1
|
Syduzzaman M, Islam Saad MS, Piam MF, Talukdar TA, Shobdo TT, Pritha NM. Carbon nanotubes: Structure, properties and applications in the aerospace industry. RESULTS IN MATERIALS 2025; 25:100654. [DOI: 10.1016/j.rinma.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Thomas MR, Badekila AK, Pai V, S N, Bhandary Y, Rai A, Kini S. Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. Adv Healthc Mater 2025:e2403107. [PMID: 39840497 DOI: 10.1002/adhm.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.
Collapse
Affiliation(s)
- Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Nijil S
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Yashodhar Bhandary
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Ankit Rai
- Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| |
Collapse
|
3
|
Côrtes PRB, Loubet NA, Moreira LS, Menéndez CA, Appignanesi GA, Köhler MH, Bordin JR. Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac. J Chem Phys 2025; 162:034701. [PMID: 39812261 DOI: 10.1063/5.0246155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water. Nevertheless, interfacial water plays a major role in the adsorption of chemical compounds in nanomaterials-as it plays in biological processes such as protein folding, enzyme activity, and drug delivery. To understand this role, in this study, we employ molecular dynamics simulations to explore the adsorption dynamics of potassium diclofenac on single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs), considering both dry and wet conditions. Our findings reveal that the structuring of water molecules around CNTs creates hydration layers that significantly influence the accessibility of active sites and the interaction strength between contaminants and adsorbents. Our analysis indicates higher energy barriers for adsorption in DWCNTs compared to SWCNTs, which is attributed to stronger water-surface interactions. This research highlights the importance of understanding nanoscale water behavior for optimizing the design and functionality of nanomaterials for water purification. These findings can guide the development of more efficient and selective nanomaterials, enhancing contaminant removal and ensuring safer water resources while contributing to a deeper understanding of fundamental biological interactions.
Collapse
Affiliation(s)
- Patrick R B Côrtes
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil
| | - Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Luana S Moreira
- Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Mateus H Köhler
- Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil
| |
Collapse
|
4
|
Alizadeh Z, Mazloum-Ardakani M, Zhu Y, Seidi F. Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:66-78. [PMID: 39731573 DOI: 10.1021/acs.langmuir.4c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance. Herein, Lisianthus flower-inspired Ni-Ce-metal-organic framework (MOF), Ni-MOF, and rod-inspired Ce-MOF were synthesized by the solvothermal method. An electrochemical sensor for VLCV was developed by employing a multilayer approach using Lisianthus flower-inspired Ni-Ce metal-organic framework/multiwall carbon nanotubes (Ni-Ce-MOF/MWCNTs) modification on a glassy carbon electrode (GCE). Incorporating a bimetallic Ni-Ce-MOF into a conventional conductive material, such as MWCNTs, significantly increases the specific surface area and improves the conductivity and catalytic properties of the MWCNTs. Relative to the rod-inspired Ce-MOF and Ni-MOF, the electrocatalytic performance of the Lisianthus flower-inspired Ni-Ce-MOF coated on MWCNTs surpasses that of the rod-inspired Ce-MOF, showcasing enhanced performance in VLCV oxidation. This superiority arises from their enhanced electrical conductivity and enlarged surface area. The Lisianthus flower-inspired Ni-Ce-MOF/MWCNTs/GCE demonstrated extensive linear ranges (ranging from 4.0 to 3800.0 nM), a lower detection limit (1.4 nM), remarkable selectivity, and sustained stability over an extended period in the context of VLCV sensing. The real samples underwent analysis through using both electrochemical and UV-vis spectrophotometry methods, and the findings from both methods exhibited no substantial difference, validating the sensor's remarkable practical performance. These results suggest that Lisianthus flower-inspired Ni-Ce-MOF/MWCNTs/GCE electrocatalysts provide a promising sensing platform for analyzing biological samples.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
| | - Mohammad Mazloum-Ardakani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Islamic Republic of Iran
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 91367, United States
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Felix MAJ, Ragumoorthy C, Chen TW, Chen SM, Kiruthiga G, Singh A, Ghazaryan K, Al-Mohaimeed AM, Elshikh MS. Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform. ENVIRONMENTAL RESEARCH 2025; 264:120349. [PMID: 39542161 DOI: 10.1016/j.envres.2024.120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM-1 cm-2. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Mariya Antony John Felix
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - G Kiruthiga
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore, 641 043, India
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Liu J, Xie S, Wang N, Sun Z, Tang L, Zhang GJ, Tressel J, Zhang Y, Sun Y, Chen S. Iron nanoparticle/carbon nanotube composite as oxidase-like nanozyme for visual analysis of total antioxidant capacity. Food Chem X 2025; 25:102093. [PMID: 39801591 PMCID: PMC11721849 DOI: 10.1016/j.fochx.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless o-phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.g., quercetin) impedes the formation of DAP, diminishing the color change, which can be analyzed via the RGB values obtained with a smartphone color-recognition APP, "Color Picker". The change of the optical signal can also be analyzed in the fluorescence mode. These two detection modes yield consistent TAC analysis of actual plant samples, in accord with results from the standard ABTS method. Results from this study highlight the unique potential of nanozymes in the development of effective TAC analysis platforms for natural plants and food.
Collapse
Affiliation(s)
- Junlin Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Sophia Xie
- Wuhan Britain-China School, Wuhan 430033, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guo-jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - John Tressel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
8
|
Fan H, Xue B, Lu J, Sun T, Zhao Q, Liu Y, Niu M, Yu S, Yang Y, Zhang L. Recent advances of bioaerogels in medicine: Preparation, property and application. Int J Biol Macromol 2024; 291:139144. [PMID: 39722377 DOI: 10.1016/j.ijbiomac.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Bioaerogels represent a type of three-dimensional porous materials fabricated from natural biopolymers, and show a significant potential for medical application due to their characteristics of extremely low density, high specific surface area, excellent biocompatibility and biodegradability. The preparation method and parameters of bioaerogels are focused on, and their influence on the structure and properties of bioaerogels are discussed in detail. Then, to match the properties of bioaerogels with the medical applications, this work emphasizes the main properties (including biocompatibility, degradability, and mechanical properties), structural parameters (such as suitable porosity, pore size and high specific surface area), and further summarizes the influence of single-component and composite bioaerogels on their properties. Moreover, according to the different applications (wound healing, drug delivery, and tissue engineering and other fields), the function method, mechanism and practical effect of bioaerogels are comprehensively analyzed. Finally, the challenges, future research directions, and solutions for the practical application of bioaerogels in medicine are discussed.
Collapse
Affiliation(s)
- Haoyong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Baoxia Xue
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiaxin Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Tao Sun
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinke Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yong Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiping Yu
- Department of Interventional Therapy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Li Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China.
| |
Collapse
|
9
|
Li H, Ji D, Zhang Y, Cui Y, Cheng Y, Wang S, Dai WL. Size-Dependent Copper Nanoparticles Supported on Carbon Nanotubes with Balanced Cu + and Cu 0 Dual Sites for the Selective Hydrogenation of Ethylene Carbonate. Chemistry 2024; 30:e202402699. [PMID: 39354575 DOI: 10.1002/chem.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Cyclic carbonate hydrogenation offers an alternative for the efficient indirect CO2 utilization. In this study, a series of carbon nanotubes (CNTs) supported xCu/CNTs catalysts with different Cu loadings were fabricated using a convenient impregnation method, and exhibited excellent catalytic activity for the hydrogenation of ethylene carbonate to methanol and ethylene glycol. The structural and physicochemical properties revealed that acid treatment of CNTs resulted in plentiful oxygen-containing functional groups, providing sufficient anchoring sites for copper species. The calcination process conducted under an inert atmosphere resulted in the formation of ternary CuO, Cu2O, and Cu composites, enhancing the metal-support interaction and facilitating the formation of balanced Cu0 and Cu+ dual sites as well as high active surface area after reduction. Contributed to the synergetic effect of balanced Cu+ and Cu0 species proved by density functional theory calculation and the electron-rich CNTs surface, the 40Cu/CNTs catalyst achieved strengthened catalytic performance with methanol yield of 83 %, ethylene glycol yield of 99 % at ethylene carbonate conversion of >99 %, and 150 h of long-term running stability. Consequently, CNTs supported Cu serve as efficient non-silica based catalyst for ester hydrogenation.
