1
|
Bakry M, Ismail W, Abdelfatah M, El-Shaer A. Low-cost fabrication methods of ZnO nanorods and their physical and photoelectrochemical properties for optoelectronic applications. Sci Rep 2024; 14:23788. [PMID: 39394341 PMCID: PMC11470147 DOI: 10.1038/s41598-024-73352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
Zinc Oxide (ZnO) nanorods have great potential in several applications including gas sensors, light-emitting diodes, and solar cells because of their unique properties. Here, three low cost and ecofriendly techniques were used to produce ZnO nanorods on FTO substrates: hydrothermal, chemical bath deposition (CBD), and electrochemical deposition (ECD). This study explores the impact of such methods on the optical, structural, electrical, morphological, and photoelectrochemical properties of nanorods using various measurements. XRD analysis confirmed the hexagonal wurtzite structure of ZnO nanorods in all three methods, with hydrothermal showing a preferred orientation (002) and CBD and ECD samples showing multiple growth directions, with average particle sizes of 31 nm, 34 nm, and 33 nm, respectively. Raman spectra revealed hexagonal Wurtzite structure of ZnO, with hydrothermal method exhibiting higher E2 (high) peak at 438 cm-1 than CBD and ECD methods. SEM results revealed hexagonal ZnO nanorods became more regular and thicker for the hydrothermal method, while CBD and ECD led to less uniform with voids. UV-vis spectra showed absorption lines between 390 nm and 360 nm. Optical bandgap energies were calculated as 3.32 eV, 3.22 eV, and 3.23 eV for hydrothermal, CBD, and ECD samples, respectively. PL spectra revealed UV emission band with a small intensity peak around 389 nm and visible emission peaks at 580 nm. Temperature dependent PL measurements for ZnO nanorods indicated that the intensities ratio between bound exciton and free exciton decreases with temperature increases for the three methods. Photocurrent measurements revealed ZnO nanorod films as n-type semiconductors, with photocurrent values of 2.25 µA, 0.28 µA, and 0.3 µA for hydrothermal, CBD, and ECD samples, and photosensitivity values of 8.01, 2.79, and 3.56 respectively. Our results suggest that the hydrothermal method is the most effective approach for fabricating high-quality ZnO nanorods for optoelectronic applications.
Collapse
Affiliation(s)
- Mabrouk Bakry
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- NanoScience and Technology Program, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Walid Ismail
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- NanoScience and Technology Program, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mahmoud Abdelfatah
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
- NanoScience and Technology Program, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Abdelhamid El-Shaer
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
- NanoScience and Technology Program, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
2
|
Morais M, Carlos E, Rovisco A, Calmeiro T, Gamboa H, Fortunato E, Martins R, Barquinha P. Flexographic printed microwave-assisted grown zinc oxide nanostructures for sensing applications. MATERIALS HORIZONS 2024. [PMID: 39387254 DOI: 10.1039/d4mh01000k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The development of flexible electronics has increased the demand for wearable pressure sensors that can be used to monitor various biomedical signals. In this context, pressure sensors based on zinc oxide (ZnO) have great potential since, besides the biocompatibility and biodegradability of this metal oxide, it also has piezoelectric properties. The common feature of these sensors is the alignment of the ZnO nanostructures in the strain direction. This alignment is achieved through a three-stage procedure: deposition of a ZnO nanoparticle layer (seed layer) followed by its patterning and the subsequent growth of nanostructures from the seed layer nanoparticles. Herein, a process compatible with industrial scale for depositing seed layers by flexographic printing is proposed, allowing seed layers to be deposited and patterned swiftly and efficiently in a single step on flexible indium tin oxide coated polyethylene terephthalate substrates, significantly decreasing the time and cost required to produce pressure sensors. The growth conditions of ZnO nanorods on these substrates were also studied to analyze their influence on the morphological and structural characteristics of the nanostructures. Nanorods with length of (0.27 ± 0.04) μm and density of (296 ± 6) nanorods per μm2 were obtained in microwave-assisted hydrothermal syntheses carried out at 100 °C for 30 min, with a 1 M zinc acetate seed layer and using an equimolar growth solution of zinc nitrate and hexamethylenetetramine. These conditions were used to produce ZnO-based pressure sensors with two patterns (one square and 16 individual squares). Although the single square sensors displayed a higher average output voltage ((12 ± 5) V for an impact pressure of 150 kPa), their response was considerably more variable than the patterned sensors (with 16 squares), which displayed an average output voltage of (8 ± 2) V under an applied pressure of 150 kPa and sensitivity values of (0.06 ± 0.01) V kPa-1, demonstrating their potential for wearables and portable electronics.
Collapse
Affiliation(s)
- Maria Morais
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Emanuel Carlos
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Ana Rovisco
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Tomás Calmeiro
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Hugo Gamboa
- LIBPhys (Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics), NOVA School of Science and Technology, Campus de Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Pedro Barquinha
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| |
Collapse
|
3
|
Muthu S, Lakshmikanthan M, Edward-Sam E, Subramanian M, Govindan L, Patcha ABM, Krishnan K, Duraisamy N, Jeyaperumal S, Aziz AT. Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. Pharmaceutics 2024; 16:1300. [PMID: 39458629 PMCID: PMC11510838 DOI: 10.3390/pharmaceutics16101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Phloroglucinol (PHL), a phenolic compound extracted from the brown alga Rosenvingea intricata, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential. METHODS PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL. RESULTS The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC50 of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction. CONCLUSIONS The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mythileeswari Lakshmikanthan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Edwin Edward-Sam
- Department of Microbiology, Division of Virology and Molecular Biology, St. Peters Medical College Hospital & Research Institute, Hosur 635130, Tamil Nadu, India;
| | - Mutheeswaran Subramanian
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Lakshmanan Govindan
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Afrina Begum Mithen Patcha
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Nallusamy Duraisamy
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai 600078, Tamil Nadu, India;
| | - Selvakumari Jeyaperumal
- National Centre for Disease Control, Thiruvananthapuram Field Unit, Iranimuttam, Thiruvananthapuram 695009, Kerala, India;
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
4
|
Gao L, Meng Y, Luo X, Chen J, Wang X. ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation. TOXICS 2024; 12:724. [PMID: 39453144 PMCID: PMC11511357 DOI: 10.3390/toxics12100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs' toxicity.
Collapse
Affiliation(s)
- Lifeng Gao
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Yuguang Meng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Xiaowen Luo
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Jiangyuan Chen
- Department of Medical Imaging, School of Medicine, Jianghan University, Wuhan 430056, China; (L.G.); (X.L.); (J.C.)
| | - Xuxia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
| |
Collapse
|
5
|
Kamal A, Akhtar MS, Nazish M, Tahira KT, Rahman KU, Iqbal A, Kamal K, Alrefaei AF, Faraj TK, Zaman W. Plant phytochemicals-mediated synthesis of zinc oxide nanoparticles with antimicrobial, pharmacological, and environmental applications. AN ACAD BRAS CIENC 2024; 96:e20240436. [PMID: 39383431 DOI: 10.1590/0001-3765202420240436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 10/11/2024] Open
Abstract
Nanotechnology is a fast-growing field with large number of applications. Therefore, the current study, was designed to prepare Zinc Oxide nanoparticles (ZnO NPs) from A. modesta leaves extract through a cost-effective method. The prepared NPs were characterized through UV-Vis Spectroscopy (UV-Vis), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). The XRD and DLS analysis revealed the hexagonal nanocrystalline nature of ZnO NPs. The FTIR results displayed multiple fictional groups and UV results confirmed its optical properties. The average size of the NPs was 68.3 nm with a band gap of 2.71 eV. The SEM images divulge a clover leaf shape of ZnO NPs. The EDX spectrum revealed the presence of zinc and oxygen. The prepared NPs showed excellent biomedical application. The highest antileishmanial activity was 68%, anti-inflammatory activity was 78%, total antioxidant capacity (TAC) was 79.1%, antibacterial potential (ZOI) 22.1 mm, and highest growth inhibition of 85 ± 2.1% against A. rabiei. The adsorption efficiency of 85.3% within 120 min was obtained. Conclusively ZnO NPs have shown potential biomedical and environmental applications and ought to be the more investigated to enhance their practical use.
