1
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
2
|
Zhai W, Fu Y, Liu L, Huang X, Wang S. Metabolomics Reveal Key Metabolic Pathway Responses to Anxiety State Regulated by Serotonin in Portunus trituberculatus. Metabolites 2024; 14:568. [PMID: 39452949 PMCID: PMC11509519 DOI: 10.3390/metabo14100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Anxiety refers to the pathological persistence and intensification of emotional responses to danger, affecting health from psychological and physical aspects. Serotonin is an important neurotransmitter involved in the onset of anxiety. METHODS AND RESULTS To explore the biological changes in the formation of anxiety in crustaceans under the regulation of serotonin, we applied the open field-like test method for assessing anxiety states of larval Portunus trituberculatus, a highly aggressive crustacean species with a more simple neural structure compared with rodents and mammals. Compared with the control group, serotonin treatment resulted in a significant decrease in the time spent by the larvae in the central zone, suggesting anxiety-like behavior. Clonazepam treatment reversed this result and provided further evidence that the behavior of larval P. trituberculatus displayed anxiety. Moreover, a non-targeted metabolomic analysis found a significant alteration in the metabolites involved in tryptophan metabolism pathways associated with anxiety, including L-kynurenine, N-acetyl serotonin, and serotonin. These metabolites are involved in the serotonin pathway, the kynurenine pathway, and other pathways that affect anxiety through tryptophan metabolism. There were no significant differences in tryptophan metabolism levels between the control and clonazepam treatment groups. CONCLUSIONS Our results demonstrate the possible existence of anxiety-like behavior in the larvae of P. trituberculatus from two perspectives. Being a species with a simpler neural structure than that of mammals, the larvae of P. trituberculatus offer a convenient model for studying the mechanisms of anxiety in crustaceans.
Collapse
Affiliation(s)
- Wei Zhai
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo 315832, China;
| | - Lei Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Xinlian Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| | - Sixiang Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (W.Z.); (X.H.); (S.W.)
| |
Collapse
|
3
|
Ma W, Sui D, Sun W, Yu P, Li Y, Guo M, Wang H, Zhang X, Yu X, Fu W, Xu H. 5,7,3',4',5'-Pentamethoxyflavone, a Flavonoid Monomer Extracted From Murraya paniculata (L.) Jack, Alleviates Anxiety Through the A 2AR/Gephyrin/GABRA2 Pathway. Phytother Res 2024. [PMID: 39261011 DOI: 10.1002/ptr.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/28/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
The sedative and hypnotic properties of 5,7,3',4',5'-pentamethoxyflavone (PMF), a monomer extracted from the leaves of Murraya paniculata (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High-throughput-16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic-associated proteins. PMF effectively mitigated CUMS-induced anxiety-like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and increased 5-HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A2AR)/gephyrin/gamma-aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A2AR, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.
Collapse
Affiliation(s)
- Wenli Ma
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Meiqi Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huifeng Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaoze Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Chen C, Zheng Z, Gao K, Fan Q, Li Y, Chen S. Prophylactic effects of supplementation of a combination of Lactobacillus lactis WHH2078 and saffron on depressive-like behaviors in mice exposed to chronic stress. J Food Sci 2024; 89:5912-5927. [PMID: 39126686 DOI: 10.1111/1750-3841.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Depression is one of the most common psychiatric conditions worldwide, with an annual escalation in prevalence. The serotonin (5-Hydroxytryptamine [5-HT]) metabolism through the gut-brain axis has been revealed to be related to the development of depression. Our previous study demonstrated that Lactococcus lactis WHH2078 alleviated depression in mice by shaping the gut microbiome composition and 5-HT metabolism. However, little research has explored the synergistic effects of probiotics and natural mental health-improving products. In this study, three natural products (saffron, l-theanine, and phosphatidylserine), either individually or in combination, were orally administrated for 4 weeks in chronic restraint stress (CRS)-induced mice, and their depressive behaviors, hippocampal 5-HT, and serum corticosterone were assessed. Saffron demonstrated improvement of the depressive-like behaviors via multiple behavioral tests and reversed the declined concentration of 5-HT and increased concentration of corticosterone. Following an initial screening, saffron was chosen to be combined with WHH2078, referred to as WHHMOOD™. Furthermore, the effects of WHHMOOD were evaluated in mice with depressive-like behaviors. WHHMOOD reduced immobility time in the forced swimming test and tail suspension test, increased the time spent in the central area in open field test, and reduced the serum corticosterone level. Besides, WHHMOOD improved the CRS-induced gut microbial dysbiosis by reversing gut microbial diversity and the abundances of Ligilactobacillus, Candidatus Arthromitus, and Erysipelatoclostridium. Compared to WHH2078, WHHMOOD treatment significantly increased the travel distance and hippocampal 5-HT level in mice. In conclusion, WHHMOOD exhibited prophylactic effects on depressive-like in CRS mice, which may act as a promising agent for improving the symptoms of depression.
