence enantioselectivity.
Collapse
Affiliation(s)
- Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yan-Fang Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liping Huang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Li-Shuo Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hao Nian
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yu-Tao Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Xiaoping Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
36
|
Ozturk SF, Sasselov DD, Sutherland JD. The central dogma of biological homochirality: How does chiral information propagate in a prebiotic network? J Chem Phys 2023; 159:061102. [PMID: 37551802 PMCID: PMC7615580 DOI: 10.1063/5.0156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 08/09/2023] Open
Abstract
Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology-the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].
Collapse
Affiliation(s)
- S. Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
37
|
Guo S, Li M, Hu H, Xu T, Xi H, Zhu WH. Light-regulating chirality of metallacages featuring dithienylethene switches. Chem Sci 2023; 14:6237-6243. [PMID: 37325154 PMCID: PMC10266469 DOI: 10.1039/d3sc00828b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic chiral superstructures are of vital importance for understanding the organization and function of chirality in biological systems. However, achieving high conversion efficiency for photoswitches in nanoconfined architectures remains challenging but fascinating. Herein, we report a series of dynamic chiral photoswitches based on supramolecular metallacages through the coordination-driven self-assembly of dithienylethene (DTE) units and octahedral zinc ions, thereby successfully achieving an ultrahigh photoconversion yield of 91.3% in nanosized cavities with a stepwise isomerization mechanism. Interestingly, the chiral inequality phenomenon is observed in metallacages, resulting from the intrinsic photoresponsive chirality in the closed form of the dithienylethene unit. Upon hierarchical organization, we establish a dynamic chiral system at the supramolecular level, featuring chiral transfer, amplification, induction, and manipulation. This study provides an intriguing idea to simplify and understand chiral science.
Collapse
Affiliation(s)
- Shaomeng Guo
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| | - Mengqi Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| | - Honglong Hu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| | - Ting Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| | - Hancheng Xi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry, Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 200237 China
| |
Collapse
|
38
|
Ozturk SF, Liu Z, Sutherland JD, Sasselov DD. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. SCIENCE ADVANCES 2023; 9:eadg8274. [PMID: 37285423 PMCID: PMC10246896 DOI: 10.1126/sciadv.adg8274] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Homochirality is a signature of life on Earth, yet its origins remain an unsolved puzzle. Achieving homochirality is essential for a high-yielding prebiotic network capable of producing functional polymers like RNA and peptides on a persistent basis. Because of the chiral-induced spin selectivity effect, which established a strong coupling between electron spin and molecular chirality, magnetic surfaces can act as chiral agents and be templates for the enantioselective crystallization of chiral molecules. Here, we studied the spin-selective crystallization of racemic ribo-aminooxazoline (RAO), an RNA precursor, on magnetite (Fe3O4) surfaces, achieving an unprecedented enantiomeric excess (ee) of about 60%. Following the initial enrichment, we then obtained homochiral (100% ee) crystals of RAO after a subsequent crystallization. Our results demonstrate a prebiotically plausible way of achieving system-level homochirality from completely racemic starting materials, in a shallow-lake environment on early Earth where sedimentary magnetite deposits are expected to be common.