Collapse
Affiliation(s)
- Huabo Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Deyuan Ji
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Yanfei Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Yuanyuan Cui
- Shimadzu China Co. Ltd., Shanghai, 200030, P. R. China
| | - Yinfeng Cheng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Songlin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, Henan Province, P. R. China
| | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Yu S, Rejinold NS, Choi G, Choy JH. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. NANOSCALE HORIZONS 2024. [PMID: 39648727 DOI: 10.1039/d4nh00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Over the last two decades, advancements in nanomaterials and nanoscience have paved the path for the emergence of nano-medical convergence science, significantly impacting healthcare. In our review, we highlight how these advancements are applied in various biomedical technologies such as drug delivery systems, bio-imaging for diagnostic and therapeutic purposes. Recently, novel inorganic nanohybrid drugs have been developed, combining multifunctional inorganic nanomaterials with therapeutic agents (known as inorganic medicinal nanoarchitectonics). These innovative drugs are actively utilized in cutting-edge medical treatments, including targeted anti-cancer therapy, photo and radiation therapy, and immunotherapy. This review provides a detailed overview of the current development status of inorganic medicinal nanoarchitectonics and explores potential future directions in their advancements.
Collapse
Affiliation(s)
- Seungjin Yu
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Department of Chemistry, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea
- Tokyo Tech Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Institute of Science Tokyo, Yokohama 226853, Japan
| |
Collapse
|
11
|
Spinelli G, Guarini R, Batakliev T, Guadagno L, Raimondo M. Testing, Experimental Design, and Numerical Analysis of Nanomechanical Properties in Epoxy Hybrid Systems Reinforced with Carbon Nanotubes and Graphene Nanoparticles. Polymers (Basel) 2024; 16:3420. [PMID: 39684166 DOI: 10.3390/polym16233420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Hybrid nanocomposites incorporating multiple fillers are gaining significant attention due to their ability to enhance material performance, offering superior properties compared to traditional monophase systems. This study investigates hybrid epoxy-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanosheets (GNs), introduced at two different weight concentrations of the mixed filler, i.e., 0.1 wt% and 0.5 wt% which are, respectively, below and above the Electrical Percolation Threshold (EPT) for the two binary polymer composites that solely include one of the two nanofillers, with varying MWCNTs:GNs ratios. Mechanical properties, such as contact depth, hardness, and reduced modulus, were experimentally assessed via nanoindentation, while morphological analysis supported the mechanical results. A Design of Experiments (DoE) approach was utilized to evaluate the influence of filler concentrations on the composite's mechanical performance, and Response Surface Methodology (RSM) was applied to derive a mathematical model correlating the filler ratios with key mechanical properties. The best and worst-performing formulations, based on hardness and contact depth results, were further investigated through detailed numerical simulations using a multiphysics software. After validation considering experimental data, the simulations provided additional insights into the mechanical behavior of the hybrid composites. This work aims to contribute to the knowledge base on hybrid composites and promote the use of computational modeling techniques for optimizing the design and mechanical performance of advanced materials.
Collapse
Affiliation(s)
- Giovanni Spinelli
- Faculty of Transport Sciences and Technologies, University of Study "Giustino Fortunato", Via Raffaele Delcogliano 12, 82100 Benevento, Italy
- Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria
| | - Rosella Guarini
- Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Todor Batakliev
- Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, 1113 Sofia, Bulgaria
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
12
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
13
|
Tan YF, Hii LW, Lim WM, Cheong SK, Leong CO, Yee MSL, Mai CW. Polyethylene glycol-phospholipid functionalized single-walled carbon nanotubes for enhanced siRNA systemic delivery. Sci Rep 2024; 14:30098. [PMID: 39627280 PMCID: PMC11615393 DOI: 10.1038/s41598-024-80646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Small interfering RNAs (siRNA) technology has emerged as a promising therapeutic tool for human health conditions like cancer due to its ability to regulate gene silencing. Despite FDA-approved, their delivery remains localized and limiting their systemic use. This study used single-walled carbon nanotubes (SWNTs) functionalized with polyethylene glycolated (PEGylated) phospholipids (PL-PEG) derivatives for systemic siRNA delivery. We developed an siRNA systemic delivery vehicle (SWNT-siRNA) by conjugating SWNT functionalized with PL-PEG containing either amine (PA) or maleimide (MA). The functionalized SWNT with a lower molecular weight of PA produced the SWNT-siRNA conjugate system with the highest stability and high siRNA loading quantity. The system delivered siRNA to a panel of tumour cell lines of different organs (i.e. HeLa, H1299 and MCF-7) and a non-cancerous human embryonic kidney 293 cells (HEK293T) with high biocompatibility and low toxicity. The cellular uptake of SWNT-siRNA conjugates by epithelial cells was found to be energy dependent. Importantly, the presence of P-glycoprotein, a marker for drug resistance, did not inhibit SWNT-mediated siRNA delivery. Mouse xenograft model further confirmed the potential of SWNT-siRNA conjugates with a significant gene knock-down without signs of acute toxicity. These findings pave the way for potential gene therapy applications using SWNTs as delivery vehicles.
Collapse
Affiliation(s)
- Yuen-Fen Tan
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Postgraduate Studies, IMU University, Kuala Lumpur, 57000, Malaysia
- Cytovision Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
| | - Wei-Meng Lim
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Shah Alam, 47500, Selangor, Malaysia
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Shah Alam, 43000, Selangor, Malaysia
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, IMU University, Kuala Lumpur, 57000, Malaysia
- AGTC Genomics Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Maxine Swee-Li Yee
- Nanotechnology Research Group, Center for Nanotechnology and Advanced Materials, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia.
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
14
|
Jiang X, Bai J, Wijerathne B, Zhou Q, Zhang F, Liao T, Sun Z. 3D Printing MXene-Based Electrodes for Supercapacitors. Chem Asian J 2024; 19:e202400568. [PMID: 39155268 PMCID: PMC11613818 DOI: 10.1002/asia.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
3D printing, as an advanced and promising strategy for processing electrode for energy storage devices, such as supercapacitors and batteries, has garnered considerable interest in recent decades. The interest in 3D printed electrodes stems from its exceptional performance and manufacturing features, including customized sizes and shapes and the layer-by-layer processing principle, etc., especially integrating with MXene which allows the manufacturing of electrodes from different raw materials and possessing desired electrochemical properties. Herculean challenges, such as material compatibility of the printing inks, nondurable interfacial or bulk mechanical strength of the printed electrodes, and sometimes the low capacitance, lead to inferior electrochemical performance and hinder the practical applications of this promising technology. In this review, we firstly summarize the representative 3D printing methods, then, review the MXene-based 3D printing electrodes made from different materials, and last, provide electrochemical performance of 3D printing MXene-based electrodes for supercapacitors. Furthermore, based on a summary on the recent progress, an outlook on these promising electrodes for sustainable energy devices is provided. We anticipate that this review could provide some insights into overcoming the challenges and achieving more remarkable electrochemical performance of 3D printing supercapacitor electrodes and offer perspectives in the future for emerging energy devices.