Collapse
Affiliation(s)
- Cailing Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| | - Zhiyao Zheng
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| | - Kan Gao
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| | - Qiuling Fan
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| | - Yanjun Li
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| | - Su Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, P. R. China
| |
Collapse
|
5
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Gao K, Chen C, Zheng Z, Fan Q, Wang H, Li Y, Chen S. Lactococcus strains with psychobiotic properties improve cognitive and mood alterations in aged mice. Front Nutr 2024; 11:1439094. [PMID: 39149553 PMCID: PMC11324604 DOI: 10.3389/fnut.2024.1439094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Aging often accompanies cognitive and mood disturbances. Emerging evidence indicates that specific probiotics mitigate cognitive and mood dysfunctions. Strains within Lactococcus, a subgroup of probiotics, including Lactococcus lactis and Lactococcus cremoris are shown beneficial effects on brain functions via the gut microbiota-brain axis (GBA). Our previous study identified two Lactococcus strains (L. lactis WHH2078 and L. cremoris WHH2080) with the ability to promote the secretion of gut 5-hydroxytryptophan (5-HTP), the precursor of the GBA mediator 5-hydroxytryptamine (5-HT). In this study, the modulatory effects of WHH2078 and WHH2080 on cognitive and mood alternations were investigated in aged mice. Oral administration of WHH2078 and WHH2080 (1 × 109 CFU/mL/day) in aged mice (12-month-old) for 12 weeks significantly improved cognitive and depressive-and anxiety-like behaviors. The neuronal loss, the 5-HT metabolism dysfunction, and the neuroinflammation in the hippocampus of aged mice were restored by WHH2078 and WHH2080. the disturbances in the serum tryptophan metabolism in aged mice were unveiled by metabolomics, notably with decreased levels of 5-HT and 5-HTP, and increased levels of kynurenine, 3-hydroxykynurenine, and indolelactic acid, which were reversed by WHH2078 and WHH2080. Regarding the gut microbial community, WHH2078 and WHH2080 restored the increased abundance of Firmicutes, Desulfobacterota, and Deferribacterota and the decreased abundance of Bacteroidota and Actinobacteriota in aged mice. The beneficial effects of the two strains were linked to the modulation of 5-HT metabolism and gut microbiota. Our findings point to the potential role of Lactococcus strains with 5-HTP-promoting abilities as therapeutic approaches for age-related cognitive and mood disorders.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Zhiyao Zheng
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Chen X, Han L, Xu W. Dissecting causal relationships between gut microbiota, blood metabolites, and glioblastoma multiforme: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1403316. [PMID: 39021629 PMCID: PMC11251919 DOI: 10.3389/fmicb.2024.1403316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Given the increasing interest in the role of gut microbiota in glioblastoma multiforme (GBM), our objective was to examine the potential causal relationship between gut microbiota and GBM, as well as the mediating effects of specific metabolites. Methods A bidirectional two-sample Mendelian randomization (MR) analysis was conducted to investigate the associations between 196 microbial taxa and GBM. A two-step MR technique was used to identify significant mediators in this relationship. Subsequently, a mediation analysis was performed to explore and quantify the mediating effects of specific metabolites on the causal relationship between gut microbiota and GBM. Results Five taxa showed significant associations with GBM. Among them, family Victivallaceae [odds ratio (OR): 1.95; 95% confidence interval (CI): 1.21, 3.13; p = 0.005] and genus Lactococcus (OR: 1.81; 95% CI: 1.04, 3.15; p = 0.036) were positively correlated with the risk of GBM, while phylum Cyanobacteria had a protective effect against GBM (OR: 0.45; 95% CI: 0.22, 0.89; p = 0.021). The mediation analysis revealed that the connections among family Victivallaceae, genus Lactococcus, phylum Cyanobacteria and GBM were mediated by Methyl-4-hydroxybenzoate sulfate, phosphoethanolamine and dehydroepiandrosterone sulfate. Each of these accounted for 7.27, 7.98, and 8.65%, respectively. Conclusion Our study provides evidence supporting a potential causal association between certain gut microbiota taxa and GBM. The study highlights the central role of gut microbiota in GBM pathogenesis and their interactions with vital serum metabolites. This paves the way for potential novel therapeutic interventions in GBM management.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
9
|
Cai Y, Guo H, Han T, Wang H. Lactate: a prospective target for therapeutic intervention in psychiatric disease. Neural Regen Res 2024; 19:1473-1479. [PMID: 38051889 PMCID: PMC10883489 DOI: 10.4103/1673-5374.387969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/07/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Although antipsychotics that act via monoaminergic neurotransmitter modulation have considerable therapeutic effect, they cannot completely relieve clinical symptoms in patients suffering from psychiatric disorders. This may be attributed to the limited range of neurotransmitters that are regulated by psychotropic drugs. Recent findings indicate the need for investigation of psychotropic medications that target less-studied neurotransmitters. Among these candidate neurotransmitters, lactate is developing from being a waste metabolite to a glial-neuronal signaling molecule in recent years. Previous studies have suggested that cerebral lactate levels change considerably in numerous psychiatric illnesses; animal experiments have also shown that the supply of exogenous lactate exerts an antidepressant effect. In this review, we have described how medications targeting newer neurotransmitters offer promise in psychiatric diseases; we have also summarized the advances in the use of lactate (and its corresponding signaling pathways) as a signaling molecule. In addition, we have described the alterations in brain lactate levels in depression, anxiety, bipolar disorder, and schizophrenia and have indicated the challenges that need to be overcome before brain lactate can be used as a therapeutic target in psychopharmacology.
Collapse
Affiliation(s)
- Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Dhyani P, Goyal C, Dhull SB, Chauhan AK, Singh Saharan B, Harshita, Duhan JS, Goksen G. Psychobiotics for Mitigation of Neuro-Degenerative Diseases: Recent Advancements. Mol Nutr Food Res 2024; 68:e2300461. [PMID: 37715243 DOI: 10.1002/mnfr.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Indexed: 09/17/2023]
Abstract
Ageing is inevitable and poses a universal challenge for all living organisms, including humans. The human body experiences rapid cell division and metabolism until approximately 25 years of age, after which the accumulation of metabolic by-products and cellular damage leads to age-related diseases. Neurodegenerative diseases are of concern due to their irreversible nature, lack of effective treatment, and impact on society and the economy. Researchers are interested in finding drugs that can effectively alleviate ageing and age-related diseases without side-effects. Psychobiotics are a novel class of probiotic organisms and prebiotic interventions that confer mental health benefits to the host when taken appropriately. Psychobiotic strains affect functions related to the central nervous system (CNS) and behaviors mediated by the Gut-Brain-Axis (GBA) through various pathways. There is an increasing interest in researchers of these microbial-based psychopharmaceuticals. Psychobiotics have been reported to reduce neuronal ageing, inflammation, oxidative stress, and cortisol levels; increase synaptic plasticity and levels of neurotransmitters and antioxidants. The present review focuses on the manifestation of elderly neurodegenerative and mental disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and depression, and the current status of their potential alleviation through psychobiotic interventions, highlighting their possible mechanisms of action.
Collapse
Affiliation(s)
- Priya Dhyani
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Chhaya Goyal
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Anil Kumar Chauhan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125 004, India
| | - Harshita
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus, Organized Industrial Zone, Tarsus University, Mersin, 33100, Türkiye
| |
Collapse
|
11
|
Li H, Zhang H, Hua W, Liu H, Zhang B, Dong H, Liu J, Zhou Y, Yang P, Jing M. Causal relationship between gut microbiota and functional outcomes after ischemic stroke: A comprehensive Mendelian randomization study. J Stroke Cerebrovasc Dis 2024; 33:107814. [PMID: 38880364 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS To investigate the association of the genetic predisposition of specific gut microbiotas with the clinical outcome of ischemic stroke. METHODS We leveraged publicly available genome-wide association study (GWAS) data to perform Mendelian randomization (MR) analysis. The gut microbiota-related GWAS data from 18,340 individuals from the international consortium MiBioGen was used. The summary data for functional outcomes after ischemic stroke was obtained from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network meta-analysis. The primary outcomes were judged by the modified Rankin Scale (mRS). The principal analyses were conducted using the inverse-variance weighted (IVW) MR method. The Cochran's Q test, weighted median, MR-Egger regression, leave-one-SNP-out analysis, MR-Pleiotropy Residual Sum, and Outlier methods were adopted as sensitivity analyses. Furthermore, we performed bi-directional MR analysis and the MR Steiger directionality test to examine the direction of the causal relations. RESULTS The results demonstrated that the genetic predisposition of genus Lactococcus, genus Ruminococcaceae NK4A214 group, family Peptostreptococcaceae, and genus Odoribacter was positively associated with favorable functional outcome after ischemic stroke. Genus Collinsella, genus Ruminococcaceae UCG005, genus Akkermansia, genus Eubacterium oxidoreducens group, and family Verrucomicrobiaceae were identified to be associated with worse functional outcomes after ischemic stroke. Our results showed no evidence of heterogeneity, directional pleiotropic effects, or collider bias, and the sensitivity of our analysis was acceptable. CONCLUSION The genetic predisposition of different gut microbiotas was associated with the clinical outcome of ischemic stroke. Microbiota adjustment was a promising method to improve the clinical outcome of ischemic stroke.
