1
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Zarrinnahad H, Dehdast SA, Fard GC, Nourbakhsh M, Koohi MK, Panahi G, Karimpour A, Rezayat SM, Shabani M. The effect of biosynthesized zinc oxide nanoparticles on gene expression and apoptosis in triple-negative breast cancer cells. Daru 2024; 33:10. [PMID: 39731629 DOI: 10.1007/s40199-024-00553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 12/30/2024] Open
Abstract
OBJECTIVE(S) Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments. MATERIALS AND METHODS Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done. Analysis of Zinc Oxide NPs using DLS, FTIR, SEM, and EDS techniques have been performed. Moreover, biological activities of ZnO NPs evaluated through MTT method, Flow cytometry, and real time PCR methods. Biocatalytic and apoptotic activity of ZnO NPs on healthy HFF (human fibroblast cell line), MDA-MB 231, and MDA-MB 468 (triple negative breast cancer cell lines, (TNBC)) evaluated. Furthermore, Bax, Bcl-2 and caspase-3 apoptotic genes expression changes in cancer cells assessed in compare to GAPDH as a house keeping gene. RESULTS Physico-chemical investigation demonstrated ZnO NPs were confirmed by Berberis integerrima fruit extract for the first time. The MTT assay and Flow cytometry results indicated biocompatibility of the ZnO NPs in normal cell line and high anticancer potential against TNBC MDA-MB-231 and MDA-MB-468 cell lines. The IC50 of ZnO NPs were 104.4 and 44.86, 20.96 after 24 hours for HFF, MDA-MB-231 and MDA-MB-468 cells, respectively. CONCLUSION The current research showed a fast, cost effective and ecofriendly method for ZnO NPs nanoparticle synthesis. Furthermore, In vitro data analysis demonstrated biocompatibility and highly anticancer effects of biosynthesized ZnO NPs against TNBC cancerous cells.
Collapse
Affiliation(s)
- Hannaneh Zarrinnahad
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Ahmad Dehdast
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Chizari Fard
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clothing and Fabric Design Department, Art Faculty, Imam Javad University College, Yazd, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mehdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
4
|
Tang H, Wang H, Gan Z, Ding Z, Yu Q. Engineering the Hydrophilic-Hydrophobic Interface of Polymeric Micelles by Cationic Blocks for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69011-69027. [PMID: 39639482 DOI: 10.1021/acsami.4c17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The cationic surface charge critically influences the biological functions and therapeutic outcomes of the cancer nanomedicines. However, the basic correlation between the cationic group categories and their therapeutic efficacy has not been elucidated. In this study, cationic polymeric nanoparticles with amino groups (primary, tertiary, and quaternary amines) as the single variable were leveraged to investigate the various effects of amino species for enhanced antitumor chemotherapy. The nanoparticles were constructed from a series of triblock polymers with varying cationic repeating units at the hydrophilic-hydrophobic interface. Our results suggested that quaternary ammonium outperforms its primary and tertiary counterparts in destroying mitochondrial membranes to induce apoptosis, penetrating deep inside the tumor tissue, and damaging tumor vasculatures. As a result, we were able to effectively inhibit tumor growth in mice by a quaternary ammonium conjugate without causing significant toxicity. Our work demonstrated that the chemical structures played vital roles in regulating their biological functions and provided valuable information for designing cationic drug delivery systems.