Collapse
Affiliation(s)
- S. Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | |
Collapse
|
39
|
Su Y, Xu W, Wei Q, Ma Y, Ding J, Chen X. Chiral polypeptide nanoparticles as nanoadjuvants of nanovaccines for efficient cancer prevention and therapy. Sci Bull (Beijing) 2023; 68:284-294. [PMID: 36732117 DOI: 10.1016/j.scib.2023.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The chirality of bioactive molecules is closely related to their functions. D-amino acids commonly distributed in the bacterial cell walls trigger a robust anti-infective immune response. Inspired by that, two kinds of chiral polypeptides, poly(L-phenylalanine)-block-poly(L-lysine) (PL-K) and poly(L-phenylalanine)-block-poly(D-lysine) (PD-K), were synthesized and used as nanoadjuvants of nanovaccines for cancer prevention and therapy. The amphiphilic polypeptides self-assembled into nanoparticles with a diameter of about 30 nm during ultrasonic-assisted dissolution in phosphate-buffered saline. The nanovaccines PL-K-OVA and PD-K-OVA were easily prepared by mixing solutions of PL-K or PD-K and the model antigen chicken ovalbumin (OVA), respectively, with loading efficiencies of almost 100%. Compared to PL-K-OVA, PD-K-OVA more robustly induced dendritic cell maturation, antigen cross-presentation, and adaptive immune response. More importantly, it effectively prevented and treated the OVA-expressed B16-OVA melanoma model. PD-K-OVA achieved a tumor inhibition rate of 94.9% and even 97.0% by combining with anti-PD-1 antibody. Therefore, the chiral polypeptide nanoparticles represent simple, efficient, and extensively applicable nanoadjuvants for various nanovaccines.
Collapse
Affiliation(s)
- Yuanzhen Su
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiguo Xu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qi Wei
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Ma
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianxun Ding
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
40
|
Sang Y, Zhu Q, Zhou X, Jiang Y, Zhang L, Liu M. Ultrasound-Directed Symmetry Breaking and Spin Filtering of Supramolecular Assemblies from only Achiral Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202215867. [PMID: 36522559 DOI: 10.1002/anie.202215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
41
|
Mauksch M. Spontaneous emergence of enantioenriched chiral aldol reaction products from Achiral precursors in solution and origin of biological homochirality of sugars: a first-principles study. Phys Chem Chem Phys 2023; 25:1734-1754. [PMID: 36594779 DOI: 10.1039/d2cp04285a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental reports about observation of spontaneous mirror symmetry breaking and chiral amplification in stereoselective Mannich and aldol reactions, run under fully achiral initial conditions, have drawn a lot of attention, fuelled partly by the role these reactions could have played in chemical evolution as a cause for still puzzling observed homochirality of biomolecules, often considered a prerequisite for the origin of life. We have now revisited this still unresolved problem, using DFT computation of all combinatorially possible transition states and numerical solution of complete set of resulting coupled kinetic rate equations to model the aldol reaction rigorously "from the first principles" and without making any a priori assumptions. Spontaneous mirror symmetry breaking in this autocatalytic, reversible, closed and homogenous system is explained by a supercritical pitchfork bifurcation, occurring in concentrations of enantiomers due to time-delayed kinetic instability of racemic composition of reaction mixture, when reactants are initially provided in non-stoichiometric quantities. Same process, taking place under similar conditions in primordial "soup" of chemicals, might conceivably explain origin of biological homochirality of sugar molecules on early earth billions of years ago. Our results suggest that seemingly innocuous chemical reactions could exhibit unexpected and counter-intuitive emergent behaviour, when initial conditions are appropriately chosen. Chiral amplification in self-catalyzed aldol reaction occurs during approach of thermodynamic equilibrium in accord with principle of microscopic reversibility and second law of thermodynamics.
Collapse
Affiliation(s)
- Michael Mauksch
- Department of Chemistry and Pharmacy, Institute of Theoretical Chemistry, Computer Chemistry Center, Nägelsbachstrasse 25a, 91052 Erlangen, Germany.