Collapse
Affiliation(s)
- He Li
- Emergency Department, PLA Naval Medical Center, Shanghai, China; Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China
| | - Haojun Zhang
- Emergency Department, PLA Naval Medical Center, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China
| | - Boyu Zhang
- Emergency Department, PLA Naval Medical Center, Shanghai, China
| | - Hui Dong
- Emergency Department, PLA Naval Medical Center, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China
| | - Yu Zhou
- Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China.
| | - Pengfei Yang
- Emergency Department, PLA Naval Medical Center, Shanghai, China.
| | - Mei Jing
- Neurovascular Center, Naval Medical University Changhai hospital, Shanghai, China.
| |
Collapse
|
12
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
13
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
14
|
Chang M, Chang KT, Chang F. Just a gut feeling: Faecal microbiota transplant for treatment of depression - A mini-review. J Psychopharmacol 2024; 38:353-361. [PMID: 38532577 DOI: 10.1177/02698811241240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND The microbiota-gut-brain axis (MGBA) allows bidirectional crosstalk between the brain and gut microbiota (GM) and is believed to contribute to regulating mood/cognition/behaviour/metabolism/health and homeostasis. Manipulation of GM through faecal microbiota transplant (FMT) is a new, exciting and promising treatment for major depressive disorder (MDD). AIMS This mini-review examines current research into GM and FMT as a therapy for depression. METHODS Original research articles published in Medline/Cochrane Library/PubMed/EMBASE/PsycINFO databases/National Institute of Health website Clinicaltrials.gov/controlled-trials.com were searched. Full articles included in reference lists were evaluated. We summarise current data on GM and depression and discuss communication through the MGBA and the interaction of antidepressants and GM through this. We review compositions of dysbiosis in depressed cohorts, focusing on future directions in the treatment of MDD. RESULTS Studies have demonstrated significant gut dysbiosis in depressed patients compared to healthy cohorts, with overgrowth of pro-inflammatory microbiota, reduction in anti-inflammatory species and reduced overall stability and taxonomic richness. FMT allows the introduction of healthy microbiota into the gastrointestinal tract, facilitating the restoration of eubiosis. CONCLUSION The GM plays an integral role in human health and disease through its communication with the rest of the body via the MGBA. FMT may provide a means to transfer the healthy phenotype into the recipient and this concept in humans is attracting enormous attention as a prospective treatment for psychopathologies, such as MDD, in the future. It may be possible to manipulate the GM in a number of ways, but further research is needed to determine the exact likelihood and profiles involved in the development and amelioration of MDD in humans, as well as the long-term effects and potential risks of this procedure.
Collapse
Affiliation(s)
- Minna Chang
- Epsom and St Helier Hospital University and Hospital Trust, Sutton, Carshalton, UK
| | | | - Fuju Chang
- King's College London, Gastrointestinal Research Group, School of Cancer and Pharmaceutical Sciences, Strand, London, UK
| |
Collapse
|
15
|
Mikulska J, Pietrzak D, Rękawek P, Siudaj K, Walczak-Nowicka ŁJ, Herbet M. Celiac disease and depressive disorders as nutritional implications related to common factors - A comprehensive review. Behav Brain Res 2024; 462:114886. [PMID: 38309373 DOI: 10.1016/j.bbr.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Celiac disease (CD) is an immune-mediated disease affecting the small intestine. The only treatment strategy for CD is the gluten-free diet (GFD). One of the more common mental disorders in CD patients is major depressive disorder (MDD). The influence of GFD on the occurrence of MDD symptoms in patients with CD will be evaluated. This diet often reduces nutritional deficiencies in these patients and also helps to reduce depressive symptoms. Both disease entities are often dominated by the same deficiencies of nutrients such as iron, zinc, selenium, iodine, or B and D vitamins. Deficiencies of particular components in CD can favor MDD and vice versa. Gluten can adversely affect the mental state of patients without CD. Also, intestinal microbiota may play an important role in the described process. This work aims to comprehensively assess the common factors involved in the pathomechanisms of MDD and CD, with particular emphasis on nutrient imbalances. Given the complexity of both disease entities, and the many common links, more research related to improving mental health in these patients and the implementation of a GFD would need to be conducted, but it appears to be a viable pathway to improving the quality of life and health of people struggling with CD and MDD. Therefore, probiotics, micronutrients, macronutrients, and vitamin supplements are recommended to reduce the risk of MDD, given that they may alleviate the symptoms of both these disease entities. In turn, in patients with MDD, it is worth considering testing for CD.
Collapse
Affiliation(s)
- Joanna Mikulska
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Paweł Rękawek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Krystian Siudaj
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Łucja Justyna Walczak-Nowicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland.
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, Kazzazo R, Haji Mohamad A, Alshehabi Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore) 2024; 103:e37114. [PMID: 38306525 PMCID: PMC10843545 DOI: 10.1097/md.0000000000037114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024] Open
Abstract
The gastrointestinal tract is embedded with microorganisms of numerous genera, referred to as gut microbiota. Gut microbiota has multiple effects on many body organs, including the brain. There is a bidirectional connection between the gut and brain called the gut-brain-axis, and these connections are formed through immunological, neuronal, and neuroendocrine pathways. In addition, gut microbiota modulates the synthesis and functioning of neurotransmitters. Therefore, the disruption of the gut microbiota in the composition or function, which is known as dysbiosis, is associated with the pathogenesis of many mental disorders, such as schizophrenia, depression, and other psychiatric disorders. This review aims to summarize the modulation role of the gut microbiota in 4 prominent neurotransmitters (tryptophan and serotonergic system, dopamine, gamma-aminobutyric acid, and glutamate), as well as its association with 4 psychiatric disorders (schizophrenia, depression, anxiety disorders, and autism spectrum disorder). More future research is required to develop efficient gut-microbiota-based therapies for these illnesses.