Collapse
Affiliation(s)
- Asif Kamal
- Islamabad Career College, Department of Biology, Kiyani Road, 45400, Bharakahu, Islamabad, Pakistan
| | - Muhammad Saeed Akhtar
- Yeungnam University, School of Chemical Engineering, Gyeongsan 38541, Republic of Korea
| | - Moona Nazish
- Rawalpindi Women University, Department of Botany, 46300, Punjab, Pakistan
| | - Khadija Tut Tahira
- Scientific Officer, Buffalo Production Research Division, Bangladesh Livestock Research Institute, Svar 1341, Dhaka, Bangladesh
| | | | - Attiya Iqbal
- Quaid-i-Azam University, Department of Animal Sciences, Faculty of Biological Sciences, Islamabad-45320, Pakistan
| | - Khalid Kamal
- Kohat University of Science and Technology, Department of Chemistry, Kohat 26000, KPK, Pakistan
| | - Abdulwahed Fahad Alrefaei
- King Saud University, College of Science, Department of Zoology, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Turki Kh Faraj
- King Saud University, College of Food and Agriculture Sciences, Department of Soil Science, P.O. Box 145111, Riyah, Saudi 11362, Arabia
| | - Wajid Zaman
- Yeungnam University, Department of Life Sciences, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Kumar Pal P, Sarifujjaman M, Saha P, Mahbubur Rahman SM, Emdadul Islam M, Ahmmad B, Rezaul Karim KM, Mahiuddin M. Green Synthesis of Zinc Oxide Nanoparticles Using Dillenia Indica and Mikania Micrantha Leaf Extracts: Applications in Photocatalysis and Antibacterial Activity. ChemistryOpen 2024:e202400102. [PMID: 39359024 DOI: 10.1002/open.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
Researchers are keenly interested in developing metal-based nanoparticles using plant sources as they are eco-friendly, less expensive and simpler. Zinc oxide nanoparticles, symbolized as D-ZnONPs and M-ZnONPs were synthesized in this study utilizing the leaves of D. indica and M. micrantha, respectively, and studied their impact on the growth inhibition of various bacterial strains and on the photocatalysis. By displaying the distinctive surface plasmon resonance (SPR) band at 373 nm in UV-Vis and bands at 450-480 cm-1 corresponding to Zn-O stretching FTIR spectroscopy imparted the formation of ZnONPs which was further supported by X-ray diffraction analysis by showing the polycrystalline nature and a hexagonal wurtzite structure. The spherical form and average particle size of 30 nm of the produced ZnONPs, as confirmed by electron microscopy, are also confirmed to be crystalline. Under natural sunlight, both ZnONPs demonstrate excellent degradation efficacy about 96-99 % within 100 min towards methylene blue (MB). Furthermore, it is noteworthy that both the synthesized ZnONPs exhibited 55-60 % efficacy with respect to antibiotics in inhibiting the growth of various pathogenic bacterial strains. Overall, ZnONPs can be produced on a large-scale using plant sources and employed them in environmental remediation and cosmetic industries as prominent components.
Collapse
Affiliation(s)
- Protap Kumar Pal
- Chemistry Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Sarifujjaman
- Chemistry Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Prianka Saha
- Chemistry Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - S M Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Bashir Ahmmad
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | | | - Md Mahiuddin
- Chemistry Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
7
|
Singh A, Chauhan R, Rajput VD, Minkina T, Prasad R, Goel A. Exploring the insights of bioslurry-Nanoparticle amalgam for soil amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58310-58323. [PMID: 39307866 DOI: 10.1007/s11356-024-35003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
In response to global agricultural challenges, this review examines the synergistic impact of bioslurry and biogenic nanoparticles on soil amelioration. Bioslurry, rich in N, P, K and beneficial microorganisms, combined with zinc oxide nanoparticles synthesized through eco-friendly methods, demonstrates remarkable soil improvement capabilities. Their synergistic effects include enhanced nutrient availability through increased soil enzymatic activities, improved soil structure via stable aggregate formation, stimulated microbial activity particularly beneficial groups, enhanced water retention due to increased organic matter and modified soil surface properties and reduced soil pH fluctuations. These mechanisms significantly impact soil physico-chemical properties including cation exchange capacity, electrical conductivity and nutrient dynamics. This review analyses these effects and their implications for sustainable agricultural practices, focusing on crop yield improvements, reduced chemical fertilizer dependence and enhanced plant stress tolerance. Knowledge gaps such as long-term nanoparticle accumulation effects and impacts on non-target organisms are identified. Future research directions include optimizing bioslurry-nanoparticle ratios for various soil types and developing "smart" nanoparticle-enabled biofertilizers with controlled release properties. This innovative approach contributes to environmentally friendly farming practices, potentially enhancing global food security and supporting sustainable agriculture transitions. The integration of bioslurry and biogenic nanoparticles presents a promising solution to soil degradation and agricultural sustainability challenges.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ritika Chauhan
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845801, Bihar, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
8
|
Lv H, Qi X, Wang Y, Ye Y, Wang P, Yin A, Luo J, Ren Z, Liu H, Yu S, Wei J. A Flexible Multifunctional Sensor Based on an AgNW@ZnONR Composite Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4788. [PMID: 39410360 PMCID: PMC11477878 DOI: 10.3390/ma17194788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 μW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor's maximum optical current value correlates linearly with UV light's power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors.
Collapse
Affiliation(s)
- Hao Lv
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (H.L.); (X.Q.)
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
9
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
10
|
Udayagiri H, Sana SS, Dogiparthi LK, Vadde R, Varma RS, Koduru JR, Ghodake GS, Somala AR, Boya VKN, Kim SC, Karri RR. Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity. Sci Rep 2024; 14:19714. [PMID: 39181904 PMCID: PMC11344770 DOI: 10.1038/s41598-024-69044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
The synthesis of metal nanoparticles through bio-reduction is environmentally benign and devoid of impurities, which is very important for biological applications. This method aims to improve ZnO nanoparticle's antibacterial and anti-biofilm activity while reducing the amount of hazardous chemicals used in nanoparticle production. The assembly of zinc oxide nanoparticles (ZnO NPs) is presented via bio-reduction of an aqueous zinc nitrate solution using Echinochloacolona (E. colona) plant aqueous leaf extract comprising various phytochemical components such as phenols, flavonoids, proteins, and sugars. The synthesized nano ZnO NPs are characterized by UV-visible spectrophotometer (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (X-RD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elemental composition by energy-dispersive x-ray spectroscopy (EDX). The formation of biosynthesized ZnO nanoparticles was confirmed by the absorbance at 360-370 nm in the UV-vis spectrum. The average crystal size of the particles was found to be 15.8 nm, as calculated from XRD. SEM and TEM analysis of prepared ZnO NPs confirmed the spherical and hexagonal shaped nanoparticles. ZnO NPs showed antibacterial activity against Escherichia coli and Klebsiella pneumoniae with the largest zone of inhibition (ZOI) of 17 and 18 mm, respectively, from the disc diffusion method. Furthermore, ZnO NPs exhibited significant anti-biofilm activity in a dose-dependent manner against selected bacterial strains, thus suggesting that ZnO NPs can be deployed in the prevention of infectious diseases and also used in food preservation.
Collapse
Affiliation(s)
- Hussain Udayagiri
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Siva Sankar Sana
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, South Korea
| | - Adinarayana Reddy Somala
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vijaya Kumar Naidu Boya
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
11
|
Sultan M, Youssef A, Baseer RA. Fabrication of multifunctional ZnO@tannic acid nanoparticles embedded in chitosan and polyvinyl alcohol blend packaging film. Sci Rep 2024; 14:18533. [PMID: 39122764 PMCID: PMC11316066 DOI: 10.1038/s41598-024-68571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The current study explores biodegradable packaging materials that have high food quality assurance, as food deterioration is mostly caused by UV degradation and oxidation, which can result in bad flavor and nutrition shortages. Thus, new multifunctional zinc oxide nanoparticles/tannic acid (ZnO@TA) with antioxidant and antibacterial activities were incorporated into polyvinyl alcohol/chitosan (PVA/CH) composite films with different ratios (1%, 3%, and 5% based on the total dry weight of the film) via a solution blending method in a neutral aqueous solution. Additionally, ZnO nanoparticles have unique antibacterial mechanisms through the generation of excessive reactive oxygen species (ROS) that may lead to intensify pathogen resistance to conventional antibacterial agents. Thus, minimizing the negative effects caused by excessive levels of ROS may be possible by developing unique, multifunctional ZnO nanoparticles with antioxidant potential via coordination bond between tannic acid and ZnO nanoparticles (ZnO@TA). ZnO@TA nanoparticles were examined using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of the incorporation of ZnO@TA nanoparticles on the barrier, mechanical, thermal, antioxidant, antimicrobial, and UV blocking characteristics of chitosan/polyvinyl alcohol (ZnO@TA@CH/PVA) films was investigated. The lowest water vapor and oxygen permeability and the maximum antioxidant capacity% are 31.98 ± 1.68 g mm/m2 kPa day, 0.144 ± 5.03 × 10-2 c.c/m2.day, and 69.35 ± 1.6%, respectively, which are related to ZnO@TA(50)@CH/PVA. Furthermore, ZnO@TA(50)@CH/PVA film exhibits the maximum UV shielding capacity of UVB (99.994). ZnO@TA(50) @PVA/CH films displayed better tensile strength and Young`s modulus of 48.72 ± 0.23 MPa and 2163.46 ± 61.4 MPa, respectively, than the other film formulations. However, elongation % at break exhibited the most reduced value of 19.62 ± 2.3%. ZnO@TA@CH/PVA film exhibits the largest inhibition zones of 11 ± 1.0, 12.3 ± 0.57, and 13.6 ± 0.57 mm against Staphylococcus aureus, Aspergillus flavus, and Candida albicans, respectively. In accordance with these results, ZnO@TA@CH/PVA films could be utilized for food preservation for the long-term.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Ahmed Youssef
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Rasha A Baseer
- Department of Polymers and Pigments Technology, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
12
|
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. CHEMOSPHERE 2024; 362:142671. [PMID: 38906183 DOI: 10.1016/j.chemosphere.2024.142671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Drought stress is a serious challenge for global food production. Nanofertilizers and nanocomposites cope with such environmental stresses and also increase nutritional contents of fruits. An in vitro experiment was designed to use Zinc Oxide Nanoparticles (ZnO NPs) primed with Proline and Betaine (ZnOP and ZnOBt NPs) at 50 and 100 mg/kg soil against drought stress in Tomato (Solanum lycopersicum) plants. Plant morphological, biochemical, and fruit nutritional quality were accessed. Maximum plant height was observed under the treatment of ZnOP50 (1.09 m) and ZnO 100 (1.06 m). ZnOP and ZnOBt also improved the chlorophyll content up to 86% and 87.16%, respectively. Application of ZnOP NPs also demonstrated maximum tomato yield (204 g tomato/plant) followed by ZnO NPs and ZnOBt NPs. Nanocomposites decreased phenolics and flavonoids contents in drought stressed plants demonstrating the mitigation of oxidative stress. Nanofertilizer also increased the concentration of phenolics and flavonoids in fruits that increased the nutritional contents. Furthermore a significant accumulation of betaine, proline, and lycopene in fruits on nanocomposite treatment made it nutritional and healthy. Lycopene content increased up to 2.01% and 1.23% in presence of ZnOP50 and ZnOP100, respectively. These outcomes validate that drought stress in plant can be reduced by accumulation of different phytochemicals and quenching oxidative stress. The study deems that nano zinc carrying osmoregulators can greatly reduce the negative effects of drought stress and increase nutritional quality of tomato fruits.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Snovia Farooq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Misbah Zeb Kiani
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan.