| |
Collapse
|
42
|
Saito T, Kajitani T, Yagai S. Amplification of Molecular Asymmetry during the Hierarchical Self-Assembly of Foldable Azobenzene Dyads into Nanotoroids and Nanotubes. J Am Chem Soc 2023; 145:443-454. [PMID: 36574732 DOI: 10.1021/jacs.2c10631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amplification of molecular asymmetry through self-assembly is a phenomenon that not only comprehends the origin of homochirality in nature but also produces chiroptically active functional materials from molecules with minimal enantiomeric purity. Understanding how molecular asymmetry can be transferred and amplified into higher-order structures in a hierarchical self-assembly system is important but still unexplored. Herein, we present an intriguing example of the amplification of molecular asymmetry in hierarchically self-assembled nanotubes that feature discrete and isolatable toroidal intermediates. The hierarchical self-assembly is initiated via asymmetric intramolecular folding of scissor-shaped azobenzene dyads furnished with chiral side chains. When scalemic mixtures of the enantiomers are dissolved in a non-polar solvent and cooled to 20 °C, single-handed nanotoroids are formed, as confirmed using atomic force microscopy and circular dichroism analyses. A strong majority-rules effect at the nanotoroid level is observed and can be explained by a low mismatch penalty and a high helix-reversal penalty. The single-handed nanotoroids stack upon cooling to 0 °C to exclusively afford their respective single-handed nanotubes. Thus, the same degree of amplification of molecular asymmetry is realized at the nanotube level. The internal packing efficiency of molecules within nanotubes prepared from the pure enantiomers or their scalemic mixtures is likely different, as suggested by the absence of higher-order structure (supercoil) formation in the latter. X-ray diffraction analysis of the anisotropically oriented nanotube films revealed looser molecular packing within the scalemic nanotubes, which clearly reflects the lower enantiomeric purity of their internal chiral side chains.
Collapse
Affiliation(s)
- Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kajitani
- Open Facility development office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
43
|
Nagai D, Fujihara A. Quantification of disaccharides in solution using isomer-selective ultraviolet photodissociation of hydrogen-bonded clusters in the gas phase. Carbohydr Res 2023; 523:108733. [PMID: 36571945 DOI: 10.1016/j.carres.2022.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Chemical properties of gas-phase hydrogen-bonded clusters were investigated as a model for interstellar molecular clouds. Cold gas-phase hydrogen-bonded clusters of tryptophan (Trp) enantiomers and disaccharide isomers, including d-maltose and d-cellobiose, were generated by electrospray ionization and collisional cooling in an ion trap at 8 K. Product ion spectra in the 265-290 nm wavelength range were obtained using tandem mass spectrometry. NH2CHCOOH loss via the Cα-Cβ bond cleavage of Trp occurred frequently in homochiral H+(d-Trp)(d-maltose) compared with heterochiral H+(l-Trp)(d-maltose) at 278 nm, indicating that an enantiomeric excess of l-Trp was formed via the enantiomer-selective photodissociation. The photoreactivity differed between the enantiomers and isomers contained in the clusters at the photoexcitation of 278 nm. A calibration curve for the quantification of disaccharide isomers in solution was constructed by photoexcitation of the hydrogen-bonded clusters of disaccharide isomers with H+(l-Trp) at 278 nm. A linear relationship between the natural logarithm of the relative product ion abundance and the mole fraction of d-maltose to d-cellobiose ratio in the solution was obtained, indicating that the mole fraction could be determined from a single product ion spectrum. A calibration curve, for quantification of Trp enantiomers, was also obtained using d-maltose as a chiral auxiliary.
Collapse
Affiliation(s)
- Daiya Nagai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan.