Collapse
Affiliation(s)
- Xudong Jiang
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Juan Bai
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Binodhya Wijerathne
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Qianqin Zhou
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Fan Zhang
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Ting Liao
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- School of Mechanical Medical and Process EngineeringQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| |
Collapse
|
15
|
Papadiamantis AG, Mavrogiorgis A, Papatzelos S, Mintis D, Melagraki G, Lynch I, Afantitis A. A systematic review on the state-of-the-art and research gaps regarding inorganic and carbon-based multicomponent and high-aspect ratio nanomaterials. Comput Struct Biotechnol J 2024; 25:211-229. [PMID: 39526292 PMCID: PMC11550189 DOI: 10.1016/j.csbj.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the state-of-the-art with respect to multicomponent nanomaterials (MCNMs) and high aspect ratio nanomaterials (HARNs), with a focus on their physicochemical characterisation, applications, and hazard, fate, and risk assessment. Utilising the PRISMA approach, this study investigates specific MCNMs including cerium-zirconium mixtures (CexZryO2) and ZnO nanomaterials doped with transition metals and rare earth elements, as well as Titanium Carbide (TiC) nanomaterials contained in Ti-6Al-4V alloy powders. HARNs of interest include graphene, carbon-derived nanotubes (CNTs), and metallic nanowires, specifically Ag-based nanowires. The review reveals a significant shift in research and innovation (R&I) efforts towards these advanced nanomaterials due to their unique properties and functionalities that promise enhanced performance across various applications including photocatalysis, antibacterial and biomedical uses, and advanced manufacturing. Despite the commercial potential of MCNMs and HARNs, the review identifies critical gaps in our understanding of their environmental fate and transformations upon exposure to new environments, and their potential adverse effects on organisms and the environment. The findings underscore the necessity for further research focused on the environmental transformations and toxicological profiles of these nanomaterials to inform Safe and Sustainable by Design (SSbD) strategies. This review contributes to the body of knowledge by cataloguing current research, identifying research gaps, and highlighting future directions for the development of MCNMs and HARNs, facilitating their safe and effective integration into industry.
Collapse
Affiliation(s)
- Anastasios G. Papadiamantis
- NovaMechanics Ltd., Nicosia, Cyprus
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, UK
- Entelos Institute, Larnaca, Cyprus
| | | | | | - Dimitris Mintis
- NovaMechanics Ltd., Nicosia, Cyprus
- Entelos Institute, Larnaca, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | - Iseult Lynch
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, UK
- Entelos Institute, Larnaca, Cyprus
| | - Antreas Afantitis
- NovaMechanics Ltd., Nicosia, Cyprus
- Entelos Institute, Larnaca, Cyprus
| |
Collapse
|
16
|
Kolokathis PD, Zouraris D, Sidiropoulos NK, Tsoumanis A, Melagraki G, Lynch I, Afantitis A. NanoTube Construct: A web tool for the digital construction of nanotubes of single-layer materials and the calculation of their atomistic descriptors powered by Enalos Cloud Platform. Comput Struct Biotechnol J 2024; 25:230-242. [PMID: 39526291 PMCID: PMC11550772 DOI: 10.1016/j.csbj.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
NanoTube Construct is a web tool for the digital construction of nanotubes based on real and hypothetical single-layer materials including carbon-based materials such as graphene, graphane, graphyne polymorphs, graphidiyene and non-carbon materials such as silicene, germanene, boron nitride, hexagonal bilayer silica, haeckelite silica, molybdene disulfide and tungsten disulfide. Contrary to other available tools, NanoTube Construct has the following features: a) it is not limited to zero thickness materials with specific symmetry, b) it applies energy minimisation to the geometrically constructed Nanotubes to generate realistic ones, c) it derives atomistic descriptors (e.g., the average potential energy per atom, the average coordination number, etc.), d) it provides the primitive unit cell of the constructed Nanotube which corresponds to the selected rolling vector (i.e., the direction in which the starting nanosheet is rolled to form a tube), e) it calculates whether the Nanotube or its corresponding nanosheet is more energetically stable and f) it allows negative chirality indexes. Application of NanoTube Construct for the construction of energy minimised graphane and molybdenum disulfide nanotubes are presented, showcasing the tool's capability. NanoTube Construct is freely accessible through the Enalos Cloud Platform (https://enaloscloud.novamechanics.com/diagonal/nanotube/).
Collapse
Affiliation(s)
| | - Dimitrios Zouraris
- NovaMechanics Ltd, Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| | | | - Andreas Tsoumanis
- NovaMechanics MIKE, Piraeus 18545, Greece
- NovaMechanics Ltd, Nicosia 1070, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari 16672, Greece
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B152TT, United Kingdom
| | - Antreas Afantitis
- NovaMechanics MIKE, Piraeus 18545, Greece
- NovaMechanics Ltd, Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
17
|
Aslam J, Ahsan Waseem M, Zhang Y, Wang Y. Carbon-Based 3D Architectures as Anodes for Lithium-Ion Battery Systems. Chempluschem 2024; 89:e202400198. [PMID: 39032154 DOI: 10.1002/cplu.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Graphite, with its exceptional cyclic performance, continues to dominate as the preferred anode material for lithium-ion batteries. However as high-energy application gains momentum, there is growing demand for higher capacities that alloying/de alloying and conversion type anode materials can offer. Despite their potential, these materials are plagued by challenges such as volumetric fluctuations, low conductivities, and poor cyclic stability. Carbon nanostructures, on the other hand, show tremendous promise with their low volume expansion, high ion diffusion rates, and excellent conductivity. Nevertheless, their limited areal and volumetric densities restrict their widespread utilization. To address these limitations, various strategies such as doping, composite formation, and structural modification have been proposed. This article provides a succinct overview of carbon nanomaterials and their electrochemical performance as 3D carbon-based anodes, along with a comprehensive analysis of the strategies employed to overcome associated challenges while evaluating their potential prospects in the field.
Collapse
Affiliation(s)
- Junaid Aslam
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Muhammad Ahsan Waseem
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yifan Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, People's Republic of China
| |
Collapse
|
18
|
Sun Y, Li J, Wang Z, Tan F, Shi K, Zhai Y. Rational design of MoS2/CNT heterostructure with rich S-vacancy for enhanced HER performance. J Chem Phys 2024; 161:184705. [PMID: 39526748 DOI: 10.1063/5.0237254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Molybdenum disulfide (MoS2) is a promising electrocatalyst for the hydrogen evolution reaction (HER) due to excellent stability and low cost. However, the utilization in electrocatalytic hydrogen evolution is constrained by inherent shortcomings, including fewer edge active sites, poor dispersion, and electrical conductivity. In this work, MoS2 was compounded with carbon nanotubes (CNTs), which are known for their high specific surface area and excellent electrical conductivity. These CNTs, laden with oxygen-containing functional groups, provided nucleation sites that facilitated the rapid assembly of MoS2 nanoflowers under hydrothermal conditions within 3 h. Due to their diminutive size (∼300 nm), these nanoflowers possess a large specific surface area and numerous active sites at their edges. Furthermore, MoS2 nanoflowers exhibited a high concentration of intrinsic S-vacancies. This heterojunction material exhibited superior HER properties. In addition, density functional theory simulation further confirmed that the MoS2 with S vacancy and CNT heterojunction electrocatalysts (VS-M/C) provided a fast charge transfer pathway for water electrolysis, and analysis showed that the conduction band minimum and valence band maximum were mainly contributed by the d orbits of Mo and the p orbits of C. This study proffered a novel approach for the engineering of high-performance MoS2-based HER electrocatalysts.
Collapse
Affiliation(s)
- Yuxin Sun
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jinhua Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhiying Wang
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Fengxue Tan
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Kaixi Shi
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yingjiao Zhai
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
19
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review. Int J Mol Sci 2024; 25:11798. [PMID: 39519349 PMCID: PMC11547080 DOI: 10.3390/ijms252111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Kirill Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 633501 Krasnoobsk, Russia
- Advanced Engineering School “Agrobiotek”, Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
20
|
Sharker T, Gamaethiralalage JG, Qu Q, Xiao X, Dykstra JE, de Smet LCPM, Muff J. Iron-loaded activated carbon cloth as CDI electrode material for selective recovery of phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63734-63746. [PMID: 39503936 PMCID: PMC11602819 DOI: 10.1007/s11356-024-35444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the efficacy of oxidised iron-loaded activated carbon cloth (Fe-ACC) for selective recovery of phosphorous. The capacitive deionisation (CDI) technology was employed, for rapid removal of phosphate, with the aim of reducing the reliance on high alkalinity environment for the regeneration of Fe-ACC electrode. Multiple experimental parameters, including applied potential, pH, and co-existing ions, were studied. Additionally, the CDI system was tested on a real water matrix (Lake Ormstrup, Denmark) to elucidate the electrodes' performance on selective recovery of phosphate. About 69 ± 10% of the adsorbed phosphate were released at pH 12 via pure chemical desorption, which was ~ 50% higher than that at pH 9. The CDI system successfully demonstrated the selective removal of phosphate from the lake water. It reduced the concentration of phosphate from 1.69 to 0.49 mg/L with a 71% removal efficiency, while the removal percentages of other anions, namely chloride, sulphate, bromide, nitrite, nitrate, and fluoride, were 10%, 7%, 1%, 1.5%, 4%, and 7%, respectively.