Collapse
Affiliation(s)
- Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology; Shenzhen, Guangdong 518055, P. R. China
| | - Hanbing Wang
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhihua Gan
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Qingsong Yu
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
5
|
Jacinto C, Silva WF, Garcia J, Zaragosa GP, Ilem CND, Sales TO, Santos HDA, Conde BIC, Barbosa HP, Malik S, Sharma SK. Nanoparticles based image-guided thermal therapy and temperature feedback. J Mater Chem B 2024; 13:54-102. [PMID: 39535040 DOI: 10.1039/d4tb01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine. Various physical stimuli employed in therapy and imaging are scrutinized, laying the foundation for nanothermal therapies and the accompanying challenges. A comprehensive analysis of nanomaterial architecture ensues, delineating the functionalities of magnetic, plasmonic, and luminescent nanomaterials within the context of thermal therapies. Nano-design intricacies, including core-shell structures and monodisperse properties, are dissected for their impact on therapeutic efficacy. Furthermore, considerations in designing in vivo nanomaterials, such as hydrodynamic radii and core sizes at sub-tissue levels, are elucidated. The review then delves into specific modalities of thermally induced therapy, including magnetically induced hyperthermia and luminescent-based thermal treatments. Magnetic hyperthermia treatment is explored alongside its imaging and relaxometric properties, emphasizing the implications of imaging formulations on biotransformation and biodistribution. This review also provides an overview of the magnetic hyperthermia treatment using magnetic nanoparticles to induce localized heat in tissues. Similarly, optical and thermal imaging techniques utilizing luminescent nanomaterials are discussed, highlighting their potential for light-induced thermal therapy and cellular-level temperature monitoring. Finally, the application landscape of diagnosis and photothermal therapy (PTT) is surveyed, encompassing diverse areas such as cancer treatment, drug delivery, antibacterial therapy, and immunotherapy. The utility of nanothermometers in elucidating thermal relaxation dynamics as a diagnostic tool is underscored, alongside discussions on PTT hyperthermia protocols. Moreover, the advancements in nanoparticle magnetic imaging and implications of imaging formulations especially in creating positive MRI contrast agents are also presented. This comprehensive review offers insights into the evolving landscape of nanoparticle-based image-guided thermal therapies, promising advancements in precision medicine and targeted interventions, underscoring the importance of continued research in optimization for the full potential of magnetic hyperthermia to improve its efficacy and clinical translation.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | - Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | | | - Tasso O Sales
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Harrisson D A Santos
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | | | | | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans, 45067, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil
| |
Collapse
|
6
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
7
|
Cizkova J, Dolezal OJ, Buchta V, Pospichal J, Blanar V, Sinkorova Z, Carrillo A. Golden era of radiosensitizers. Front Vet Sci 2024; 11:1450776. [PMID: 39711799 PMCID: PMC11659289 DOI: 10.3389/fvets.2024.1450776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The past 30 years have brought undeniable progress in medicine, biology, physics, and research. Knowledge of the nature of the human body, diseases, and disorders has been constantly improving, and the same is true regarding their treatment and diagnosis. One of the greatest advances in recent years has been the introduction of nanoparticles (NPs) into medicine. NPs refer to a material at a nanometer scale (0.1-100 nm) with features (specific physical, chemical, and biological properties) that are broadly and increasingly used in the medical field. Their applications in cancer treatment and radiotherapy seem particularly attractive. In this field, inorganic/metal NPs with high atomic number Z have been employed mainly due to their ability to enhance ionizing radiation's photoelectric and Compton effects and thereby increase conventional radiation therapy's efficacy. The improvement NPs enable relates to their enhanced permeation ability and longer retention effect in tumor cells, capacity to reduce toxicity of commercially available cancer drugs through advanced NPs drug delivery systems, radiation sensitizers of tumors, or enhancers of radiation doses to tumors. Advanced options according to size, core, and surface modification allow even such multimodal approaches in therapy as nanotheranostics or combined treatments. The current state of knowledge emphasizes the role of gold nanoparticles (AuNPs) in sensitizing tumors to radiation. We have reviewed AuNPs and their radiosensitizing power during radiation treatment. Our results are divided into groups based on AuNPs' surface modification and/or core structure design. This study provides a complete summary of the in vivo sensitizing effect of AuNPs, surface-modified AuNPs, and AuNPs combined with different elements, providing evidence for further successful veterinarian and clinical implementation.
Collapse
Affiliation(s)
- Jana Cizkova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Ondrej Jan Dolezal
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Vojtech Buchta
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Jan Pospichal
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Vit Blanar
- Department of Nursing, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Anna Carrillo
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
8
|
Sattarahmady N, Kayani Z, Heli H, Faghani-Eskandarkolaei P, Haghighi H. Photosensitizing Activity of Nanoparticles of Poly (2-amino phenol)/Gold for Intensified Doxorubicin Therapeutic Effect on Melanoma Cancer Cells under Synergism Effect of 808-nm Light. J Biomed Phys Eng 2024; 14:547-560. [PMID: 39726887 PMCID: PMC11668927 DOI: 10.31661/jbpe.v0i0.2312-1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 12/28/2024]
Abstract
Background Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area. Objective The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX). Material and Methods In this experimental study, nanoparticles of P2AO/AuNPs were synthesized, and their mixture with DOX was applied as a photosensitizer for photothermal/chemotherapy of a C540 (B16-F10) melanoma cell line. Results P2AO/AuNPs generated heat and cytotoxic responsive oxygen species (ROS) upon 808-nm light irradiation with simultaneous intensifying DOX therapeutic effect under domination of synergism effects between light irradiation, P2AO/AuNPs, and doxorubicin. Cell treatment with both P2AO/AuNPs and DOX resulted in a considerable increase in necroptotic cells to 61% with a significant decrease in the living cells (39%). Conclusion P2AO/AuNPs provided a platform for light absorption and intensifying DOX therapeutic effect. This study approved the applicability of a new photothermal/chemotherapy by domination of synergistic effects attained by combination of laser light, P2AO, AuNPs, and DOX.