| |
Collapse
|
13
|
Sivasubramanian K, Tamilselvi Y, Velmurugan P, Oleyan Al-Otibi F, Ibrahim Alharbi R, Mohanavel V, Manickam S, Rebecca L J, Rudragouda Patil B. Enhanced applications in dentistry through autoclave-assisted sonochemical synthesis of Pb/Ag/Cu trimetallic nanocomposites. ULTRASONICS SONOCHEMISTRY 2024; 108:106966. [PMID: 38924854 PMCID: PMC11259945 DOI: 10.1016/j.ultsonch.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
In recent years, researchers have increasingly focused on the development of multiphase trimetallic nanocomposites (TMNC) incorporating ternary metals or metal oxides, which hold significant potential as alternatives for combatting biofilms and bacterial infections. Enhanced oral health is ensured by the innovative techniques used to effectively prevent bacterial adherence and formation of biofilm on dental sutures. In this investigation, TMNC, which consists of Pb, Ag, and Cu, was synthesized using an autoclave-assisted sonochemical technique. Following synthesis, TMNC were characterized using FTIR, XRD, BET, XPS, TGA, and Raman spectroscopy to analyze their shape and microstructure. Subsequent evaluations, including MTT assay, antibacterial activity testing, and biofilm formation analysis, were conducted to assess the efficiency of the synthesized TMNC. Cytotoxicity and anti-human oral squamous cell carcinoma activities of TMNC were evaluated using the Human Oral Cancer cell line (KB) cell line through MTT assay, demonstrating a dose-dependent increase in anti-human oral squamous cell carcinoma activity against the KB cell line compared to the normal cell line, resulting in notably high cell viability. Furthermore, an ultrasonic probe was employed to incorporate TMNC onto dental suturing threads, with different concentrations of TMNC, ultrasonic power levels, and durations considered to determine optimal embedding conditions that result in the highest antibacterial activity. The inhibitory effects of TMNC, both in well diffusion assays and when incorporated into dental suturing threads, against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria on Mueller-Hinton agar (MHA) were assessed using various concentrations of TMNC. The results of the study indicated that the efficacy of TMNC in inhibiting bacterial growth on dental suturing threads remained impressive, even at low concentrations. Moreover, an evaluation of their potential to destabilize biofilms formed by S. aureus and E. coli, the two pathogens in humans, indicated that TMNC would be a promising anti-biofilm agent.
Collapse
Affiliation(s)
- Kanagasabapathy Sivasubramanian
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Yuvaraj Tamilselvi
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India.
| | - Fatimah Oleyan Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Raedah Ibrahim Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Vinayagam Mohanavel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Jeyanthi Rebecca L
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | | |
Collapse
|
14
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
15
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
16
|
Honselmann Genannt Humme J, Dubrowska K, Grygorcewicz B, Gliźniewicz M, Paszkiewicz O, Głowacka A, Musik D, Story G, Rakoczy R, Augustyniak A. Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles. Microb Cell Fact 2024; 23:215. [PMID: 39061071 PMCID: PMC11282796 DOI: 10.1186/s12934-024-02486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles. RESULTS The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass. CONCLUSIONS Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
Collapse
Affiliation(s)
- Joanna Honselmann Genannt Humme
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland.
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Bartłomiej Grygorcewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Marta Gliźniewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Anna Głowacka
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Daniel Musik
- ESC Global, Sp. z o.o., Słoneczny Sad 4F, 72-002, Dołuje, Poland
| | - Grzegorz Story
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav- Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
17
|
Esa Z, Nauman MM, Ullah M, Khalid MU, Mehdi M, Abid M, Iqbal A, Zaini JH, Ali K. Compatibility and performance study of electrohydrodynamic printing using zinc oxide inkjet ink. Sci Rep 2024; 14:16813. [PMID: 39039124 PMCID: PMC11263703 DOI: 10.1038/s41598-024-67858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The demand for modern electronics and semiconductors has increased throughout the years, which has enabled the innovation and exploration of solution-processed deposition. Solution-based processes have gained a lot of interest due to the low-cost fabrication and the large fabrication areas without the need for high-vacuum equipment. In this study, we utilized the ZnO ink for inkjet printer ink to fabricate a thin film via Electrohydrodynamic printing. Three different ink solutions were prepared for experimentation. The EHD printing technique demonstrated the ink's compatibility with and without the modifications. The outcomes of the EHD printed materials were comparable with the spin-coated thin films. The EHD-printed films demonstrated better results in comparison to spin-coated films. Ra and Rq of the EHD film measured at 3.651 nm and 4.973 nm, respectively. It improved the absorbance up to two-fold at 360 nm wavelength and electrical conductivity up to 40% compared to the spin-coated films. Furthermore, the optimization of the printing parameters can lead to the improved morphology and thickness of the EHD thin films.
Collapse
Affiliation(s)
- Zulfikre Esa
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Malik Muhammad Nauman
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam.
| | - Moiz Ullah
- Department of Mechanical Engineering, Baluchistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Muhammad Usman Khalid
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11564, Saudi Arabia
| | - Murtuza Mehdi
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Muhammad Abid
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Asif Iqbal
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Juliana Hj Zaini
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam
| | - Kamran Ali
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, 1410, Brunei Darussalam.
| |
Collapse
|
18
|
Şomoghi R, Semenescu A, Pasăre V, Chivu OR, Nițoi DF, Marcu DF, Florea B. The Impact of ZnO Nanofillers on the Mechanical and Anti-Corrosion Performances of Epoxy Composites. Polymers (Basel) 2024; 16:2054. [PMID: 39065371 PMCID: PMC11280588 DOI: 10.3390/polym16142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Epoxy resins were reinforced with different ZnO nanofillers (commercial ZnO nanoparticles (ZnO NPs), recycled ZnO and functionalized ZnO NPs) in order to obtain ZnO-epoxy composites with suitable mechanical properties, high adhesion strength, and good resistance to corrosion. The final properties of ZnO-epoxy composites depend on several factors, such as the type and contents of nanofillers, the epoxy resin type, curing agent, and preparation methods. This paper aims to review the preparation methods, mechanical and anti-corrosion performance, and applications of ZnO-epoxy composites. The epoxy-ZnO composites are demonstrated to be valuable materials for a wide range of applications, including the development of anti-corrosion and UV-protective coatings, for adhesives and the chemical industry, or for use in building materials or electronics.