Collapse
Affiliation(s)
- Amjad Mhanna
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Nafiza Martini
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Damascus University, Faculty of Medicine, Damascus, Syrian Arab Republic
| | - Ghefar Hmaydoosh
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - George Hamwi
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Mulham Jarjanazi
- Pediatric Surgery Resident, Pediatric Surgery Department, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Ghaith Zaifah
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Reem Kazzazo
- Faculty of Medicine, Tishreen University, Latakia, Syrian Arab Republic
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
| | - Aya Haji Mohamad
- Stemosis for Scientific Research, Damascus, Syrian Arab Republic
- Faculty of Medicine, Aleppo University, Aleppo University Hospital, Aleppo, Syrian Arab Republic
| | - Zuheir Alshehabi
- Department of Pathology, Tishreen University Hospital, Latakia, Syrian Arab Republic
| |
Collapse
|
17
|
Chen C, Gao K, Chen Z, Zhang Q, Ke X, Mao B, Fan Q, Li Y, Chen S. The supplementation of the multi-strain probiotics WHHPRO™ alleviates high-fat diet-induced metabolic symptoms in rats via gut-liver axis. Front Nutr 2024; 10:1324691. [PMID: 38274203 PMCID: PMC10808617 DOI: 10.3389/fnut.2023.1324691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Metabolic syndrome (MS) has emerged as one of the major global health concerns, accompanied by a series of related complications, such as obesity and type-2 diabetes. The gut-liver axis (GLA) is a bidirectional communication between the gut and the liver. The GLA alterations have been revealed to be closely associated with the development of MS. Probiotics within Lactobacillus and Bifidobacterium confer beneficial effects on improving MS symptoms. WHHPRO™ is a mixture of four probiotic strains, with potential MS-improving abilities. This study aimed to investigate the effects of WHHPRO™ on MS symptoms using a high-fat diet (HFD) rat model. Oral administration of WHHPRO™ for 12 weeks improved glucose tolerance, blood lipid, body weight, and liver index in HFD rats. WHHPRO™ shaped the gut microbiome composition by increasing the abundance of Lactobacillus and Akkermansia and normalized the reduced SCFA levels in HFD rats. Besides, WHHPRO™ modulated the fecal bile acids (BAs) profile, with decreased levels of T-b-MCA and 12-KDCA and increased levels of LCA and ILCA. Meanwhile, WHHPRO™ increased total unconjugated BAs in feces and liver and reduced the accumulation of total hepatic BA pool size in HFD rats. Moreover, WHHPRO™ reversed the expression of genes associated with impaired BA metabolism signaling in the ileum and liver. Our findings suggest that WHHPRO™ exerted beneficial effects on improving MS symptoms, involving the modulation of the gut microbiome composition, SCFAs, and the FXR-FGF15 signaling along the GLA. Supplementation of WHHPRO™ may serve as a novel strategy for improving MS symptoms.
Collapse
Affiliation(s)
- Cailing Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Kan Gao
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Zuoguo Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Qiwen Zhang
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Xueqin Ke
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuling Fan
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Yanjun Li
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| | - Su Chen
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Hangzhou Wahaha Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
18
|
Lee J, Kim EJ, Park GS, Kim J, Kim TE, Lee YJ, Park J, Kang J, Koo JW, Choi TY. Lactobacillus reuteri ATG-F4 Alleviates Chronic Stress-induced Anhedonia by Modulating the Prefrontal Serotonergic System. Exp Neurobiol 2023; 32:313-327. [PMID: 37927130 PMCID: PMC10628864 DOI: 10.5607/en23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Mental health is influenced by the gut-brain axis; for example, gut dysbiosis has been observed in patients with major depressive disorder (MDD). Gut microbial changes by fecal microbiota transplantation or probiotics treatment reportedly modulates depressive symptoms. However, it remains unclear how gut dysbiosis contributes to mental dysfunction, and how correction of the gut microbiota alleviates neuropsychiatric disorders. Our previous study showed that chronic consumption of Lactobacillus reuteri ATG-F4 (F4) induced neurometabolic alterations in healthy mice. Here, we investigated whether F4 exerted therapeutic effects on depressive-like behavior by influencing the central nervous system. Using chronic unpredictable stress (CUS) to induce anhedonia, a key symptom of MDD, we found that chronic F4 consumption alleviated CUS-induced anhedonic behaviors, accompanied by biochemical changes in the gut, serum, and brain. Serum and brain metabolite concentrations involved in tryptophan metabolism were regulated by CUS and F4. F4 consumption reduced the elevated levels of serotonin (5-HT) in the brain observed in the CUS group. Additionally, the increased expression of Htr1a, a subtype of the 5-HT receptor, in the medial prefrontal cortex (mPFC) of stressed mice was restored to levels observed in stress-naïve mice following F4 supplementation. We further demonstrated the role of Htr1a using AAV-shRNA to downregulate Htr1a in the mPFC of CUS mice, effectively reversing CUS-induced anhedonic behavior. Together, our findings suggest F4 as a potential therapeutic approach for relieving some depressive symptoms and highlight the involvement of the tryptophan metabolism in mitigating CUS-induced depressive-like behaviors through the action of this bacterium.
Collapse
Affiliation(s)
- Jiyun Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Eum-Ji Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | | | - Jeongseop Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Eun Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoo Jin Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Juyi Park
- AtoGen Co., Ltd., Daejeon 34015, Korea
| | | | - Ja Wook Koo
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Yong Choi
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
19
|
Kamble SR, Dandekar MP. Implication of microbiota gut-brain axis in the manifestation of obsessive-compulsive disorder: Preclinical and clinical evidence. Eur J Pharmacol 2023; 957:176014. [PMID: 37619786 DOI: 10.1016/j.ejphar.2023.176014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Recent research has highlighted the key role of gut microbiota in the development of psychiatric disorders. The adverse impact of stress, anxiety, and depression has been well documented on the commensal gut microflora. Thus, therapeutic benefits of gut microbiota-based interventions may not be avoided in central nervous system (CNS) disorders. In this review, we outline the current state of knowledge of gut microbiota with respect to obsessive-compulsive disorder (OCD). We discuss how OCD-generated changes corresponding to the key neurotransmitters, hypothalamic-pituitary-adrenal axis, and immunological and inflammatory pathways are connected with the modifications of the microbiota-gut-brain axis. Notably, administration of few probiotics such as Lactobacillus rhamnosus (ATCC 53103), Lactobacillus helveticus R0052, Bifidobacterium longum R0175, Saccharomyces boulardii, and Lactobacillus casei Shirota imparted positive effects in the management of OCD symptoms. Taken together, we suggest that the gut microbiota-directed therapeutics may open new treatment approaches for the management of OCD.