Collapse
Affiliation(s)
- Tanzila Sharker
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Jayaruwan G Gamaethiralalage
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Qiyang Qu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Xinxin Xiao
- Department Department of Chemistry & Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jouke E Dykstra
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jens Muff
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
21
|
Martincic M, Sandoval S, Oró-Solé J, Tobías-Rossell G. Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1754. [PMID: 39513833 PMCID: PMC11547994 DOI: 10.3390/nano14211754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon nanotubes and graphene derivatives, thermogravimetric analysis (TGA) is particularly useful to determine the quality and stability of the sample, the presence of impurities and the degree of functionalization or doping after post-synthesis treatments. Furthermore, TGA is widely used to evaluate the thermal stability against oxidation by air, which can be, for instance, enhanced by the purification of the material and by nitrogen doping, finding application in areas where a retarded combustion of the material is required. Herein, we have evaluated key parameters that play a role in the data obtained from TGA, namely, gas flow rate, sample weight and temperature rate, used during the analysis. We found out that the heating rate played the major role in the process of combustion in the presence of air, inducing an increase in the temperature at which the oxidation of CNTs starts to occur, up to ca. 100 °C (from 1 °C min-1 to 50 °C min-1). The same trend was observed for all the evaluated systems, namely N-doped CNTs, graphene produced by mechanical exfoliation and N-doped reduced graphene samples. Other aspects, like the presence of impurities or structural defects in the evaluated samples, were analyzed by TGA, highlighting the versatility and usefulness of the technique to provide information of structural aspects and properties of carbon materials. Finally, a set of TGA parameters are recommended for the analysis of carbon nanomaterials to obtain reliable data.
Collapse
Affiliation(s)
| | | | | | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain; (M.M.); (S.S.); (J.O.-S.)
| |
Collapse
|
22
|
Quaresma LJB, Oliveira DSC, Dias RS, Alves KC, de Barros LGD, Pessin G, Sinatora A, Paraguassu W, Dos Reis MAL. Anisotropic piezoresistive response of 3D-printed pressure sensor based on ABS/MWCNT nanocomposite. Sci Rep 2024; 14:25297. [PMID: 39455667 PMCID: PMC11511984 DOI: 10.1038/s41598-024-76028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Nanocomposites based on carbon nanotubes (CNTs) are suitable for sensors, due to matrix ability to incorporate nanotube properties. Thus, we developed a low-cost, nanostructured poly(acrylonitrile-butadiene-styrene) (ABS) polymer piezoresistive sensor produced by additive manufacturing. For this, solution layers of acetone, dimethylformamide and CNTs functionalized with carboxylic acid were pulverized on an ABS substrate using an aerograph. Electrical characterization revealed an anisotropic piezoresistive response of the material, induced by the printing lines direction. Field Emission Gun-Scanning Electron Microscopy showed the nanostructured film spreading after five layers of CNTs as well as the random entanglement of nanotubes on parallel and perpendicular 3D-printed ABS substrates. Raman spectroscopy indicated compression and p-type doping of CNTs in interaction with the polymer, as seen mainly by the blueshift of the G and 2D subbands. The results show that the material is promising for pressure sensors, with potential applications in robotic haptic feedback systems.
Collapse
Affiliation(s)
- Luciano J B Quaresma
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil.
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil.
| | - Dhonata S C Oliveira
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
| | - Rosielem S Dias
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
| | - Kelly C Alves
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
| | - Luiz G D de Barros
- Mechanical Engineering Department, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
- Instituto Tecnológico Vale, Ouro Preto, MG, Brazil
| | - Gustavo Pessin
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém, PA, Brazil
- Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Instituto Tecnológico Vale, Ouro Preto, MG, Brazil
| | | | - Waldeci Paraguassu
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
| | - Marcos A L Dos Reis
- Graduate Program in Materials Science and Engineering, Federal University of Pará, Ananindeua, PA, Brazil
- 3D Nanostructuring Laboratory, Federal University of Pará, Belém, PA, Brazil
- Graduate Program in Amazon's Natural Resources Engineering, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
23
|
As'ari AH, Aflaha R, Katriani L, Kusumaatmaja A, Santoso I, Yudianti R, Triyana K. An ultra-sensitive ammonia sensor based on a quartz crystal microbalance using nanofibers overlaid with carboxylic group-functionalized MWCNTs. Analyst 2024; 149:5191-5205. [PMID: 39258485 DOI: 10.1039/d4an01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Detecting ammonia at low concentrations is crucial in various fields, including environmental monitoring, industrial processes, and healthcare. This study explores the development and performance of an ultra-sensitive ammonia sensor using carboxylic group-functionalized multi-walled carbon nanotubes (f-MWCNTs) overlaid on polyvinyl acetate nanofibers coated on a quartz crystal microbalance (QCM). The sensor demonstrates high responsiveness, with a frequency shift response of over 120 Hz when exposed to 1.5 ppm ammonia, a sensitivity of 23.3 Hz ppm-1 over a concentration range of 1.5-7.5 ppm, and a detection limit of 50 ppb. Additionally, the sensor exhibits a rapid response time of only 14 s, excellent selectivity against other gases, such as acetic acid, formaldehyde, methanol, ethanol, propanol, benzene, toluene, and xylene, and good stability in daily use. These characteristics make the sensor a promising tool for real-time ammonia detection in diverse applications.
Collapse
Affiliation(s)
- Ahmad Hasan As'ari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
- Research Center for Nanotechnology Systems, National Research and Innovation Agency, Building 440-442, KST B.J. Habibie, Tangerang Selatan 15314, Indonesia.
| | - Rizky Aflaha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Laila Katriani
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
- Department of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Karangmalang, Yogyakarta 55281, Indonesia
| | - Ahmad Kusumaatmaja
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Iman Santoso
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| | - Rike Yudianti
- Research Center for Nanotechnology Systems, National Research and Innovation Agency, Building 440-442, KST B.J. Habibie, Tangerang Selatan 15314, Indonesia.
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia.