Collapse
Affiliation(s)
- Raluca Şomoghi
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Street, No. 202, 6th District, 060021 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
- Academy of Romanian Scientists, 3 Ilfov Str., 5th District, 050044 Bucharest, Romania
| | - Vili Pasăre
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Oana Roxana Chivu
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dan Florin Nițoi
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dragoş Florin Marcu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Bogdan Florea
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| |
Collapse
|
19
|
El-Habib I, Maatouk H, Lemarchand A, Dine S, Roynette A, Mielcarek C, Traoré M, Azouani R. Antibacterial Size Effect of ZnO Nanoparticles and Their Role as Additives in Emulsion Waterborne Paint. J Funct Biomater 2024; 15:195. [PMID: 39057316 PMCID: PMC11278333 DOI: 10.3390/jfb15070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nosocomial infections, a prevalent issue in intensive care units due to antibiotic overuse, could potentially be addressed by metal oxide nanoparticles (NPs). However, there is still no comprehensive understanding of the impact of NPs' size on their antibacterial efficacy. Therefore, this study provides a novel investigation into the impact of ZnO NPs' size on bacterial growth kinetics. NPs were synthesized using a sol-gel process with monoethanolamine (MEA) and water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy confirmed their crystallization and size variations. ZnO NPs of 22, 35, and 66 nm were tested against the most common nosocomial bacteria: Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive). Evaluation of minimum inhibitory and bactericidal concentrations (MIC and MBC) revealed superior antibacterial activity in small NPs. Bacterial growth kinetics were monitored using optical absorbance, showing a reduced specific growth rate, a prolonged latency period, and an increased inhibition percentage with small NPs, indicating a slowdown in bacterial growth. Pseudomonas aeruginosa showed the lowest sensitivity to ZnO NPs, attributed to its resistance to environmental stress. Moreover, the antibacterial efficacy of paint containing 1 wt% of 22 nm ZnO NPs was evaluated, and showed activity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Imroi El-Habib
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Hassan Maatouk
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Alex Lemarchand
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Sarah Dine
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Anne Roynette
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Christine Mielcarek
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| | - Mamadou Traoré
- Laboratoire des Sciences des Procédés et des Matériaux (LSPM-CNRS UPR 3407), Institut Galilée, Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France; (I.E.-H.); (A.L.); (S.D.); (M.T.)
| | - Rabah Azouani
- Ecole de Biologie Industrielle (EBI), EBInnov, 49 Avenue des Genottes-CS 90009, 95895 Cergy Cedex, France; (H.M.); (A.R.); (C.M.)
| |
Collapse
|
20
|
John DM, Pillai NS, Sivan A, P L, P A, Sreekanth K, G S, K.M S. Ferromagnetic ZnO nanostructures from an organo zinc complex formulated via Piper Longum L-assisted green synthesis: Multifaceted prospects in photocatalysis, antimicrobial activity, and cell viability studies. Heliyon 2024; 10:e33360. [PMID: 39027587 PMCID: PMC11255676 DOI: 10.1016/j.heliyon.2024.e33360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal oxides like ZnO nanostructures are pivotal in various scientific and technological fields due to their chemical stability, high electrochemical coupling efficiency, and broad radiation absorption spectrum. This study offers an in-depth examination of ZnO nanostructures synthesized via the green route using Piper Longum L, emphasizing their photocatalytic efficacy in degrading organic pollutants such as Sulphanilamide and Chromium. The ZnO nanostructures with a rod-like morphology exhibited an average crystallite size of 26 nm and an optical bandgap of 2.8 eV. Solid state structure of ZnO was investigated by Fourier Transform Infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD). Zinc in the synthesized organo zinc complex and zinc oxide was estimated to 324.325 and 133.02 ppm, respectively. The saturation magnetization obtained from Superconducting Quantum Interference Device-Vibrating Sample Magnetometer (SQUID-VSM) for organo zinc complex and ZnO is 2.1 × 10-3 and 1.7 × 10-3 emu/g, respectively. These nanostructures achieved 99 and 93 % degradation of chromium (VI) ions present in solutions of two different concentrations in about 30 and 80 min, respectively, under UV and visible radiation, a remarkable achievement. Almost the same efficiency was maintained during three consecutive runs and then deactivation of the catalyst was observed. Additionally, a rapid 84 % degradation of Sulphanilamide was observed in 42 min, underscoring the potential of ZnO nanostructures as efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Daphne Mary John
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Nilesh S. Pillai
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Akshay Sivan
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Lasya P
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Archana P
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
- Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - K.M. Sreekanth
- Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
| | - Sivasubramanian G
- Advanced Multi-Functional Materials and Analysis Laboratory (AMMAL), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112
- Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Sreedhar K.M
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India, 690525
| |
Collapse
|
21
|
Karwadiya J, Lützenkirchen J, Darbha GK. Retention of ZnO nanoparticles onto polypropylene and polystyrene microplastics: Aging-associated interactions and the role of aqueous chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124097. [PMID: 38703985 DOI: 10.1016/j.envpol.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.
Collapse
Affiliation(s)
- Jayant Karwadiya
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Johannes Lützenkirchen
- Institute of Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Gopala Krishna Darbha
- Environmental nanoscience laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
22
|
Zhang G, Rebohle L, Ganss F, Dawidowski W, Guziewicz E, Koh JH, Helm M, Zhou S, Liu Y, Prucnal S. P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1069. [PMID: 38998674 PMCID: PMC11243417 DOI: 10.3390/nano14131069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor that holds significant potential for various applications. However, most of the native point defects in ZnO like Zn interstitials typically cause an n-type conductivity. Consequently, achieving p-type doping in ZnO is challenging but crucial for comprehensive applications in the field of optoelectronics. In this work, we investigated the electrical and optical properties of ex situ doped p-type ZnO films. The p-type conductivity has been realized by ion implantation of group V elements followed by rapid thermal annealing (RTA) for 60 s or flash lamp annealing (FLA) on the millisecond time scale in nitrogen or oxygen ambience. The phosphorus (P)-doped ZnO films exhibit stable p-type doping with a hole concentration in the range of 1014 to 1018 cm-3, while antimony (Sb) implantation produces only n-type layers independently of the annealing procedure. Microstructural studies of Sb-doped ZnO show the formation of metallic clusters after ms range annealing and SbZn-oxides after RTA.
Collapse
Affiliation(s)
- Guoxiu Zhang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Lars Rebohle
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Helmholtz-Innovation Laboratory Blitzlab, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Fabian Ganss
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Wojciech Dawidowski
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
| | - Elzbieta Guziewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Jung-Hyuk Koh
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Manfred Helm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institute of Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Slawomir Prucnal
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Helmholtz-Innovation Laboratory Blitzlab, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
23
|
Palem RR, Kim BJ, Baek I, Choi H, Suneetha M, Shimoga G, Lee SH. In situ fabricated ZnO nanostructures within carboxymethyl cellulose-based ternary hydrogels for wound healing applications. Carbohydr Polym 2024; 334:122020. [PMID: 38553219 DOI: 10.1016/j.carbpol.2024.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Inho Baek
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Hyejong Choi
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Ganesh Shimoga
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
24
|
Sanad S, Ghanim AM, Gad N, El-Aasser M, Yahia A, Swillam MA. Broadband PM6Y6 coreshell hybrid composites for photocurrent improvement and light trapping. Sci Rep 2024; 14:13578. [PMID: 38866859 PMCID: PMC11169357 DOI: 10.1038/s41598-024-63133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Our research focuses on enhancing the broadband absorption capability of organic solar cells (OSCs) by integrating plasmonic nanostructures made of Titanium nitride (TiN). Traditional OSCs face limitations in absorption efficiency due to their thickness, but incorporating plasmonic nanostructures can extend the path length of light within the active material, thereby improving optical efficiency. In our study, we explore the use of refractory plasmonics, a novel type of nanostructure, with TiN as an example of a refractory metal. TiN offers high-quality localized surface plasmon resonance in the visible spectrum and is cost-effective, readily available, and compatible with CMOS technology. We conducted detailed numerical simulations to optimize the design of nanostructured OSCs, considering various shapes and sizes of nanoparticles within the active layer (PM6Y6). Our investigation focused on different TiN plasmonic nanostructures such as nanospheres, nanocubes, and nanocylinders, analyzing their absorption spectra in a polymer environment. We assessed the impact of their incorporation on the absorbed power and short-circuit current (Jsc) of the organic solar cell.
Collapse
Affiliation(s)
- S Sanad
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - AbdelRahman M Ghanim
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nasr Gad
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - M El-Aasser
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ashraf Yahia
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
25
|
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024; 29:2706. [PMID: 38893579 PMCID: PMC11173400 DOI: 10.3390/molecules29112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, d Centre of Medical and Bio-Allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai 600 107, Tamil Nadu, India;
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, Tamil Nadu, India;
| | - Nandini Manickam Sivaraman
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Dos Santos JJS, Garcia RRP, Soares AS, de Amorim Silva EG, Neves JL, Menezes TM. Second-order scattering sensor based on the Zn 0.97La 0.03O compound for selective and stable detection of glycated albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124176. [PMID: 38513314 DOI: 10.1016/j.saa.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Here, we presented a second-order scattering sensor based on the Zn0.97La0.03O compound (LaZnO) for selective and stable detection of glycated albumin (GA, glycemic long-term biomarker). The LaZnO sample was obtained through the co-precipitation method and then characterized using microscopic and spectroscopic techniques. Furthermore, the selectivity, molecular interference, temporal stability, and pH effects of the LaZnO SOS signal in the absence and presence of GA were investigated. The results indicate the stability of the SOS signal over more than 60 days. Assays conducted within the pH range of 5 to 8 indicate that the detection of GA remains unaffected under the given conditions. Selectivity studies show that the SOS signal of LaZnO is reduced only upon contact with GA, while interference studies show that detection is not affected by other chemical species. Additionally, the calibration curve test showed high sensitivity of the material, with a detection limit of 0.55 µg/ml. All the results suggest that LaZnO can deliver efficiency, selectivity, accuracy, and fast response as a GA biosensor, emphasizing LaZnO's usefulness in detecting protein biomarkers.