Collapse
Affiliation(s)
- Sonali R Kamble
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
20
|
Gao K, Chen L, Chen C, Chen Z, Zhang Q, Fan Q, Li Y, Chen S. Leuconostoc mesenteroides WHH1141 ameliorates ovalbumin-induced food allergy in mice. J Food Sci 2023; 88:4289-4304. [PMID: 37680119 DOI: 10.1111/1750-3841.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Food allergy (FA) is acknowledged as a significant public health and food safety issue, due to its manifestation as an amplified immune reaction to food antigens. Recently, probiotics within Lactobacillus and Bifidobacterium have been highlighted as a promising strategy against allergic disease by modulating the balance of Th1/Th2 responses. However, the allergy-alleviating effects of probiotic Leuconostoc mesenteroides strains are unknown. Therefore, this study investigated the potentials of eleven L. mesenteroides strains on the Th1/Th2 balance in vitro by evaluating the expression patterns of interferon-gamma (IFN-γ) (Th1 cytokine) and interleukin-4 (IL-4) (Th2 cytokine) in mesenteric lymph node-derived lymphocytes from ovalbumin (OVA)-sensitized mice. Among strains, WHH1141 incubation caused the highest IFN-γ/IL-4 ratio. Oral administration of WHH1141 (1 × 109 CFU/mL) in the OVA-induced FA mouse model for 40 days improved the weight loss and FA pathological symptoms and normalized the serum immunoglobulin E levels. Meanwhile, the OVA-induced elevated gene expressions of cytokines (IL-4, IL-5, and IL-13) and tight-junction proteins (ZO-1 and Occludin) and levels of cytokines (IL-4, IL-5, and IL-13) and histamine in the jejunum were restored by WHH1141. Furthermore, WHH1141 reversed the reduced gut microbial diversity and short-chain fatty acid (SCFA) levels, specifically increased Bacteroidota abundance, and decreased Firmicutes abundance in OVA-induced mice. Overall, these findings suggest that WHH1141 exerts FA-alleviating effects on OVA-induced mice, which is involved with the inhibition of the jejunal Th2 immune responses and the modulation of gut microbiome composition and SCFA productions. PRACTICAL APPLICATION: Leuconostoc mesenteroides WHH1141 with FA-alleviating potentials may be considered a promising approach in the mitigation of FA symptoms.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Lie Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Zuoguo Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiwen Zhang
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
21
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Khalifa A, Ibrahim HIM, Sheikh A, Khalil HE. Attenuation of Immunogenicity in MOG-Induced Oligodendrocytes by the Probiotic Bacterium Lactococcus Sp. PO3. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1731. [PMID: 37893449 PMCID: PMC10608413 DOI: 10.3390/medicina59101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
23
|
Gao K, Ren X, Chen C, Fan Q, Li Y, Wang H, Chen S. Oral administration of Bifidobacterium longum WHH2270 ameliorates type 2 diabetes in rats. J Food Sci 2023; 88:3967-3983. [PMID: 37548634 DOI: 10.1111/1750-3841.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Accumulating evidence suggests that specific probiotic strains exert hypoglycemic effects on type 2 diabetes mellitus (T2DM), and probiotic strains within Bifidobacterium exhibit potential beneficial effects on T2DM. In this study, α-glucosidase inhibitory activities of 14 Bifidobacterium strains were assessed in vitro. The hypoglycemic effects of Bifidobacterium longum WHH2270 with high α-glucosidase inhibitory activity (42.03%) were then investigated in a high-fat diet/streptozotocin-induced T2DM rat model. Oral administration of WHH2270 (4 × 109 CFU/kg/day) for 8 weeks significantly reversed the reduced body weight and ameliorated the levels of fasting blood glucose, serum triglyceride, serum total cholesterol, glucose tolerance, and insulin resistance in T2DM rats. Using 16S rRNA high-throughput sequencing of feces, WHH2270 was revealed to reshape the gut microbiome composition by increasing the abundances of Lactobacillus and Bifidobacterium and decreasing the abundances of UCG_005, Clostridium, and Faecalibacterium in T2DM rats. Besides, the fecal levels of short-chain fatty acids (SCFAs) including acetate, propionate, and butyrate were also elevated after WHH2270 administration. Moreover, the gene expressions of SCFA receptors FFAR2 and FFAR3 in the colon and pancreas of T2DM rats were restored by WHH2270 administration, accompanied by increased levels of serum acetate. In summary, these results provide evidence that WHH2270 has the potential to improve T2DM symptoms by alleviating hyperglycemia, which was associated with changes in the gut microbiome composition and SCFA production. PRACTICAL APPLICATION: Bifidobacterium longum WHH2270 with high α-glucosidase inhibitory activity may serve as a promising hypoglycemic agent for the treatment of T2DM.
Collapse
Affiliation(s)
- Kan Gao
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Xueliang Ren
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Cailing Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Qiuling Fan
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| | - Yanjun Li
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Su Chen
- Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou, P. R. China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
24
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
25
|
Tran TDB, Monroy Hernandez C, Nguyen H, Wright S, Tarantino LM, Chesler EJ, Weinstock GM, Zhou Y, Bubier JA. The microbial community dynamics of cocaine sensitization in two behaviorally divergent strains of collaborative cross mice. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12845. [PMID: 37114320 PMCID: PMC10242200 DOI: 10.1111/gbb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice. Here, we profile the composition of the naïve microbiome and its response to cocaine sensitization in two collaborative cross (CC) strains. These strains display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain, CC004/TauUncJ (CC04), has a gut microbiome that contains a greater amount of Lactobacillus than the cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of potential gut-brain modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis, glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic treatment revealed an altered cocaine-sensitization response following antibiotics in female CC04 mice. Depleting the microbiome by antibiotic treatment in males revealed increased infusions for CC04 during a cocaine intravenous self-administration dose-response curve. Together these data suggest that genetic differences in cocaine-related behaviors may involve the microbiome.
Collapse
Affiliation(s)
| | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Susan Wright
- National Institute of Drug AbuseRockvilleMarylandUSA
| | | | - Lisa M. Tarantino
- Department of Genetics, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | | | | | - Yanjiao Zhou
- School of MedicineUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| | - Jason A. Bubier
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| |
Collapse
|
26
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
27
|
Mileriene J, Aksomaitiene J, Kondrotiene K, Asledottir T, Vegarud GE, Serniene L, Malakauskas M. Whole-Genome Sequence of Lactococcus lactis Subsp. lactis LL16 Confirms Safety, Probiotic Potential, and Reveals Functional Traits. Microorganisms 2023; 11:microorganisms11041034. [PMID: 37110457 PMCID: PMC10145936 DOI: 10.3390/microorganisms11041034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Safety is the most important criteria of any substance or microorganism applied in the food industry. The whole-genome sequencing (WGS) of an indigenous dairy isolate LL16 confirmed it to be Lactococcus lactis subsp. lactis with genome size 2,589,406 bp, 35.4% GC content, 246 subsystems, and 1 plasmid (repUS4). The Nextera XT library preparation kit was used to generate the DNA libraries, and the sequencing was carried out on an Illumina MiSeq platform. In silico analysis of L. lactis LL16 strain revealed non-pathogenicity and the absence of genes involved in transferable antimicrobial resistances, virulence, and formation of biogenic amines. One region in the L. lactis LL16 genome was identified as type III polyketide synthases (T3PKS) to produce putative bacteriocins lactococcin B, and enterolysin A. The probiotic and functional potential of L. lactis LL16 was investigated by the presence of genes involved in adhesion and colonization of the host's intestines and tolerance to acid and bile, production of enzymes, amino acids, and B-group vitamins. Genes encoding the production of neurotransmitters serotonin and gamma-aminobutyric acid (GABA) were detected; however, L. lactis LL16 was able to produce only GABA during milk fermentation. These findings demonstrate a variety of positive features that support the use of L. lactis LL16 in the dairy sector as a functional strain with probiotic and GABA-producing properties.