| |
Collapse
|
44
|
Mayer LC, Heitsch S, Trapp O. Nonlinear Effects in Asymmetric Catalysis by Design: Concept, Synthesis, and Applications. Acc Chem Res 2022; 55:3345-3361. [PMID: 36351215 DOI: 10.1021/acs.accounts.2c00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asymmetric synthesis constitutes a key technology for the preparation of enantiomerically pure compounds as well as for the selective control of individual stereocenters in the synthesis of complex compounds. It is thus of extraordinary importance for the synthesis of chiral drugs, dietary supplements, flavors, and fragrances, as well as novel materials with tunable and reconfigurable chiroptical properties or the assembly of complex natural products. Typically, enantiomerically pure catalysts are used for this purpose. To prepare enantiomerically pure ligands or organocatalysts, one can make use of the natural chiral pool. Ligands and organocatalysts with an atropisomeric biphenyl and binaphthyl system have become popular, as they are configurationally stable and contain a C2-symmetric skeleton, which has been found to be particularly privileged. For catalysts with opposite configurations, both product enantiomers can be obtained. Configurationally flexible biphenyl systems initially appeared to be unsuitable for this purpose, as they racemize after successful enantiomer separation and thus are neither storable nor afford a reproducible enantioselectivity. However, there are strategies that exploit the dynamics of such ligands to stereoconvergently enrich one of the catalyst enantiomers. This can be achieved, for example, by coordinating an enantiomerically pure additive to a ligand-metal complex, which results in deracemization of the configurationally flexible biphenyl system, thereby enriching the thermodynamically preferred diastereomer. In this Account, we present our strategy to design stereochemically flexible catalysts that combine the properties of supramolecular recognition, stereoconvergent alignment, and catalysis. Such systems are capable to recognize the chirality of the target product, leading to an increase in enantioselectivity during asymmetric catalysis. We have systematically developed and investigated these smart catalyst systems and have found ways to specifically design and synthesize them for various applications. In addition to (i) reaction product-induced chiral amplification, we have developed systems with (ii) intermolecular and (iii) intramolecular recognition, and successfully applied them in asymmetric catalysis. Our results pave the way for new applications such as temperature-controlled enantioselectivity, controlled inversion of enantioselectivity with the same chirality of the recognition unit, generation of positive nonlinear effects, and targeted design of autocatalytic systems through dynamic formation of transient catalysts. Understanding such systems is of enormous importance for catalytic processes leading to symmetry breaking and amplification of small imbalances of enantiomers and offer a possible explanation of homochirality of biological systems. In addition, we are learning how to target supramolecular interactions to enhance enantioselectivities in asymmetric catalysis through secondary double stereocontrol. Configurationally flexible catalysts will enable future resource-efficient development of asymmetric syntheses, as enantioselectivities can be fully switched by stereoselective alignment of the stereochemically flexible ligand core on demand.
Collapse
Affiliation(s)
- Lena C Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Simone Heitsch
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
45
|
Alaasar M, Cao Y, Liu Y, Liu F, Tschierske C. Switching Chirophilic Self-assembly: From meso-structures to Conglomerates in Liquid and Liquid Crystalline Network Phases of Achiral Polycatenar Compounds. Chemistry 2022; 28:e202201857. [PMID: 35866649 PMCID: PMC10092095 DOI: 10.1002/chem.202201857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Spontaneous generation of chirality from achiral molecules is a contemporary research topic with numerous implications for technological applications and for the understanding of the development of homogeneous chirality in biosystems. Herein, a series of azobenzene based rod-like molecules with an 3,4,5-trialkylated end and a single n-alkyl chain involving 5 to 20 aliphatic carbons at the opposite end is reported. Depending on the chain length and temperature these achiral molecules self-assemble into a series of liquid and liquid crystalline (LC) helical network phases. A chiral isotropic liquid (Iso1 [ *] ) and a cubic triple network phase with chiral I23 lattice were found for the short chain compounds, whereas non-cubic and achiral cubic phases dominate for the long chain compounds. Among them a mesoscale conglomerate with I23 lattice, a tetragonal phase (Tetbi ) containing one chirality synchronized and one non-synchronized achiral network, an achiral double network meso-structure with Ia3 ‾ $\bar 3$ d space group and an achiral percolated isotropic liquid mesophase (Iso1 ) were found. This sequence is attributed to an increasing strength of chirality synchronization between the networks, combined with a change of the preferred mode of chirophilic self-assembly between the networks, switching from enantiophilic to enantiophobic with decreasing chain length and lowering temperature. These nanostructured and mirror symmetry broken LC phases exist over wide temperature ranges which is of interest for potential applications in chiral and photosensitive functional materials derived from achiral compounds.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
- Department of ChemistryFaculty of ScienceCairo UniversityP.O.12613GizaEgypt
| | - Yu Cao
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Yan Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
- Wanhua Chemical Group Co Ltd.Yantai265505P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
| |
Collapse
|
46
|
Soai K. The Soai reaction and its implications with the life's characteristic features of self-replication and homochirality. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Huber L, Trapp O. Symmetry Breaking by Consecutive Amplification: Efficient Paths to Homochirality. ORIGINS LIFE EVOL B 2022; 52:75-91. [PMID: 35984585 DOI: 10.1007/s11084-022-09627-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023]
Abstract
To understand chiral symmetry breaking on the molecular level, we developed a method to efficiently investigate reaction kinetics of single molecules. The model systems include autocatalysis as well as a reaction cascade to gain further insight into the prebiotic origin of homochirality. The simulated reactions start with a substrate and only a single catalyst molecule, and the occurrence of symmetry breaking was examined for its degree of dependence on randomness. The results demonstrate that interlocking processes, which e.g., form catalysts, autocatalytic systems, or reaction cascades that build on each other and lead to a kinetic acceleration, can very well amplify a statistically occurring symmetry breaking. These results suggest a promising direction for the experimental implementation and identification of such processes, which could have led to a shift out of thermodynamic equilibrium in the emergence of life.