Collapse
Affiliation(s)
| | - Ramon Raudel Peña Garcia
- Graduate Program in Materials Science and Engineering, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil; Engineering Campus - Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil
| | - Adriano Santana Soares
- Graduate Program in Materials Science and Engineering, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil
| | | | - Jorge Luiz Neves
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | - Thaís Meira Menezes
- Engineering Campus - Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco (UFRPE), Cabo de Santo Agostinho 54518-430, PE, Brazil.
| |
Collapse
|
27
|
Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A. Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1193-1211. [PMID: 38226539 DOI: 10.1080/15226514.2023.2300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.
Collapse
Affiliation(s)
- Tanuj
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Neerja Kalra
- Department of Chemistry, Government College, Ateli, Haryana, India
| | - Subhash Sharma
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C, México
| | - Amritpal Singh
- Department of Pure of Applied Chemistry, Strathclyde University, Glasgow, UK
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
28
|
Divya M, Chen J, Durán-Lara EF, Kim KS, Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb Pathog 2024; 191:106679. [PMID: 38718953 DOI: 10.1016/j.micpath.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.
Collapse
Affiliation(s)
- Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 462s41, Republic of Korea.
| | | |
Collapse
|
29
|
Hayder A, Norouzi O, Sharma S, Santos R, Dutta A. A novel approach for the facile synthesis of zinc oxide/carbon hybrid systems from corn distillers soluble: Surface modification and characterization for sustainable remediation. CHEMOSPHERE 2024; 357:141864. [PMID: 38588901 DOI: 10.1016/j.chemosphere.2024.141864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Sustainable, efficient, and environmentally friendly ways to tailor the carbonaceous materials from bio sources with desired functionalities remain a challenge around the world. In this study, we represent a novel approach to synthesize carbon hybrid material based on Zinc Oxide/carbon (ZnO/C) hybrid systems by catalytic hydrothermal process via crosslinking reaction through nucleation and growth of ZnO particles at the functional groups of oxidized carbon material. This research explored the volarization of Condensed Corn Distillers Soluble (CDS) as a carbon precursor to synthesize biobased carbon spheres. Surface modification of the produced carbon spheres took place using zinc chloride (ZnCl2) during hydrothermal carbonization (HTC). Zinc chloride (ZnCl2) was used to function as a catalyst during HTC and functioned as a ZnO source to synthesize (ZnO/C) hybrid systems. Design Expert software v13 was used to design the hydrothermal carbonization (HTC) experiments and response surface methodology was used to find the optimized conditions for the preparation of carbon hybrid systems. The hydrothermal synthesis process introduced 3D stone like zinc oxide particles onto the carbon matrix. These particles were self-assembled onto the carbon framework to produce carbon hybrid systems with unique physical, chemical, structural and functional properties. Herein, the obtained carbon hybrid systems (ZnO/C) were investigated and discussed in detail. ZnO/C hybrid systems were analyzed for surface morphology using scanning electron microscopy (SEM) that presented a 3D spherical interconnected phase and XRD analyses were used for phase crystallinity that showed new crystalline phases such as hopeite and zincite after the ZnCl2 incorporation. Surface functional groups were also analyzed by FTIR and results confirmed the presence of hydrophilic groups such as -OH, CC, and COOH on the surface of ZnO/C hybrid carbon systems. This study provided the insightful guidance for tailoring novel design of multifunctional carbon material as an adsorbent/catalyst for various applications of sustainable remediation.
Collapse
Affiliation(s)
- Aneela Hayder
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Omid Norouzi
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sonu Sharma
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Rafael Santos
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
30
|
Elsilk SE, El-Shenody RA, Afifi SS, Abo-Shanab WA. Green-synthesized zinc oxide nanoparticles by Enterobacter sp.: unveiling characterization, antimicrobial potency, and alleviation of copper stress in Vicia faba (L.) plants. BMC PLANT BIOLOGY 2024; 24:474. [PMID: 38811913 PMCID: PMC11137959 DOI: 10.1186/s12870-024-05150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.
Collapse
Affiliation(s)
- Sobhy E Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania A El-Shenody
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Salsabil S Afifi
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Abo-Shanab
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
31
|
Jia X, Wu Y, Liu Z, Dai Y, Li T, Gao M, Xu C. Coating effect of renatured triple-helix lentinan on the morphology and antimicrobial activity of ZnO synthesized by hydrothermal method. RSC Adv 2024; 14:17814-17823. [PMID: 38832239 PMCID: PMC11145745 DOI: 10.1039/d4ra01590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Polysaccharides are considered to be ideal green raw materials for enhancing biocompatibility and dispersion effects of nanoparticles. In this study, we coated and dispersed ZnO nanoparticles (NPs) using the denaturation-renaturation process of a triple helix glucan lentinan (LNT), induced by changes in pH value within the reaction system. Various ZnO/LNT composites with different particle sizes and crystal morphologies were prepared and characterized. The results demonstrated that renatured LNT (r-LNT) effectively encapsulated the {101̄0} crystal planes of ZnO, preventing crystal growth during the renaturation process and resulting in smaller, uniformly dispersed nanoparticles. Among the samples, ZnO/r-LNT-2 exhibited significantly higher antimicrobial activity, and it had a certain inhibitory effect on various plant pathogens. It also displayed the highest inhibitory effect against Candida albicans, with a minimum inhibitory concentration (MIC) of up to 8 μg mL-1. Consistently, ZnO/r-LNT-2 generated the highest amount of reactive oxygen species (ROS), thus exhibiting the most effective antimicrobial activity. However, excessive introduction of the dispersant LNT may reduce these activities. This study provides a foundation for further exploring the detailed mechanism of ROS generation catalyzed by ZnO and for harnessing the full potential of this type of antimicrobial agent.
Collapse
Affiliation(s)
- Xuewei Jia
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| | - Yihong Wu
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| | - Zhiyang Liu
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| | - Yuxiang Dai
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| | - Tianxiao Li
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| | - Mingqi Gao
- China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan China +86 371 61291027
| | - Chunping Xu
- Zhengzhou University of Light Industry Zhengzhou Henan China +86 371 86609637
| |
Collapse
|
32
|
Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul-Hamid D, Decsi K, Kovács GP, Tóth Z. The Influence of Zinc Oxide Nanoparticles and Salt Stress on the Morphological and Some Biochemical Characteristics of Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1418. [PMID: 38794488 PMCID: PMC11125107 DOI: 10.3390/plants13101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Salinity reduces crop yields and quality, causing global economic losses. Zinc oxide nanoparticles (ZnO-NPs) improve plant physiological and metabolic processes and abiotic stress resistance. This study examined the effects of foliar ZnO-NPs at 75 and 150 mg/L on tomato Kecskeméti 549 plants to alleviate salt stress caused by 150 mM NaCl. The precipitation procedure produced ZnO-NPs that were characterized using UV-VIS, TEM, STEM, DLS, EDAX, Zeta potential, and FTIR. The study assessed TPCs, TFCs, total hydrolyzable sugars, total free amino acids, protein, proline, H2O2, and MDA along with plant height, stem width, leaf area, and SPAD values. The polyphenolic burden was also measured by HPLC. With salt stress, plant growth and chlorophyll content decreased significantly. The growth and development of tomato plants changed by applying the ZnO-NPs. Dosages of ZnO-NPs had a significant effect across treatments. ZnO-NPs also increased chlorophyll, reduced stress markers, and released phenolic chemicals and proteins in the leaves of tomatoes. ZnO-NPs reduce salt stress by promoting the uptake of minerals. ZnO-NPs had beneficial effects on tomato plants when subjected to salt stress, making them an alternate technique to boost resilience in saline soils or low-quality irrigation water. This study examined how foliar application of chemically synthesized ZnO-NPs to the leaves affected biochemistry, morphology, and phenolic compound synthesis with and without NaCl.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Diaa Attia Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Roquia Rizk
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Mostafa Zedan
- National Institute of Laser Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| |
Collapse
|
33
|
Fallahizadeh S, Rahimi MR, Gholami M, Esrafili A, Farzadkia M, Kermani M. Novel nanostructure approach for antibiotic decomposition in a spinning disc photocatalytic reactor. Sci Rep 2024; 14:10566. [PMID: 38719873 PMCID: PMC11079042 DOI: 10.1038/s41598-024-61340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.
Collapse
Affiliation(s)
- Saeid Fallahizadeh
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Reza Rahimi
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, Iran.