Collapse
Affiliation(s)
- Justina Mileriene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Jurgita Aksomaitiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Kristina Kondrotiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Tora Asledottir
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Gerd Elisabeth Vegarud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Loreta Serniene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
28
|
Xu J, Tang M, Wang D, Zhang X, Yang X, Ma Y, Xu X. Lactocaseibacillus rhamnosus zz-1 Supplementation Mitigates Depression-Like Symptoms in Chronic Stress-Induced Depressed Mice via the Microbiota-Gut-Brain Axis. ACS Chem Neurosci 2023; 14:1095-1106. [PMID: 36812493 DOI: 10.1021/acschemneuro.2c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Accumulating evidence has revealed an association between depression and disordered intestinal microecology. The discovery of psychobiotics has provided a promising perspective for studying the treatment of psychiatric disorders. Here, we aimed to investigate the antidepressant abilities of Lactocaseibacillus rhamnosus zz-1 (LRzz-1) and elucidate the underlying mechanisms. The viable bacteria (2 × 109 CFU/day) were orally supplemented to depressed C57BL/6 mice induced by chronic unpredictable mild stress (CUMS), and the behavioral, neurophysiological, and intestinal microbial effects were assessed, with fluoxetine used as a positive control. The treatment with LRzz-1 effectively mitigated the depression-like behavioral disorders of depressed mice and reduced the expression of inflammatory cytokine mRNA (IL-1β, IL-6, and TNF-α) in the hippocampus. In addition, LRzz-1 treatment also improved tryptophan metabolic disorder in the mouse hippocampus, as well as its peripheral circulation. These benefits are associated with the mediation of microbiome-gut-brain bidirectional communication. CUMS-induced depression impaired the intestinal barrier integrity and microbial homeostasis in mice, neither of which was restored by fluoxetine. LRzz-1 prevented intestinal leakage and significantly ameliorated epithelial barrier permeability by up-regulating tight-junction proteins (including ZO-1, occludin, and claudin-1). In particular, LRzz-1 improved the microecological balance by normalizing the threatened bacteria (e.g., Bacteroides and Desulfovibrio), exerting beneficial regulation (e.g., Ruminiclostridium 6 and Alispites), and modifying short-chain fatty acid metabolism. In summary, LRzz-1 showed considerable antidepressant-like effects and exhibited more comprehensive intestinal microecological regulation than other drugs, which offers novel insights that can facilitate the development of depression therapeutic strategies.
Collapse
Affiliation(s)
- Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Mengqi Tang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuyan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yanshi Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
29
|
Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
|
30
|
Ku T, Liu Y, Xie Y, Hu J, Hou Y, Tan X, Ning X, Li G, Sang N. Tebuconazole mediates cognitive impairment via the microbe-gut-brain axis (MGBA) in mice. ENVIRONMENT INTERNATIONAL 2023; 173:107821. [PMID: 36827814 DOI: 10.1016/j.envint.2023.107821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Tebuconazole, one of the most widely used triazole fungicides, is reported to potentially pose a risk of inducing neurological disorders in human beings. Considering the increasing exposure, whether it could influence cognitive function remains to be elucidated. Herein, we used a mouse model to evaluate the potential cognitive risks and possible mechanisms from the continuous edible application of tebuconazole at low concentrations. Our study revealed that tebuconazole deteriorated spatial learning and memory and downregulated the expression of glutamate receptor subunits. Importantly, metagenomic analysis indicated that tebuconazole not only led to significant shifts in the composition and diversity of the gut microbiota but also changed intestinal homeostasis. Specifically, after exposure, tebuconazole circulated in the bloodstream and largely entered the gut-brain axis for disruption, including disturbing the Firmicutes/Bacteroidetes ratio, interrelated neurotransmitters and systemic immune factors. Moreover, pretreatment with probiotics improved immune factor expression and restored the deterioration of synaptic function and spatial learning and memory. The current study provides novel insights concerning perturbations of the gut microbiome and its functions as a potential new mechanism by which tebuconazole exposes cognitive function-related human health.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuanyuan Xie
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jindong Hu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
31
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
32
|
Investigation of the Therapeutic Effect of Total Alkaloids of Corydalis saxicola Bunting on CCl 4-Induced Liver Fibrosis in Rats by LC/MS-Based Metabolomics Analysis and Network Pharmacology. Metabolites 2022; 13:metabo13010009. [PMID: 36676934 PMCID: PMC9866371 DOI: 10.3390/metabo13010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.
Collapse
|
33
|
Gao K, Chen CL, Ke XQ, Yu YX, Chen S, Liu GC, Wang HF, Li YJ. Ingestion of Lactobacillus helveticus WHH1889 improves depressive and anxiety symptoms induced by chronic unpredictable mild stress in mice. Benef Microbes 2022; 13:473-488. [PMID: 36377577 DOI: 10.3920/bm2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging evidence indicates that the alterations in the gut microbiota-brain axis (GBA), which is the bilateral connection between the gut microbial communities and brain function, are involved in several mental illnesses, including depression. Certain probiotic strains have been revealed to improve depressive behaviours and the dysregulation of 5-hydroxytryptamine (5-HT) metabolism in depression. Here we evaluated the potential antidepressant effects of Lactobacillus helveticus strains using an in vitro enterochromaffin cell model (RIN14B). The L. helveticus strain WHH1889 was shown to significantly promote the level of 5-hydroxytryptamine (5-HTP, 5-HT precursor) and the gene expression of tryptophan hydroxylase 1 (Tph1), which is the key synthetase in the 5-HT biosynthesis in RIN14B cells. Ingestion of 0.2 ml WHH1889 (1´109 cfu/ml) in a chronic unpredictable mild stress (CUMS) mouse model of depression for five weeks normalised depressive and anxiety-like behaviours in the forced swim test, tail suspension test, sucrose preference test, and open field test. Meanwhile, the CUMS-induced elevated level of serum corticosterone and declined levels of hippocampal 5-HT and 5-HTP were reversed by WHH1889. Furthermore, the disturbances of the gut microbiome composition with reduced microbial diversity were also improved by WHH1889, accompanied by the increased colonic 5-HTP level and Tph1 gene expression. In summary, these findings indicate that WHH1889 exerts antidepressant-like effects on CUMS mice, which is associated with the modulations of the 5-HT/5-HTP metabolism and gut microbiome composition. Therefore, ingestion of the L. helveticus strain WHH1889 with antidepressant potentials may become an encouraging therapeutic option in the treatment of depression.