| |
Collapse
|
24
|
Baratta M, Mastropietro TF, Escamilla P, Algieri V, Xu F, Nicoletta FP, Ferrando-Soria J, Pardo E, De Filpo G, Armentano D. Sulfur-Functionalized Single-Walled Carbon Nanotube Buckypaper/MTV-BioMetal-Organic Framework Nanocomposites for Gold Recovery. Inorg Chem 2024; 63:18992-19001. [PMID: 39325842 DOI: 10.1021/acs.inorgchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Developing sustainable, efficient, and selective gold recovery technology is essential to implement the valorization of complementary alternative sources for this precious metal, such as spent e-waste, and to preserve the environment. The main challenge in recovering gold from liquors obtained from leached waste electronics is the low concentration of this precious metal compared to impurities. Here, we report the preparation of a novel multivariate biological metal-organic framework (MTV-BioMOF) as a potential material for the selective recovery of gold metal ions from water, even in the presence of other interfering metals. Moreover, MTV-BioMOF can be incorporated within single-walled carbon nanotube buckypapers (SWCNT-BP) to yield an MTV-BioMOF@HS-SWCNT-BP composite, which combines enhanced mechanical properties and high chemical stability. The thiol-functionalized SWCNT-BP surface and the presence of thioether groups evenly decorating the MTV-BioMOF channels shape a task-specific functional environment that boosts the interactions with gold metal ions. The efficiency of gold recovery reaches values up to 99.5% when MTV-BioMOF@SWCNT-BP is used as an adsorbent for treating Au(III) in very diluted solutions (initial concentration of 5 ppm). This high recovery efficiency, with values as high as 98.0%, is maintained even in the presence of competing metal cations, also demonstrating a noticeable selectivity. This composite material represents a promising paradigm for the selective extraction, enrichment, and purification of gold.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Teresa F Mastropietro
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Paula Escamilla
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Vincenzo Algieri
- IRCCS NEUROMED-Istituto Neurologico Mediterraneo, Via Atinense 18, Pozzilli (IS) 86077, Italy
| | - Fang Xu
- Department of Biology, Ecology and Earth Science University of Calabria, Rende 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Rende 87036, Italy
| | - Jesus Ferrando-Soria
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Emilio Pardo
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Donatella Armentano
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| |
Collapse
|
25
|
Shamiya Y, Chakraborty A, Zahid AA, Bainbridge N, Guan J, Feng B, Pjontek D, Chakrabarti S, Paul A. Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues. COMMUNICATIONS MATERIALS 2024; 5:197. [PMID: 39309138 PMCID: PMC11415299 DOI: 10.1038/s43246-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
- Collaborative Specialization in Muscoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON Canada
| | - Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Nicholas Bainbridge
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Jingyuan Guan
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Dominic Pjontek
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| |
Collapse
|
26
|
Badea MA, Balas M, Ionita D, Dinischiotu A. Carbon nanotubes conjugated with cisplatin activate different apoptosis signaling pathways in 2D and 3D-spheroid triple-negative breast cancer cell cultures: a comparative study. Arch Toxicol 2024; 98:2843-2866. [PMID: 38739308 PMCID: PMC11324667 DOI: 10.1007/s00204-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 μg/mL), CDDP (0.158-1.26 μg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663, Bucharest, Romania
| | - Mihaela Balas
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania.
| | - Daniela Ionita
- Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Dinischiotu
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
27
|
Paramasivam G, Palem VV, Meenakshy S, Suresh LK, Gangopadhyay M, Antherjanam S, Sundramoorthy AK. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf B Biointerfaces 2024; 241:114032. [PMID: 38905812 DOI: 10.1016/j.colsurfb.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carbon nanomaterials are indispensable due to their unique properties of high electrical conductivity, mechanical strength and thermal stability, which makes them important nanomaterials in biomedical applications and waste management. Limitations of conventional nanomaterials, such as limited surface area, difficulty in fine tuning electrical or thermal properties and poor dispersibility, calls for the development of advanced nanomaterials to overcome such limitations. Commonly, carbon nanomaterials were synthesized by chemical vapor deposition (CVD), laser ablation or arc discharge methods. The advancement in these techniques yielded monodispersed carbon nanotubes (CNTs) and allows p-type and n-type doping to enhance its electrical and catalytic activities. The functionalized CNTs showed exceptional mechanical, electrical and thermal conductivity (3500-5000 W/mK) properties. On the other hand, carbon quantum dots (CQDs) exhibit strong photoluminescence properties with high quantum yield. Carbon nanohorns are another fascinating type of nanomaterial that exhibit a unique structure with high surface area and excellent adsorption properties. These carbon nanomaterials could improve waste management by adsorbing pollutants from water and soil, enabling precise environmental monitoring, while enhancing wastewater treatment and drug delivery systems. Herein, we have discussed the potentials of all these carbon nanomaterials in the context of innovative waste management solutions, fostering cleaner environments and healthier ecosystems for diverse biomedical applications such as biosensing, drug delivery, and environmental monitoring.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Vishnu Vardhan Palem
- Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022 India
| | - Simi Meenakshy
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lakshmi Krishnaa Suresh
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, No.162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
28
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
29
|
Cosinschi M, Preda AT, Pantis-Simut CA, Filipoiu N, Ghitiu I, Dulea MA, Ion L, Manolescu A, Nemnes GA. Collective dynamics of Ca atoms encapsulated in C 60 endohedral fullerenes. Phys Chem Chem Phys 2024; 26:22090-22098. [PMID: 39118483 DOI: 10.1039/d4cp01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Endohedral C60 fullerenes with up to four encapsulated Ca atoms were investigated by ab initio molecular dynamics simulations (AIMD). The relatively long runs allow us to describe the correlated movement of the Ca atoms inside the fullerene cage. For the systems with one or two Ca atoms a relatively unimpeded rotation was conjectured by earlier nuclear magnetic resonance experiments and supported by previous ab initio calculations used to sample the potential energy landscape. Here, by AIMD calculations, we confirm not only the circular motion, but also the correlated movement of the two Ca atoms, which is due to electric dipole interactions on the inner surface of the C60 molecule. Furthermore, systems with three and four Ca atoms present highly symmetric configurations of the embedded atoms, which are shown to rotate consistently within the fullerene cage, while more complex charge density patterns emerge. Employing artificial neural network models we perform a force-field mapping, which enables us to reproduce the main characteristics of the actual dynamics, such as the circular motion and the correlated movement of the Ca atoms.
Collapse
Affiliation(s)
- Mihaela Cosinschi
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - Amanda T Preda
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - C-A Pantis-Simut
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - N Filipoiu
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - I Ghitiu
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - M A Dulea
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - L Ion
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
| | - A Manolescu
- Department of Engineering, School of Technology, Reykjavik University, Menntavegur 1, IS-102 Reykjavik, Iceland
| | - G A Nemnes
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Research Institute of the University of Bucharest (ICUB), 90 Panduri Street, 050663 Bucharest, Romania
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| |
Collapse
|
30
|
Pisani S, Tufail S, Rosalia M, Dorati R, Genta I, Chiesa E, Conti B. Antibiotic-Loaded Nano-Sized Delivery Systems: An Insight into Gentamicin and Vancomycin. J Funct Biomater 2024; 15:194. [PMID: 39057315 PMCID: PMC11277905 DOI: 10.3390/jfb15070194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The fight against infectious disease has remained an ever-evolving challenge in the landscape of healthcare. The ability of pathogens to develop resistance against conventional drug treatments has decreased the effectiveness of therapeutic interventions, and antibiotic resistance is recognized as one of the main challenges of our time. The goal of this systematic review paper is to provide insight into the research papers published on innovative nanosized drug delivery systems (DDSs) based on gentamycin and vancomycin and to discuss the opportunity of their repurposing through nano DDS formulations. These two antibiotics are selected because (i) gentamicin is the first-line drug used to treat suspected or confirmed infections caused by Gram-negative bacterial infections and (ii) vancomycin is used to treat serious Gram-positive bacterial infections. Moreover, both antibiotics have severe adverse effects, and one of the purposes of their formulation as nanosized DDSs is to overcome them. The review paper includes an introduction focusing on the challenges of infectious diseases and traditional therapeutic treatments, a brief description of the chemical and pharmacological properties of gentamicin and vancomycin, case studies from the literature on innovative nanosized DDSs as carriers of the two antibiotic drugs, and a discussion of the results found in the literature.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Shafia Tufail
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
- Department of Drug Sciences, IUSS Scuola Universitaria Superiore Pavia, 27100 Pavia, Italy
| | - Mariella Rosalia
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| |
Collapse
|
31
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
32
|
Shi L, Tang P, Hu J, Zhang Y. A Strategy for Multigas Identification Using Multielectrical Parameters Extracted from a Single Carbon-Based Field-Effect Transistor Sensor. ACS Sens 2024; 9:3126-3136. [PMID: 38843033 DOI: 10.1021/acssensors.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Given the widespread utilization of gas sensors across various industries, the detection of diverse and complex target gases presents a significant challenge in designing sensors with multigas detection capability. Although constructing a sensor array with widely used chemiresistive gas sensors is one solution, it is difficult for a single chemiresistive gas sensor to simultaneously detect different gases, as it can only detect a single target gas. The intrinsic reason for this bottleneck is that chemiresistive gas sensors rely entirely on the resistivity as the unique parameter to evaluate the diverse gas sensing properties of sensors, such as sensitivity, selectivity, etc. Herein, a field-effect transistor (FET) with abundant electrical parameters is employed to prepare a gas sensor for the detection of a variety of gases. Semiconducting carbon nanotubes (CNTs) are selected as the channel material, which is modified by Pd nanoparticles to enhance the gas sensing properties of the sensors. By extracting various electrical parameters such as transconductance, threshold voltage, etc. from the transfer characteristic curves of FET, a correlation between multielectrical parameters and various gas detection information is established for subsequent data analysis. Through the utilization of the principal component analysis algorithm, the identification of six gases can be finally achieved by relying solely on a single carbon-based FET-type gas sensor. We hope our work can solve the bottleneck of multigas identification by a single sensor in principle and is expected to reduce the system complexity and cost caused by the design of sensor arrays, offering a valuable guidance for multigas identification technology.