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Jeevarathinam M, Asharani IV. Synthesis of CuO, ZnO nanoparticles, and CuO-ZnO nanocomposite for enhanced photocatalytic degradation of Rhodamine B: a comparative study. Sci Rep 2024; 14:9718. [PMID: 38678108 DOI: 10.1038/s41598-024-60008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Water pollution, arising from the presence of toxic dyes and chemicals, is a global challenge, urging the need for eco-friendly solutions in water decontamination. This study focused on the synthesis of copper oxide nanoparticles (CuO NPs), zinc oxide nanoparticles (ZnO NPs), and a bimetallic CuO-ZnO nanocomposite (CZ NC) through an environmentally friendly method employing Tragia involucrata L. leaf extract. Comprehensive analysis of structural and optical properties involved using various analytical techniques such as XRD, FT-IR, XPS, UV-DRS, PL, FE-SEM, EDAX, TEM, SAED, zeta potential, TGA, and BET. In comparison to pristine CuO and ZnO NPs, the CZ-NC demonstrated notably enhanced photocatalytic activity in the degradation of Rhodamine B dye (RhB). The optimum conditions for RhB degradation were found to be a pH of 9 and a catalyst dosage of 1 mg/mL for a concentration of 10 ppm. Under these conditions, CuO NPs, ZnO NPs, and CZ-NC demonstrated high efficiencies of 78%, 83%, and 96.1% respectively over 105 min. Through LC-HRMS, the identification of degradation products offered valuable insights into the pathway of photocatalytic degradation. Furthermore, toxicity analysis of intermediates, conducted through ECOSAR software, indicated the formation of non-toxic by-products (ChV/LC50/EC50 > 100) after the completion of the reaction. Furthermore, the recycled catalysts exhibited sustained stability for up to 4 cycles, with only a minor decrease in activity of up to 6.8%. This confirms their catalytic efficacy in purifying polluted water. This research significantly contributes to the progress of environmentally friendly nanocomposites, enhancing their efficacy in the realm of environmental remediation.
Collapse
Affiliation(s)
- M Jeevarathinam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
35
|
Kim B, Kim G, Jeon HP, Jung J. Lipidomics Analysis Unravels Aberrant Lipid Species and Pathways Induced by Zinc Oxide Nanoparticles in Kidney Cells. Int J Mol Sci 2024; 25:4285. [PMID: 38673870 PMCID: PMC11050686 DOI: 10.3390/ijms25084285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high technology to household products. While numerous studies have examined the toxic gene profile of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis (LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of ZnO NPs in human renal epithelial cells.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Hyun Pyo Jeon
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
- Graduate School of Chemical Safety Management, Kyungsung University, Busan 48434, Republic of Korea
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| |
Collapse
|
36
|
Shakoor M, Shakoor MB, Jilani A, Ahmed T, Rizwan M, Dustgeer MR, Iqbal J, Zahid M, Yong JWH. Enhancing the Photocatalytic Degradation of Methylene Blue with Graphene Oxide-Encapsulated g-C 3N 4/ZnO Ternary Composites. ACS OMEGA 2024; 9:16187-16195. [PMID: 38617626 PMCID: PMC11007858 DOI: 10.1021/acsomega.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
Methylene blue (MB) is a toxic contaminant present in wastewater. Here, we prepared various composites of graphene oxide (GO) with graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) for the degradation of MB. In comparison to ZnO (22.9%) and g-C3N4/ZnO (76.0%), the ternary composites of GO/g-C3N4/ZnO showed 90% photocatalytic degradation of MB under a light source after 60 min. The experimental setup and parameters were varied to examine the process and effectiveness of MB degradation. Based on the results of the experiments, a proposed photocatalytic degradation process that explains the roles of GO, ZnO, and g-C3N4 in improving the photocatalytic efficacy of newly prepared GO/g-C3N4/ZnO was explored. Notably, the g-C3N4/ZnO nanocomposite's surface was uniformly covered with ZnO nanorods. The images of the samples clearly demonstrated the porous nature of GO/g-C3N4/ZnO photocatalysts, and even after being mixed with GO, the g-C3N4/ZnO composite retained the layered structure of the original material. The catalyst's porous structure plausibly enhanced the degradation of the contaminants. The high-clarity production of g-C3N4 and the effectiveness of the synthesis protocol were later validated by the absence of any trace contamination in the energy-dispersive X-ray spectroscopy (EDS) results. The composition of the ZnO elements and their spectra were revealed by the EDS results of the prepared ZnO nanorods, g-C3N4/ZnO, and GO/g-C3N4/ZnO. The outcomes indicated that the nanocomposites were highly uncontaminated and contained all necessary elements to facilitate the transformative process. The results of this experiment could be applied at a large scale, thus proving the effectiveness of photocatalysts for the removal of dyes.
Collapse
Affiliation(s)
- Muhammad
Hassan Shakoor
- Department
of Chemistry, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Bilal Shakoor
- College
of Earth & Environmental Sciences, University
of the Punjab, Lahore 54590, Pakistan
| | - Asim Jilani
- Center
of Nanotechnology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Toheed Ahmed
- Department
of Chemistry, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Department
of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohsin Raza Dustgeer
- Department
of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Iqbal
- Center
of Nanotechnology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Muhammad Zahid
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jean Wan Hong Yong
- Department
of Biosystems and Technology, Swedish University
of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
37
|
Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS OMEGA 2024; 9:15882-15892. [PMID: 38617686 PMCID: PMC11007848 DOI: 10.1021/acsomega.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
Collapse
Affiliation(s)
- Kaneez Fatima
- Faculty
of Pharmacy, Maulana Azad University, Bujhawad, Teh: Luni, Jodhpur 342802, Rajasthan, India
- INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Asif
- Faculty
of Pharmacy, Lachoo Memorial College of
Science and Technology, Shastri Nagar, Sector A, Jodhpur 342001, Rajasthan, India
| | - Umar Farooq
- Chemistry
Department, School of Basic Sciences, Galgotias
University, Greater
Noida 201309, India
| | - Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department,
College of Science, Princess Nourah bint
Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
38
|
Huang X, Huang R, Zhang Q, Fan J, Zhang Z, Huang J. Preparation of sustainable oxidized nanocellulose films with high UV shielding effect, high transparency and high strength. Int J Biol Macromol 2024; 263:130087. [PMID: 38342262 DOI: 10.1016/j.ijbiomac.2024.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
UV protection has become crucial as increasing environmental pollution has led to the destruction of the ozone layer, which has a weakened ability to block UV rays. In this paper, we successfully prepared cellulose-based biomass films with high UV shielding effect, high transparency and high tensile strength by graft-modifying oxidized cellulose nanocellulose (TOCN) with folic acid (FA) and borrowing vacuum-assisted filtration. The films had tunable UV shielding properties depending on the amount of FA added. When the FA addition was 20 % (V/V), the film showed 0 % transmittance in the UV region (200-400 nm) and 90.61 % transmittance in the visible region (600 nm), while the tensile strength was up to 150.04 MPa. This study provides a new integrated process for the value-added utilization of nanocellulose and a new route for the production of functional biomass packaging materials. The film is expected to be applied in the field of food packaging with UV shielding.
Collapse
Affiliation(s)
- Xuanxuan Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qian Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinlong Fan
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhaohong Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jintian Huang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
39
|
Uniyal P, Gaur P, Yadav J, Khan T, Ahmed OS. A Review on the Effect of Metal Oxide Nanoparticles on Tribological Properties of Biolubricants. ACS OMEGA 2024; 9:12436-12456. [PMID: 38524498 PMCID: PMC10955578 DOI: 10.1021/acsomega.3c08279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
This review provides a comprehensive and accessible literature review on the integration of nanoparticles into biolubricants to enhance wear and friction regulation, thus improving the overall lubricated system performance. Nanotechnology has significantly impacted various industries, particularly in lubrication. Nanobiolubricants offer promising avenues for enhancing tribological properties. This review focuses on oxide nanoparticles, such as zinc oxide (ZnO), aluminum oxide (Al2O3), copper oxide (CuO), titanium dioxide (TiO2), zirconium dioxide (ZrO2), and graphene oxide (GO) nanoparticles, for their ability to enhance lubricant performance. The impact of nanoparticle concentration on biolubricant properties, including viscosity, viscosity index, flash point temperature, and pour point temperature, is analyzed. The review also addresses potential obstacles and limitations in nanoparticle incorporation, aiming to propose effective strategies for maximizing their benefits. The findings underscore the potential of nanobiolubricants to improve operational efficiency and component lifespan. This review aims to provide valuable insights for researchers, engineers, and professionals in exploring and leveraging nanotechnology's potential in the lubrication industry. This review paper explores the basics of tribology along with its significance, green principles, mechanisms, and energy savings because of friction, wear, and lubrication. Condition monitoring techniques are also explored to achieve brief knowledge about maintaining reliability and safety of the industrial components. Recent advances in tribology including superconductivity, biotribology, high-temperature tribology, tribological simulation, hybrid polymer composite's tribology, and cryogenic tribology are investigated, which gives a thorough idea about the subject.