Collapse
Affiliation(s)
- K Gao
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China P.R
| | - C-L Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - X-Q Ke
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - Y-X Yu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - S Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - G-C Liu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - H-F Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China P.R
| | - Y-J Li
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China P.R
| |
Collapse
|
34
|
Zeng Y, Song J, Zhang Y, Huang Y, Zhang F, Suo H. Promoting Effect and Potential Mechanism of Lactobacillus pentosus LPQ1-Produced Active Compounds on the Secretion of 5-Hydroxytryptophan. Foods 2022; 11:foods11233895. [PMID: 36496703 PMCID: PMC9740157 DOI: 10.3390/foods11233895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
5-hydroxytryptophan (5-HTP) is an important substance thought to improve depression. It has been shown that Lactobacillus can promote the secretion of 5-HTP in the body and thus ameliorate depression-like behavior in mice. However, the mechanism by which Lactobacillus promotes the secretion of 5-HTP is unclear. In this study, we investigated the promoting effect and mechanism of Lactobacillus, isolated from Chinese fermented foods, on the secretion of 5-HTP. The results showed that Lactobacillus (L.) pentosus LPQ1 exhibited the strongest 5-HTP secretion-promoting effect ((9.44 ± 0.69)-fold), which was dependent on the mixture of compounds secreted by L. pentosus LPQ1 (termed SLPQ1). In addition, the results of the RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that SLPQ1 alters the TNF and oxidative phosphorylation signaling pathways. Moreover, the SLPQ1 ultrafiltration fraction (>10 kDa) showed a similar 5-HTP promoting effect as SLPQ1. Furthermore, reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) identified 29 compounds of >10 kDa in SLPQ1, including DUF488 domain-containing protein, BspA family leucine-rich repeat surface protein, and 30S ribosomal protein S5, which together accounted for up to 62.51%. This study reports new findings on the mechanism by which L. pentosus LPQ1 promotes 5-HTP production in some cell lines in vitro.
Collapse
Affiliation(s)
- Yixiu Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Feng Zhang
- Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
35
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
36
|
Wu SX, Li J, Zhou DD, Xiong RG, Huang SY, Saimaiti A, Shang A, Li HB. Possible Effects and Mechanisms of Dietary Natural Products and Nutrients on Depression and Anxiety: A Narrative Review. Antioxidants (Basel) 2022; 11:2132. [PMID: 36358502 PMCID: PMC9686692 DOI: 10.3390/antiox11112132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Depression and anxiety are severe public health problems and have attracted more and more attention from researchers of food science and nutrition. Dietary natural products and nutrients, such as fish, coffee, tea, n-3 PUFA, lycopene, and dietary fiber, could play a vital role in the prevention and management of these diseases. The potential mechanisms of action mainly include inhibiting inflammation, ameliorating oxidative stress, modulating the microbiota-gut-brain axis, suppressing hypothalamic-pituitary-adrenal axis hyperactivity, and regulating the levels of monoamine neurotransmitters. In this narrative review, we summarize the most recent advancements regarding the effects of dietary natural products and nutrients on depression and anxiety, and their underlying mechanisms are discussed. We hope that this paper can provide a better understanding of the anti-depressive and anxiolytic action of dietary natural products, and that it is also helpful for developing dietary natural products for functional food, dietary supplements, or auxiliary agents for the prevention and management of these diseases.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
37
|
Yu L, Li Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022; 10:biomedicines10102577. [PMID: 36289839 PMCID: PMC9599815 DOI: 10.3390/biomedicines10102577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.
Collapse
Affiliation(s)
- Liangen Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
38
|
Li Y, Zhu J, Lin G, Gao K, Yu Y, Chen S, Chen L, Chen Z, Li L. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats. Front Nutr 2022; 9:993951. [PMID: 36245501 PMCID: PMC9562091 DOI: 10.3389/fnut.2022.993951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperuricemia is the main cause of gout and involved in the occurrence of multiple diseases, such as hypertension, metabolic disorders and chronic kidney disease. Emerging evidence suggests that lactic acid bacteria (LAB) have shown the beneficial effects on the prevention or treatment of hyperuricemia. In this study, the urate-lowering effect of two LAB strains, Lacticaseibacillus rhamnosus 1155 (LR1155) and Limosilactobacillus fermentum 2644 (LF2644) on hyperuricemic rats were investigated. A hyperuricemic rat model was induced by the intragastric treatment of potassium oxonate, combined with a high purine diet. The oral administration of LR1155, LF2644, or a combination of LR1155 and LF2644 for 4 weeks significantly prevented the rise of the serum uric acid (UA) induced by hyperuricemia. LR1155 and LF2644 significantly elevated the fecal UA levels, increased the UA content and up-regulated gene expression of UA transporter, ATP-binding cassette subfamily G-2 (ABCG2), in colon and jejunum tissues, suggesting the accelerated UA excretion from the intestine. Besides, LR1155 significantly inhibited the activity of xanthine oxidase (XOD) in liver and serum, benefited the reduce of UA production. In addition, LF2644 strengthened the gut barrier functions through an up-regulation of the gene expressions for occluding and mucin2, accompanied with the reduced inflammatory indicators of lipopolysaccharide (LPS) and interleukin-1β (IL-1β) in hyperuricemic rat. Moreover, using 16s rDNA high-throughput sequencing of feces, LR1155 was shown to improve the hyperuricemia induced gut microbial dysbiosis. The genera Roseburia, Butyricicoccus, Prevotella, Oscillibacter, and Bifidobacterium may associate with the effect of LR1155 on microbiota in hyperuricemic rats. Collectively, the results indicated that LR1155 and LF2644 exhibit urate-lowering effects and could be used alone or in combination as a new adjuvant treatment for hyperuricemia.