Collapse
Affiliation(s)
- Lin Shi
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Pinghua Tang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Jinyong Hu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
| | - Yong Zhang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
33
|
Lei SN, Zhu L, Xue N, Xiao X, Shi L, Wang DC, Liu Z, Guan XR, Xie Y, Liu K, Hu LR, Wang Z, Stoddart JF, Guo QH. Cyclooctatetraene-Embedded Carbon Nanorings. Angew Chem Int Ed Engl 2024; 63:e202402255. [PMID: 38551062 DOI: 10.1002/anie.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 04/26/2024]
Abstract
With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites. The conformations of the trimeric nanorings COTCNR1 and COTCNR2 are shape-persistent, whereas the tetrameric COTCNR3 possesses a flexible carbon skeleton which undergoes conformational changes upon forming host-guest complexes with fullerenes (C60 and C70), whose co-crystals may potentially serve as fullerene-based semiconducting supramolecular wires with electrical conductivities on the order of 10-7 S cm-1 (for C60⊂COTCNR3) and 10-8 S cm-1 (for C70⊂COTCNR3) under ambient conditions. This research not only describes highly efficient one-step syntheses of three cyclooctatetraene-embedded carbon nanorings which feature hoop-shaped segments of distinctive topological carbon schwarzites, but also demonstrates the potential application in electronics of the one-dimensional fullerene arrays secured by COTCNR3.
Collapse
Affiliation(s)
- Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ling Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Zhe Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Xin-Ru Guan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Yuan Xie
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Ke Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Lian-Rui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR
- Simpson Querrey Institute for BioNanotechnology, 303 East Superior Street, Chicago, IL-60611, USA
- School of Chemistry, University of New South Wales, Sydney, NSW-2052, Australia
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Satyam S, Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024; 10:e29573. [PMID: 38699034 PMCID: PMC11064087 DOI: 10.1016/j.heliyon.2024.e29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Water contamination is an escalating emergency confronting communities worldwide. While traditional adsorbents have laid the groundwork for effective water purification, their selectivity, capacity, and sustainability limitations have driven the search for more advanced solutions. Despite many technological advancements, economic, environmental, and regulatory hurdles challenge the practical application of advanced adsorption techniques in large-scale water treatment. Integrating nanotechnology, advanced material fabrication techniques, and data-driven design enabled by artificial intelligence (AI) and machine learning (ML) have led to a new generation of optimized, high-performance adsorbents. These advanced materials leverage properties like high surface area, tailored pore structures, and functionalized surfaces to capture diverse water contaminants efficiently. With a focus on sustainability and effectiveness, this review highlights the transformative potential of these advanced materials in setting new benchmarks for water purification technologies. This article delivers an in-depth exploration of the current landscape and future directions of adsorbent technology for water remediation, advocating for a multidisciplinary approach to overcome existing barriers in large-scale water treatment applications.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
35
|
Masood M, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Carbon nanotubes: a novel innovation as food supplements and biosensing for food safety. Front Nutr 2024; 11:1381179. [PMID: 38803447 PMCID: PMC11128632 DOI: 10.3389/fnut.2024.1381179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Recently, nanotechnology has emerged as an extensively growing field. Several important fabricated products including Carbon nanotubes (CNTs) are of great importance and hold significance in several industrial sectors, mainly food industry. Recent developments have come up with methodologies for the prevention of health complications like lack of adequate nutrition in our diet. This review delves deeper into the details of the food supplementation techniques and how CNTs function in this regard. This review includes the challenges in using CNTs for food applications and their future prospects in the industry. Food shortage has become a global issue and limiting food resources put an additional burden on the farmers for growing crops. Apart from quantity, quality should also be taken into consideration and new ways should be developed for increasing nutritional value of food items. Food supplementation has several complications due to the biologically active compounds and reaction in the in vivo environment, CNTs can play a crucial role in countering this problem through the supplementation of food by various processes including; nanoencapsulation and nanobiofortification thus stimulating crop growth and seed germination rates. CNTs also hold a key position in biosensing and diagnostic application for either the quality control of the food supplements or the detection of contagions like toxins, chemicals, dyes, pesticides, pathogens, additives, and preservatives. Detection such pathogens can help in attaining global food security goal and better production and provision of food resources. The data used in the current review was collected up to date as of March 31, 2024 and contains the best of our knowledge. Data collection was performed from various reliable and authentic literatures comprising PubMed database, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Research related to commercially available CNTs has been added for the readers seeking additional information on the use of CNTs in various economic sectors.
Collapse
Affiliation(s)
- Maazallah Masood
- Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
36
|
Maftei A, Cojocaru C, Dobromir M, Ignat M, Neamțu M. Novel nanohybrid iron (II/III) phthalocyanine-based carbon nanotubes as catalysts for organic pollutant removal: process optimization by chemometric approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35651-35665. [PMID: 38740683 DOI: 10.1007/s11356-024-33653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In the present study, two iron phthalocyanine (FePc)-based nanocatalysts were synthesized and fully characterized. The carbon nanotubes (CNT) functionalized in an easy way with either Fe(II)Pc or Fe(III)Pc exhibit a very good catalytical activity. The activity in real wastewater effluent was comparable with the activity in distilled water. The procedure of modeling and optimizing with the assistance of chemometrics, utilizing design of experiments (DOE) and response surface methodology (RSM), revealed the conditions of optimum for decaying Reactive Yellow 84 on the nanocatalysts FePc_CNT. These optimal conditions included a catalyst dose of 1.70 g/L and an initial concentration (C0) of 20.0 mg/L. Under the indicated optimal conditions, the experimental findings verified that the removal efficiency was equal to Y = 98.92%, representing the highest observed value in this study. Under UVA light, after only 15 min of reaction, over 94% of dye was removed using both catalysts. The reuse experiments show that the activity of both nanohybrid material based on FePc-CNT slightly decreases over four consecutive runs. The quenching experiments show that RY84 was removed through radical pathways (O2•- and •OH) as well as non-radical pathways (1O2 and direct electron transfer).
Collapse
Affiliation(s)
- Andreea Maftei
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bv. Carol I, no. 11, 700506, Iasi, Romania
| | - Corneliu Cojocaru
- Laboratory of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodă, 700487, Iasi, Romania
| | - Marius Dobromir
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bv. Carol I, no. 11, 700506, Iasi, Romania
| | - Maria Ignat
- Laboratory of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodă, 700487, Iasi, Romania
- Laboratory of Materials Chemistry, Department of Chemistry, Alexandru Ioan Cuza University, Bv. Carol I, no. 11, 700506, Iasi, Romania
| | - Mariana Neamțu
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bv. Carol I, no. 11, 700506, Iasi, Romania.
| |
Collapse
|
37
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
38
|
Valerio TL, Anastácio R, da Silva SS, de Oliveira CC, Vidotti M. An overview of electrochemical biosensors used for COVID-19 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2164-2176. [PMID: 38536084 DOI: 10.1039/d3ay02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.