Collapse
Affiliation(s)
- Laura Huber
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
- Max-Planck-Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany.
| |
Collapse
|
48
|
Soai K, Kawasaki T, Matsumoto A. Asymmetric Autocatalysis as an Efficient Link Between the Origin of Homochirality and Highly Enantioenriched Compounds. ORIGINS LIFE EVOL B 2022; 52:57-74. [PMID: 35960427 DOI: 10.1007/s11084-022-09626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Biological homochirality of essential components such as L-amino acids and D-sugars is prerequisite for the emergence, evolution and the maintenance of life. Implication of biological homochirality is described. Considerable interest has been focused on the origin and the process leading to the homochirality. Asymmetric autocatalysis with amplification of enantiomeric excess (ee), i.e., the Soai reaction, is capable to link the low ee induced by the proposed origins of chirality such as circularly polarized light and high ee of the organic compound. Absolute asymmetric synthesis without the intervention of any chiral factor was achieved in the Soai reaction.
Collapse
Affiliation(s)
- Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Arimasa Matsumoto
- Department of Chemistry, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
49
|
Kouznetsov VV, Hernández JG. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Adv 2022; 12:20807-20828. [PMID: 35919186 PMCID: PMC9299969 DOI: 10.1039/d2ra03102g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023] Open
Abstract
Chemical processes are usually catalytic transformations. The use of catalytic reagents can reduce the reaction temperature, decrease reagent-based waste, and enhance the selectivity of a reaction potentially avoiding unwanted side reactions leading to green technology. Chemical processes are also frequently based on multicomponent reactions (MCRs) that possess evident improvements over multistep processes. Both MCRs and catalysis tools are the most valuable principles of green chemistry. Among diverse MCRs, the three-component Strecker reaction (S-3-CR) is a particular transformation conducive to the formation of valuable bifunctional building blocks (α-amino nitriles) in organic synthesis, medicinal chemistry, drug research, and organic materials science. To be a practical synthetic tool, the S-3-CR must be achieved using alternative energy input systems, safe reaction media, and effective catalysts. These latter reagents are now deeply associated with nanoscience and nanocatalysis. Continuously developed, nanostructured silicate catalysts symbolize green pathways in our quest to attain sustainability. Studying and developing nanocatalyzed S-3-CR condensations as an important model will be suitable for achieving the current green mission. This critical review aims to highlight the advances in the development of nanostructured catalysts for technologically important Strecker-type reactions and to analyze this progress from the viewpoint of green and sustainable chemistry.
Collapse
Affiliation(s)
- Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará Km 2 Vía Refugio, Piedecuesta 681011 Colombia +57 7 634 4000 ext. 3593
| | - José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Calle 70 No. 52-21 Medellín Colombia
| |
Collapse
|
50
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|