Collapse
Affiliation(s)
- Yanjun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Jun Zhu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
- *Correspondence: Jun Zhu,
| | - Guodong Lin
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Kan Gao
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Yunxia Yu
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Su Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Lie Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Zuoguo Chen
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| | - Li Li
- Department of Research and Development, Hangzhou Wahaha Group Co., Ltd., Hangzhou, China
- Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
39
|
Dong Z, Xie Q, Xu F, Shen X, Hao Y, Li J, Xu H, Peng Q, Kuang W. Neferine alleviates chronic stress-induced depression by regulating monoamine neurotransmitter secretion and gut microbiota structure. Front Pharmacol 2022; 13:974949. [PMID: 36120376 PMCID: PMC9479079 DOI: 10.3389/fphar.2022.974949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Neferine (Nef) might possess anti-depressive properties; however, its therapeutic effects are yet to be elucidated. Therefore, in this study, we aimed to explore the anti-depressant property of Nef using a mouse model of chronic stress-induced depression. Fifteen depression-prone mice were randomly selected and divided into three groups, namely, the model, Nef, and fluoxetine (Flu) groups. We observed that in tail suspension and forced swimming tests, the Nef and Flu treatments significantly decreased the immobility time of the depressed mice, and increased their sucrose preference indices. Moreover, both Nef and Flu treatments induced significant increases in the levels of anti-depressant neurotransmitters, including dopamine (DA), serotonin (5-HT), and norepinephrine (NE), and also reduced pathological damage to the hippocampus of the depressed mice. Incidentally, Illumina MiSeq sequencing analysis demonstrated that the relative abundance of Lactobacillus in the intestinal microbiota of depressed mice was restored after Nef/Flu treatment. Moreover, colonic Lactobacillus abundance was positively correlated with the levels of DA, 5-HT, and NE in the hippocampus of the mice. In conclusion, Nef improved monoamine neurotransmitter secretion and modulated the intestinal flora structure, particularly the abundance of Lactobacillus. Hence, it showed considerable anti-depressant potential, and might be a prospective anti-depressant therapeutic agent.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyu Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoling Shen
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Hao
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Haizhen Xu
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Qiang Peng, ; Weihong Kuang,
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Peng, ; Weihong Kuang,
| |
Collapse
|
40
|
Correia AS, Vale N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int J Mol Sci 2022; 23:ijms23158493. [PMID: 35955633 PMCID: PMC9369076 DOI: 10.3390/ijms23158493] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
Depression is a common and serious disorder, characterized by symptoms like anhedonia, lack of energy, sad mood, low appetite, and sleep disturbances. This disease is very complex and not totally elucidated, in which diverse molecular and biological mechanisms are involved, such as neuroinflammation. There is a high need for the development of new therapies and gaining new insights into this disease is urgent. One important player in depression is the amino acid tryptophan. This amino acid can be metabolized in two important pathways in the context of depression: the serotonin and kynurenine pathways. These metabolic pathways of tryptophan are crucial in several processes that are linked with depression. Indeed, the maintenance of the balance of serotonin and kynurenine pathways is critical for the human physiological homeostasis. Thus, this narrative review aims to explore tryptophan metabolism (particularly in the serotonin and kynurenine pathways) in depression, starting with a global overview about these topics and ending with the focus on these pathways in neuroinflammation, stress, microbiota, and brain-derived neurotrophic factor regulation in this disease. Taken together, this information aims to clarify the metabolism of tryptophan in depression, particularly the serotonin and kynurenine pathways.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
41
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
42
|
Katayama S, Okahata C, Onozato M, Minami T, Maeshima M, Ogihara K, Yamazaki S, Takahashi Y, Nakamura S. Buckwheat Flour and Its Starch Prevent Age-Related Cognitive Decline by Increasing Hippocampal BDNF Production in Senescence-Accelerated Mouse Prone 8 Mice. Nutrients 2022; 14:nu14132708. [PMID: 35807886 PMCID: PMC9269199 DOI: 10.3390/nu14132708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Buckwheat is an important pseudo-cereal crop worldwide. This study investigated whether long-term administration of buckwheat can suppress age-related cognitive decline in senescence-accelerated mouse prone 8 (SAMP8) mice. For 26 weeks, 18-week-old male SAMP8 mice were fed a standard diet containing 5% (w/w) buckwheat, Tartary buckwheat, wheat, or rice flour. In the Barnes maze and passive avoidance tests, mice fed buckwheat whole flour (BWF) showed improved cognitive performance compared to those fed a control diet, while no improvement was noticed in case of the other diets. Analysis of the gut microbiota showed that BWF and buckwheat outer flour administration increased the abundance of Lactococcus and Ruminiclostridium, respectively, at the genus level. The expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic Arc and PSD95, and the mature neuronal marker NeuN in the hippocampus were increased after BWF administration, which was induced by the activation of the ERK/CREB signaling pathway and histone H3 acetylation. A similar increase in cognitive performance-related hippocampal BDNF expression in SAMP8 mice was observed after the oral administration of starch prepared from BWF. Therefore, the long-term administration of BWF suppresses cognitive decline by increasing hippocampal BDNF production in SAMP8 mice.
Collapse
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1603
| | - Chizuru Okahata
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| | - Masashi Onozato
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Takaaki Minami
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Masanaga Maeshima
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Kazuaki Ogihara
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Shinya Yamazaki
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Yuta Takahashi
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| |
Collapse
|
43
|
Lalonde R, Strazielle C. Probiotic effects on anxiety-like behavior in animal models. Rev Neurosci 2022; 33:691-701. [PMID: 35381125 DOI: 10.1515/revneuro-2021-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France.,CHRU Nancy, 54500 Vandœuvre-les-Nancy, France
| |
Collapse
|
44
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|
45
|
Huang L, Lv X, Ze X, Ma Z, Zhang X, He R, Fan J, Zhang M, Sun B, Wang F, Liu H. Combined probiotics attenuate chronic unpredictable mild stress-induced depressive-like and anxiety-like behaviors in rats. Front Psychiatry 2022; 13:990465. [PMID: 36159940 PMCID: PMC9490273 DOI: 10.3389/fpsyt.2022.990465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing evidence indicated that probiotics can be effective in improving behaviors similar to depression and anxiety disorders. However, the underlying mechanisms remain unclear, as is the effects of single vs. combined probiotics on depression and anxiety. This study aimed to determine whether combined probiotics could attenuate depressive-like and anxiety-like behavior induced by chronic unpredictable mild stress (CUMS) and its potential mechanisms. Rats underwent CUMS treatment and then administered Lactobacillus rhamnosus HN001 (HN001) or Bifidobacterium animalis subsp. lactis HN019 (HN019), alone or in combination. Levels of neurotransmitters, inflammatory factors, and the gut microbiota were measured. HN001 and (or) HN019 treatment improved depressive-like and anxiety-like behavior in rats, including increased moving distance and exploratory behavior (p < 0.05). In addition, altered gut microbiota structure induced by CUMS was amended by HN001 and/or HN019 (p < 0.05). HN001 and/or HN019 intervention also remarkably normalized levels of 5-HT, DA, NE, HVA, DOPAC, HIAA, TNF-α, IL-6, IL-18 and IL-1β in CUMS rats (p < 0.05). Furthermore, the effects of combined probiotics on decreasing inflammation and improved gut microbiota (Chao1 index and ACE index, p < 0.05) were superior to the single probiotics. Moreover, spearman analysis showed a certain correlation between the different microbiota, such as Firmicutes, Bacteroidetes, Verrucomicrobias, Proteobacterias and Actinobacterias, and inflammation and neurotransmitters. These findings suggested that CUMS induced depressive and anxiety-like behaviors can be alleviated by the combination of probiotics, which was possibly associated with the alterations in the gut microbiota composition and increased neurotransmitters and decreased inflammatory factors.
Collapse
Affiliation(s)
- Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xia Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaolei Ze
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| | - Boran Sun
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China.,Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|