Collapse
Affiliation(s)
- Purva Uniyal
- Mechanical
Engineering Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Piyush Gaur
- Mechanical
Engineering Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jitendra Yadav
- Mechanical
Engineering Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Tabrej Khan
- Department
of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Omar Shabbir Ahmed
- Department
of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
40
|
Harshitha VRS, I G K I, Suresh V, Pitchiah S. Synthesis of Zinc Oxide Nanoparticles From Cymodocea Serrulata Leaf Extract and Their Biological Activities. Cureus 2024; 16:e55521. [PMID: 38576637 PMCID: PMC10990964 DOI: 10.7759/cureus.55521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction The utilization of Cymodocea serrulata for the eco-friendly synthesis of zinc oxide nanoparticles, which contain distinguishable nanostructures, presents a cost-effective and environmentally sustainable alternative for producing zinc nanoparticles. The production process of zinc nanoparticles are rich in phytochemicals, which can serve as stabilizing and reducing agents. Zinc nanoparticles can easily pass through bacterial cell walls and reach all cellular components. C. serrulata, is a small submerged angiosperm commonly found in submerged and tidal coastal environments. Aim Analysis of the biological activities of zinc oxide nanoparticles made from C. serrulata leaf extract. Materials and Methods Dry leaves of C. serrulata were ground into a powder, which was then placed into a conical flask and filled with water. Subsequently, the color of the mixture turned black. Next, a 20 mm piece of ZnO was dissolved in a 60 ml sample of distilled water to prepare the metal solution. Following this, a wavelength scan ranging from 200 to 700 nm was conducted using ultraviolet (UV) spectroscopy. After shaking the solution for an hour, a final reading was taken across the UV spectrum. The synthetic sample should also be centrifuged to remove any pellets and subsequently dried in a hot air oven. Result Using nanoscale profiling, the average particle size was measured and found to be less than 100 nm, specifically UV spectrum analysis revealed a notable absorbance value of 47.0 nm, at different angles within the peak height. The wavelength range of the zinc nanoparticles was observed to be between 250 and 350 nm. Conclusion The antibacterial properties of ZnO NPs have been demonstrated through in vitro investigations, indicating their potential application in in vivo studies.
Collapse
Affiliation(s)
- Vantipalli Raga Sai Harshitha
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Ilangovar I G K
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Sivaperumal Pitchiah
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
41
|
Azizi A, Ghasemirad M, Mortezagholi B, Movahed E, Aryanezhad SS, Makiya A, Ghodrati H, Nasiri K. Study of Cytotoxic and Antibacterial Activity of Ag- and Mg-Dual-Doped ZnO Nanoparticles. ChemistryOpen 2024; 13:e202300093. [PMID: 37955867 PMCID: PMC10924039 DOI: 10.1002/open.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.
Collapse
Affiliation(s)
- Aytan Azizi
- Department of Endodontics Dental SchoolQazvin university of medical sciencesshahid bahounar boulevard, P.O. Box: 3419759811QazvinIran
| | - Mohammad Ghasemirad
- Department of Periodontics Faculty of DentistryRafsanjan University of Medical SciencesKhalije Fars Blvd., Pasdaran street, P.O. Box: 1946853314RafsanjanIran
| | - Bardia Mortezagholi
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Emad Movahed
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Seyed Sasan Aryanezhad
- Oral and Maxillofacial Radiology, Private PracticeDaroost street, P.O. Box 1944614581TehranIran
| | - Ali Makiya
- Student Research Committee, Faculty of DentistryMashhad University of Medical ScienceMashhadIran
| | - Hoda Ghodrati
- Department of ProsthodonticsShahid Beheshti University of Medical SciencesDaneshjoo Blvd, Velenjak, St., P.O. Box 1983969411TehranIran
| | - Kamyar Nasiri
- Department of dentistryIslamic Azad University of Medical SciencesP.O. Box 19585-466TehranIran
| |
Collapse
|
42
|
Jadoun S, Yáñez J, Aepuru R, Sathish M, Jangid NK, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19123-19147. [PMID: 38379040 DOI: 10.1007/s11356-024-32357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.
Collapse
Affiliation(s)
- Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jorge Yáñez
- Facultad de Ciencias Químicas, Departamento de Química Analítica E Inorgánica, Universidad de Concepción, Edmundo Larenas 129, 4070371, Concepción, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000, Talca, Chile
| | | | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology Bengaluru, Bengaluru, Karnataka, 560054, India
| |
Collapse
|
43
|
Ščajev P, Gogova D. Long-lived excitons in thermally annealed hydrothermal ZnO. Heliyon 2024; 10:e26049. [PMID: 38390073 PMCID: PMC10881353 DOI: 10.1016/j.heliyon.2024.e26049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Applying thermal annealing to hydrothermal ZnO crystals an enhancement of exciton lifetime from 80 ps to 40 ns was achieved boosting PL quantum efficiency of the UV luminescence up to 70 %. The lifetime improvement is related to the reduced density of carrier traps by a few orders of magnitude as revealed by the reduction of the slow decay tail in pump probe decays coupled with weaker defects-related PL. The diffusion coefficient was determined to be 0.5 cm2/s, providing a large exciton diffusion length of 1.4 μm. The UV PL lifetime drop at the lowest exciton densities was explained by capture to traps. Release of holes from acceptor traps provided delayed exciton luminescence with ∼200 μs day time and 390 meV thermal activation energy. Pump-probe decays provided exciton absorption cross-section of 9 × 10-18 cm2 at 1550 nm wavelength and verified the PL decay times of excitons. Amplitudes and decay times of the microsecond slow decay tails have been correlated with the trap densities and their photoluminescence. A surface recombination velocity of 500 cm/s and the bimolecular free carrier recombination coefficient 0.7 × 10-11 cm3/s were calculated. Therefore, the properly annealed hydrothermally grown ZnO can be a viable and integral part of many functional devices as light-emitting diodes and lasers.
Collapse
Affiliation(s)
- Patrik Ščajev
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Daniela Gogova
- Central Laboratory of Solar Energy and New Energy Sources at the Bulgarian Academy of Sciences, Tzarigradsko Chaussee Blvd. 72, 1784, Sofia, Bulgaria
- Department of Physics, Chemistry and Biology, Linkoping University, 583 30, Linkoping, Sweden
| |
Collapse
|
44
|
Sheik A, Ranjith KS, Ghoreishian SM, Yang Y, Park Y, Son S, Han YK, Huh YS. Green approach for the fabrication of dual-functional S/N doped graphene tagged ZnO nanograins for in vitro bioimaging and water pollutant remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123077. [PMID: 38135138 DOI: 10.1016/j.envpol.2023.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Dual-functional S/N (sulfur and nitrogen) doped graphene-tagged zinc oxide nanograins were synthesized for bioimaging applications and light-dependent photocatalytic activity. Applying the green synthesis approach, graphene was synthesized from kimchi cabbage through a hydrothermal process followed by tagging it with synthesized zinc oxide nanoparticles (ZnO-NPs). The 2D/0D heterostructure prepared by combining both exhibited exceptional advantages. Comprehensive characterizations such as TEM, SEM, XRD, FTIR, XPS, and UV-Vis spectra have been performed to confirm the structures and explore the properties of the synthesized nanocomposite. The graphene/ZnO-NP composite produced exhibited more intense fluorescence, greater chemical stability and biocompatibility, lower cytotoxicity, and better durability than ZnO NPs conferring them with potential applications in cellular imaging. While tagging the ZnO NPs with carbon derived from a natural source containing hydroxyl, sulfur, and nitrogen-containing functional group, the S/N doped graphene/ZnO heterostructure evidences the high photocatalytic activity under UV and visible irradiation which is 3.2 and 3.8 times higher than the as-prepared ZnO-NPs. It also demonstrated significant antibacterial activity which confers its application in removing pathogenic contaminant bacteria in water bodies. In addition, the composite had better optical properties and biocompatibility, and lower toxicity than ZnO NPs. Our findings indicate that the synthesized nanocomposite will be suitable for various biomedical and pollutant remediation due to its bright light-emitting properties and stable fluorescence.
Collapse
Affiliation(s)
- Aliya Sheik
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Kugalur Shanmugam Ranjith
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | | | - Yujeong Yang
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - YongHyeon Park
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
45
|
Kyaw HH, Myint MTZ, Al-Belushi MA, Dobretsov S, Al-Abri M. Nanomaterial grafted polymorphous activated carbon cloth surface for antibacterial, capacitive deionization and oil spill cleaning applications. CHEMOSPHERE 2024; 350:141053. [PMID: 38154669 DOI: 10.1016/j.chemosphere.2023.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
This work reports the development of multifunctional or polymorphous surfaces using zinc oxide (ZnO) nanorods, silica (SiO2), and fluoropolymer functionalization in a sequential process. Firstly, zinc oxide nanorods were grown on activated carbon cloth (ACC) using a simple low-temperature synthesis process. ZnO nanorods-coated ACC substrate was applied to investigate the antimicrobial properties, and the results showed inhibition of 50% for Escherichia coli (E.coli) and 55% for Bacillus subtilis (B.subtilis) over 48 h of incubation time. Subsequent in-situ modification of silica nanoparticles like layer on ZnO nanorods-coated ACC surface was developed and used as an electrode for brackish water desalination in a capacitive deionization system. ZnO-SiO2 modified ACC surface enhanced the desalination efficiency by 1.6 times, the salt removal rate (SRR) by threefold, and the durability (fouling prevention) for long-term usage compared to pristine ACC. Further modification of the ZnO-SiO2-ACC surface using fluoropolymer rendered the surface superhydrophobic and oleophilic. Vegetable (1.4 g/g) and crude oil (1.6 g/g) adsorption capacities were achieved for modified surface which was 70% enhancement compared with pristine ACC. The dynamic oil spill adsorption test exhibited the complete removal of oil spills on water surfaces within a few seconds, suggesting a potential application in oil spill cleaning.