Collapse
Affiliation(s)
- Tatiana Lima Valerio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Raquel Anastácio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Stella Schuster da Silva
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
39
|
Liu Q, Feng N, Zou Y, Fan C, Wang J. Exploring the impact of stress on the electronic structure and optical properties of graphdiyne nanoribbons for advanced optoelectronic applications. Sci Rep 2024; 14:6051. [PMID: 38480809 PMCID: PMC10937923 DOI: 10.1038/s41598-024-56380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Graphdiyne (GDY), a two-dimensional carbon material with sp- and sp2-hybridization, is recognized for its unique electronic properties and well-dispersed porosity. Its versatility has led to its use in a variety of applications. The precise control of this material's properties is paramount for its effective utilization in nano-optical devices. One effective method of regulation, which circumvents the need for additional disturbances, involves the application of external stress. This technique provides a direct means of eliciting changes in the electronic characteristics of the material. For instance, when subjected to uniaxial stress, electron transfer occurs at the triple bond. This results in an armchair-edged graphdiyne nanoribbon (A(3)-GDYNR) with a planar width of 2.07 nm, which exhibits a subtle plasmon effect at 500 nm. Conversely, a zigzag-edged graphdiyne nanoribbon (Z(3)-GDYNR) with a planar width of 2.86 nm demonstrates a pronounced plasmon effect within the 250-1200 nm range. This finding suggests that the zigzag nanoribbon surpasses the armchair nanoribbon in terms of its plasmon effect. First principles calculations and ab initio molecular dynamics further confirmed that under applied stress Z(3)-GDYNR exhibits less deformation than A(3)-GDYNR, indicating superior stability. This work provides the necessary theoretical basis for understanding graphene nanoribbons (GDYNRs).
Collapse
Affiliation(s)
- Qiaohan Liu
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China
| | - Naixing Feng
- Key Laboratory of Intelligent Computing and Signal Processing, and School of Electronic and Information Engineering, Anhui University, Hefei, 230601, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Chuanqiang Fan
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun, 113001, China.
| |
Collapse
|
40
|
Kumar V, Sharma N, Umesh M, Sharma R, Sharma M, Sharma D, Sharma M, Sondhi S, Thomas J, Kumar D, Kansal L, Jha NK. Commercialization potential of PET (polyethylene terephthalate) recycled nanomaterials: A review on validation parameters. CHEMOSPHERE 2024; 352:141453. [PMID: 38364916 DOI: 10.1016/j.chemosphere.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Polyethylene Terephthalate (PET) is a polymer which is considered as one of the major contaminants to the environment. The PET waste materials can be recycled to produce value-added products. PET can be converted to nanoparticles, nanofibers, nanocomposites, and nano coatings. To extend the applications of PET nanomaterials, understanding its commercialization potential is important. In addition, knowledge about the factors affecting recycling of PET based nanomaterials is essential. The presented review is focused on understanding the PET commercialization aspects, keeping in mind market analysis, growth drivers, regulatory affairs, safety considerations, issues associated with scale-up, manufacturing challenges, economic viability, and cost-effectiveness. In addition, the paper elaborates the challenges associated with the use of PET based nanomaterials. These challenges include PET contamination to water, soil, sediments, and human exposure to PET nanomaterials. Moreover, the paper discusses in detail about the factors affecting PET recycling, commercialization, and circular economy with specific emphasis on life cycle assessment (LCA) of PET recycled nanomaterials.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India.
| | - Roopali Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, 176206, Kangra, Himachal Pradesh, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, 176206, Kangra, Himachal Pradesh, India
| | - Sonica Sondhi
- Haryana State Pollution Control Board, C-11, Panchkula, Haryana, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Deepak Kumar
- Department of Biotechnology-UIBT, Chandigarh University, Punjab, India
| | - Lavish Kansal
- School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre for Research Impact and Outcomes, Chitkara University, Rajpura, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
41
|
Nasiri MA, Tong SY, Cho C, Gómez CM, Cantarero A, Culebras M. Synthesis of PEDOT/CNTs Thermoelectric Thin Films with a High Power Factor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1121. [PMID: 38473595 DOI: 10.3390/ma17051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
In this study, we have improved the power factor of conductive polymer nanocomposites by combining layer-by-layer assembly with electrochemical deposition to produce flexible thermoelectric materials based on PEDOT/carbon nanotubes (CNTs)-films. To produce films based on CNTs and PEDOT, a dual approach has been employed: (i) the layer-by-layer method has been utilized for constructing the CNTs layer and (ii) electrochemical polymerization has been used in the synthesis of the conducting polymer. Moreover, the thermoelectric properties were optimized by controlling the experimental conditions including the number of deposition cycles and electropolymerizing time. The electrical characterization of the samples was carried out by measuring the Seebeck voltage produced under a small temperature difference and by measuring the electrical conductivity using the four-point probe method. The resulting values of the Seebeck coefficient S and σ were used to determine the power factor. The structural and morphological analyses of CNTs/PEDOT samples were carried out using scanning electron microscopy (SEM) and Raman spectroscopy. The best power factor achieved was 131.1 (μWm-1K-2), a competitive value comparable to some inorganic thermoelectric materials. Since the synthesis of the CNT/PEDOT layers is rather simple and the ingredients used are relatively inexpensive and environmentally friendly, the proposed nanocomposites are a very interesting approach as an application for recycling heat waste.
Collapse
Affiliation(s)
- Mohammad Ali Nasiri
- Institute of Molecular Science, University of Valencia, Carrer del Catedràtic José Beltrán 2, 46980 Valencia, Spain
| | - Seong Yuen Tong
- Materials Science Institute, University of Valencia, 46980 Paterna, Spain
| | - Chungyeon Cho
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Clara M Gómez
- Materials Science Institute, University of Valencia, 46980 Paterna, Spain
| | - Andres Cantarero
- Institute of Molecular Science, University of Valencia, Carrer del Catedràtic José Beltrán 2, 46980 Valencia, Spain
| | - Mario Culebras
- Materials Science Institute, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
42
|
Shu Q, Huang P, Dong Z, Wang W. Molecular dynamics investigation on synthesis of a pH- and temperature-sensitive carbon nanotube loaded with doxorubicin. iScience 2024; 27:108812. [PMID: 38303688 PMCID: PMC10831279 DOI: 10.1016/j.isci.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The many exotic properties of carbon nanotubes (CNTs) make them a powerful attraction in the field of drug delivery systems (DDS). In this work, based on quantum chemical calculation and molecular simulation techniques, polyacrylic acid (PAA) and N-isopropyl acrylamide (NIP) are selected and acted simultaneously on the CNT to form a stable system (FCNT). As a potential DDS, FCNT captures the dispersed doxorubicin (DOX) molecules around it and maintains a stable configuration. In these processes, electrostatic and van der Waals forces act synergistically, with van der Waals forces dominating. Compared to NIP, PAA molecules exhibit stronger adhesion and encapsulation efficiency to CNT and stronger adsorption capacity to DOX. This study reveals the mechanism of action among PAA, NIP, CNT, and DOX, providing feasibility verification and prospective guidance for the experimental synthesis of PAA-NIP-CNT-type multifunctional DDS, and also broadening the idea for exploring more efficient DDS suitable for DOX.