Collapse
Affiliation(s)
- Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khoudh, 123, Muscat, Oman.
| | - Mohammed A Al-Belushi
- Department of Marine Science and Fisheries, College of Agriculture and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khoudh, 123, Muscat, Oman; Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agriculture, Fisheries Wealth & Water Resources, PO Box 3094, Airport Central Post,111, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agriculture and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khoudh, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, PO Box 33, Al-Khoudh, 123, Muscat, Oman.
| |
Collapse
|
46
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
47
|
Zhuo LB, Liu YM, Jiang Y, Yan Z. Zinc oxide nanoparticles induce acute lung injury via oxidative stress-mediated mitochondrial damage and NLRP3 inflammasome activation: In vitro and in vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122950. [PMID: 37979646 DOI: 10.1016/j.envpol.2023.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
The widespread application of zinc oxide nanoparticles (ZnO-NPs) brings convenience to our lives while also renders threats to public health and ecological environment. The lung has been recognized as a primary target of ZnO-NPs, however, the detrimental effects and mechanism of ZnO-NPs on the respiratory system have not been thoroughly characterized so far. To investigate the effect of ZnO-NPs on acute lung injury (ALI), Sprague Dawley rats were intratracheally instilled with ZnO-NPs suspension at doses of 1, 2, and 4 mg/kg/day for 3 consecutive days. Our study revealed that ZnO-NPs induced ALI in rats characterized by increased airway resistance, excessive inflammatory response and lung histological damage. In addition, we identified several molecular biomarkers related to the potential mechanism of ZnO-NP-induced ALI, including oxidative stress, mitochondrial damage, and NLRP3 inflammasome activation. The results of in vitro experiments showed that the viability of A549 cells decreased with the increase in ZnO-NPs concentration. Meanwhile, it was also found that ZnO-NP treatment induced the production of ROS, the decrease in mitochondrial membrane potential and activation of NLRP3 inflammasome in A549 cells. Furthermore, to explore the underlying molecular mechanisms of ZnO-NP-induced ALI, N-acetyl-L-cysteine (a ROS scavenger), Cyclosporin A (an inhibitor for mitochondrial depolarization) and Glibenclamide (an inhibitor for NLRP3 inflammasome activity) were used to pre-treat A549 cells before ZnO-NPs stimulation in the in vitro experiments, respectively. The results from this study suggested that ZnO-NP-induced ROS production triggered the accumulation of damaged mitochondria and assembly of NLRP3 inflammatory complex, leading to maturation and release of IL-1β. Moreover, ZnO-NP-induced NLRP3 inflammasome activation was partly mediated by mitochondrial damage. Taken together, our study suggested that ZnO-NPs induced ALI through oxidative stress-mediated mitochondrial damage and NLRP3 inflammasome activation and provided insight into the mechanisms of ZnO-NPs-induced ALI.
Collapse
Affiliation(s)
- Lai-Bao Zhuo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Mei Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou, China
| | - Yuhan Jiang
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC, 27411, United States
| | - Zhen Yan
- International School of Public Health and One Health, Hainan Medical University, Haikou, China; School of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
48
|
Jaithon T, Atichakaro T, Phonphoem W, T-Thienprasert J, Sreewongchai T, T-Thienprasert NP. Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth. Heliyon 2024; 10:e24076. [PMID: 38234900 PMCID: PMC10792570 DOI: 10.1016/j.heliyon.2024.e24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
In recent decades, the biosynthesis of nanoparticles using biological agents, such as plant extracts, has grown in popularity due to their environmental and economic benefits. Therefore, this study investigated into utilizing ethanol crude extract sourced from mangosteen peel for the synthesis of zinc oxide nanoparticles (ZnO NPs) and assessing their efficacy against the rice blight pathogen (Xanthomonas oryzae pv. oryzae) through antibacterial evaluations. Additionally, the effects of the synthesized ZnO NPs on rice plant growth was investigated. The X-ray diffraction analysis revealed the production of wurtzite ZnO NPs under specific synthesis conditions, exhibiting a crystallite size of 38.71 nm (or 387.122 Å) without any contamination. Analysis of the ultraviolet-visible optical absorption spectrum indicated a characteristic absorption peak at 363 nm, suggesting a calculated band gap energy of 2.88 eV for the ZnO NPs. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the presence of active compounds functional groups from mangosteen peel in the synthesized ZnO NPs. These biosynthesized ZnO NPs demonstrated significant inhibition of X. oryzae pv. oryzae growth, exhibiting an in vitro 50 % inhibitory concentration (IC50) value of 1.895 mg/mL and a minimum inhibitory concentration (MIC) value of 4 mg/mL. The ZnO NPs treatments at two-fold IC50 values significantly enhanced root length, dry biomass, and chlorophyll a content in rice plants. Consequently, the results demonstrated the potential application of biosynthesized ZnO NPs from mangosteen peel extract in green agriculture, as an alternative to excessive antibiotic use, for combating bacterial plant diseases, and for enhancing plant growth.
Collapse
Affiliation(s)
| | - Thamonwan Atichakaro
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wannarat Phonphoem
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jiraroj T-Thienprasert
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Tanee Sreewongchai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
49
|
Campagnolo L, Lacconi V, Bernardini R, Viziano A, Pietroiusti A, Ippoliti L, Moleti A, Sisto R. Maternal exposure to zinc oxide nanoparticles causes cochlear dysfunction in the offspring. FRONTIERS IN TOXICOLOGY 2024; 6:1323681. [PMID: 38283866 PMCID: PMC10812106 DOI: 10.3389/ftox.2024.1323681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction: Zinc oxide nanoparticles (ZnO NPs) have been engineered and are largely used in material science and industry. This large and increasing use justifies a careful study about the toxicity of this material for human subjects. The concerns regard also the reproductive toxicity and the fetotoxicity. Materials and methods: The effect of the exposure to ZnO NPs on the cochlear function was studied in a group of pregnant CD1 mice and in their offspring. This study is part of a larger toxicological study about the toxicity of ZnO NPs during pregnancy. Four groups were analyzed and compared, exposed and non-exposed dams and their offspring. The cochlear function was quantitatively assessed by means of Distortion Product Otoacoustic Emissions (DPOAEs). Results and discussion: A large statistically significant difference was found between the non-exposed dams offspring and the exposed dams offspring (p = 1.6 · 10-3), whose DPOAE levels were significantly lower than those of non-exposed dams offspring and comparable to those of the adults. The DPOAE levels of the exposed and non-exposed dams were very low and not significantly different. This occurrence is related to the fact that these mice encounter a rapid aging process. Conclusion: Our findings show that maternal exposure to ZnO NPs does not reflect in overt toxicity on fetal development nor impair offspring birth, however it may damage the nervous tissue of the inner ear in the offspring. Other studies should confirm this result and identify the mechanisms through which ZnO NPs may affect ear development.
Collapse
Affiliation(s)
- Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Viziano
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | | | - Lorenzo Ippoliti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers Compensation Authority, Rome, Italy
| |
Collapse
|
50
|
Ouyang Y, Nie S, Yang X, Xu X, Zhou M, Amakye WK, Yuan E, Ren J. Peptides with Charged Amino Acids Mitigate nZnO-Induced Growth Inhibition of Lactobacillus rhamnosus LRa05. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:405-415. [PMID: 38149372 DOI: 10.1021/acs.jafc.3c07318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Growing concern is about the potential side effects of nanomaterials from food packaging, notably zinc oxide nanoparticles (nZnO). Previous research revealed that walnut-derived peptides could mitigate this inhibitory effect, but the mechanism involved is unclear. Here, we found that not all peptides have such an effect. Based on the growth inhibition model of Lactobacillus rhamnosus LRa05 induced by nZnO, we assessed the protective effects of various peptides. Notably, four peptides containing charged amino acids (PPKNW, WPPKN, ADIYTE, and WEREEQE) were found to effectively alleviate the growth inhibition phenomenon. We hypothesize that the peptide-nZnO interaction modifies this effect, as confirmed through infrared, Raman, and fluorescence spectroscopy. Our results highlight amide bonds, amino groups, carboxyl groups, and benzene rings as key peptide binding sites on nZnO, with static quenching primarily due to hydrogen bonds and van der Waals forces. This study elucidates peptide characteristics in nZnO interactions, facilitating a deeper exploration of food matrix-nanocomposite interactions.
Collapse
Affiliation(s)
- Yuezhen Ouyang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shiying Nie
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinquan Yang
- Innovation Center for Precision Nutrition and Health, Dongguan 523000, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Miao Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Erdong Yuan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|