Collapse
Affiliation(s)
- Qijiang Shu
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Traditional Chinese Medicine Prevention and Treatment Engineering Research Center, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Pengru Huang
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhi Dong
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wenping Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
43
|
Thacharodi A, Hassan S, Meenatchi R, Bhat MA, Hussain N, Arockiaraj J, Ngo HH, Sharma A, Nguyen HT, Pugazhendhi A. Mitigating microplastic pollution: A critical review on the effects, remediation, and utilization strategies of microplastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119988. [PMID: 38181686 DOI: 10.1016/j.jenvman.2023.119988] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 μm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, 26555, Eskişehir, Turkey
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
44
|
François M, Lin KS, Rachmadona N, Khoo KS. Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A state-of-the-art review. CHEMOSPHERE 2024; 350:141008. [PMID: 38154673 DOI: 10.1016/j.chemosphere.2023.141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The management of environmental pollution and carbon dioxide (CO2) emissions is a challenge that has spurred increased research interest in determining sustainable alternatives to decrease biowaste. This state-of-the-art review aimed to describe the preparation and utilization of carbon-based nanomaterials (CNM) for biogas enhancement and wastewater contaminant (dyes, color, and dust particles) removal. The novelty of this review is that we elucidated that the performance of CNMs in the anaerobic digestion (AD) varies from one system to another. In addition, this review revealed that increasing the pyrolysis temperature can facilitate the transition from one CNM type to another and outlined the methods that can be used to develop CNMs, including arc discharge, chemical exfoliation, and laser ablation. In addition, this study showed that methane (CH4) yield can be slightly increased (e.g. from 33.6% to 60.89%) depending on certain CNM factors, including its type, concentration, and feedstock. Temperature is a fundamental factor involved in the method and carbon sources used for CNM synthesis. This review determined that graphene oxide is not a good additive for biogas and CH4 yield improvement compared with other types of CNM, such as graphene and carbon nanotubes. The efficacy of CNMs in wastewater treatment depends on the temperature and pH of the solution. Therefore, CNMs are good adsorbents for wastewater contaminant removal and are a promising alternative for CO2 emissions reduction. Further research is necessary to determine the relationship between CNM synthesis and preparation costs while accounting for other factors such as gas flow, feedstock, consumption time, and energy consumption.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
45
|
An S, Suh Y, Kelich P, Lee D, Vukovic L, Jeong S. Directed Evolution of Near-Infrared Serotonin Nanosensors with Machine Learning-Based Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:247. [PMID: 38334518 PMCID: PMC10856788 DOI: 10.3390/nano14030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In this study, we employed a novel approach to improve the serotonin-responsive ssDNA-wrapped single-walled carbon nanotube (ssDNA-SWCNT) nanosensors, combining directed evolution and machine learning-based prediction. Our iterative optimization process is aimed at the sensitivity and selectivity of ssDNA-SWCNT nanosensors. In the three rounds for higher serotonin sensitivity, we substantially improved sensitivity, achieving a remarkable 2.5-fold enhancement in fluorescence response compared to the original sequence. Following this, we directed our efforts towards selectivity for serotonin over dopamine in the two rounds. Despite the structural similarity between these neurotransmitters, we achieved a 1.6-fold increase in selectivity. This innovative methodology, offering high-throughput screening of mutated sequences, marks a significant advancement in biosensor development. The top-performing nanosensors, N2-1 (sensitivity) and L1-14 (selectivity) present promising reference sequences for future studies involving serotonin detection.
Collapse
Affiliation(s)
- Seonghyeon An
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yeongjoo Suh
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dakyeon Lee
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sanghwa Jeong
- Department of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
46
|
Ray JL, Postma B, Kendall RL, Ngo MD, Foo CX, Saunders B, Ronacher K, Gowdy KM, Holian A. Estrogen contributes to sex differences in M2a macrophages during multi-walled carbon nanotube-induced respiratory inflammation. FASEB J 2024; 38:e23350. [PMID: 38071600 PMCID: PMC10752389 DOI: 10.1096/fj.202301571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1β production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.
Collapse
Affiliation(s)
- Jessica L. Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Britten Postma
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Brett Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
47
|
Isabel Lucío M, Giacalone F, La Parola V, Gámez-Valenzuela S, Muñoz-Alba F, Ruiz Delgado MC, Herrero MA, Vázquez E. A Prato Tour on Carbon Nanotubes: Raman Insights. Chemistry 2023; 29:e202302476. [PMID: 37788975 DOI: 10.1002/chem.202302476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
The functionalisation of carbon nanotubes has been instrumental in broadening its application field, allowing especially its use in biological studies. Although numerous covalent and non-covalent functionalisation methods have been described, the characterisation of the final materials has always been an added challenge. Among the various techniques available, Raman spectroscopy is one of the most widely used to determine the covalent functionalisation of these species. However, Raman spectroscopy is not a quantitative technique, and no studies are reported comparing its performance when the same number of functional groups are added but using completely different reactions. In this work, we have experimentally and theoretically studied the functionalisation of carbon nanotubes using two of the most commonly used reactions: 1,3-dipolar cycloaddition of azomethylene ylides and diazonium-based radical addition. The number of groups introduced onto the tubes by these reactions has been determined by different characterisation techniques. The results of this study support the idea that data obtained by Raman spectra are only helpful for comparing functionalisations produced using the same type of reaction. However, they should be carefully analysed when comparing functionalisations produced using different reaction types.
Collapse
Affiliation(s)
- María Isabel Lucío
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Current affiliation: Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo and INSTM UdR - Palermo, Viale delle Scienze, Ed.17, 90128, Palermo, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Sergio Gámez-Valenzuela
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Fernando Muñoz-Alba
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
48
|
Shar A, Shar A, Joung D. Carbon nanotube nanocomposite scaffolds: advances in fabrication and applications for tissue regeneration and cancer therapy. Front Bioeng Biotechnol 2023; 11:1299166. [PMID: 38179128 PMCID: PMC10764633 DOI: 10.3389/fbioe.2023.1299166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Carbon nanotube (CNT) nanocomposite scaffolds have emerged as highly promising frameworks for tissue engineering research. By leveraging their intrinsic electrical conductivity and valuable mechanical properties, CNTs are commonly dispersed into polymers to create robust, electrically conductive scaffolds that facilitate tissue regeneration and remodeling. This article explores the latest progress and challenges related to CNT dispersion, functionalization, and scaffold printing techniques, including electrospinning and 3D printing. Notably, these CNT scaffolds have demonstrated remarkable positive effects across various cell culture systems, stimulating neuronal growth, promoting cardiomyocyte maturation, and facilitating osteocyte differentiation. These encouraging results have sparked significant interest within the regenerative medicine field, including neural, cardiac, muscle, and bone regenerations. However, addressing the concern of CNT cytotoxicity in these scaffolds remains critical. Consequently, substantial efforts are focused on exploring strategies to minimize cytotoxicity associated with CNT-based scaffolds. Moreover, researchers have also explored the intriguing possibility of utilizing the natural cytotoxic properties of CNTs to selectively target cancer cells, opening up promising avenues for cancer therapy. More research should be conducted on cutting-edge applications of CNT-based scaffolds through phototherapy and electrothermal ablation. Unlike drug delivery systems, these novel methodologies can combine 3D additive manufacturing with the innate physical properties of CNT in response to electromagnetic stimuli to efficiently target localized tumors. Taken together, the unique properties of CNT-based nanocomposite scaffolds position them as promising candidates for revolutionary breakthroughs in both regenerative medicine and cancer treatment. Continued research and innovation in this area hold significant promise for improving healthcare outcomes.
Collapse
Affiliation(s)
- Andy Shar
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Angela Shar
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daeha Joung
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
49
|
Gendron D, Bubak G. Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety? J Xenobiot 2023; 13:740-760. [PMID: 38132708 PMCID: PMC10744618 DOI: 10.3390/jox13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Carbon nanotubes and graphene are two types of nanomaterials that have unique properties and potential applications in various fields, including biomedicine, energy storage, and gas sensing. However, there is still a debate about the safety of these materials, and there is yet to be a complete consensus on their potential risks to human health and the environment. While some studies have provided recommendations for occupational exposure limits, more research is needed to fully understand the potential risks of these materials to human health and the environment. In this review, we will try to summarize the advantages and disadvantages of using carbon nanotubes and graphene as well as composites containing them in the context of their biocompatibility and toxicity to living systems. In addition, we overview current policy guidelines and technical regulations regarding the safety of carbon-based nanomaterials.
Collapse
Affiliation(s)
- David Gendron
- Kemitek, Cégep de Thetford, 835 Rue Mooney, Thetford Mines, QC G6G 0A5, Canada
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| |
Collapse
|
50
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|