Collapse
Affiliation(s)
- Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for the Physics of Matter and Radiation, Namur Research Institute for Life Sciences, University of Namur, Belgium
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parsa Faghani-Eskandarkolaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Haghighi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
10
|
Yıldırım M, Acet BÖ, Dikici E, Odabaşı M, Acet Ö. Things to Know and Latest Trends in the Design and Application of Nanoplatforms in Cancer Treatment. BIONANOSCIENCE 2024; 14:4167-4188. [DOI: 10.1007/s12668-024-01582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 01/05/2025]
|
11
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Parra-Nieto J, Arroyo-Nogales A, Marcos-Fernández D, Jimenez-Falcao S, Arribas C, Megias D, Gonzalez-Murillo Á, Ramirez M, Baeza A. Dual-pore protocells with multitasking capacities for simultaneous delivery of therapeutic enzymes and drugs in macrophage depletion therapy. Biomater Sci 2024; 12:5372-5385. [PMID: 39258483 DOI: 10.1039/d4bm00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Macrophages are usually present in solid tumors where they participate in tumor progression, angiogenesis, immunosuppression and metastasis. The design of nanocarriers capable of delivering therapeutic agents to specific cell populations has received considerable attention in the last decades. However, the capacity of many of these nanosystems to deliver multiple therapeutic agents with very different chemical properties is more limited. Herein, a novel multitasking nanoplatform capable of delivering large macromolecules and cytotoxic drugs to macrophages is presented. This novel nanosystem has exhibited excellent skills in performing simultaneous tasks, macrophage depletion and glucose starvation, maintaining the oxygen levels in the tissue. This nanodevice is composed of a dual-pore mesoporous silica core with the capacity to house small cytotoxic drugs, such as doxorubicin or zoledronic acid, and large macromolecules, such as glucose oxidase. The external surface of the silica core was coated with a lipid bilayer to avoid the premature release of the housed drugs. Finally, polymeric nanocapsules loaded with catalase were covalently anchored on the outer lipid bilayer, and carboxy-mannose was attached to the exposed side of the nanocapsules to provide selectivity to the macrophages. These nanoassemblies were able to transport enzymes (Gox and CAT), maintaining their catalytic activity. Therefore, they could induce glucose starvation, keeping the oxygen levels in the tissue, owing to the tandem enzymatic reaction. The capacity of these nanoassemblies to deliver therapeutic agents to macrophages was evaluated both in static and under flow conditions, showing a rapid capture of the nanoparticles by the macrophages. Once there, the nanoassemblies also exhibited excellent capacity to induce potent macrophage depletion. This strategy can be directly adapted for the treatment of different malignancies due to the modular nature of the nanoplatform, which can be loaded with different therapeutic agent combinations and pave the way for the development of personalized nanomedicines for diverse types of tumors.
Collapse
Affiliation(s)
- Jorge Parra-Nieto
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Alicia Arroyo-Nogales
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Diana Marcos-Fernández
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Sandra Jimenez-Falcao
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Carmen Arribas
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Diego Megias
- Advanced Optical Microscopy unit, Instituto de salud Carlos III (ISCIII), Madrid, Spain
| | - África Gonzalez-Murillo
- Servicio de Hematología y Oncología Pediátrica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Manuel Ramirez
- Servicio de Hematología y Oncología Pediátrica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Alejandro Baeza
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Bernal-Martínez AM, Bedrina B, Angulo-Pachón CA, Galindo F, Miravet JF, Castelletto V, Hamley IW. pH-Induced conversion of bolaamphiphilic vesicles to reduction-responsive nanogels for enhanced Nile Red and Rose Bengal delivery. Colloids Surf B Biointerfaces 2024; 242:114072. [PMID: 39024718 DOI: 10.1016/j.colsurfb.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Circular Dichroism (CD) spectroscopy reveals substantial molecular reconfigurations accompanying the pH shift. These nanogels enhance the in vitro cellular uptake of the lipophilic dye Nile Red and the ionic photosensitizer Rose Bengal into Human colon adenocarcinoma (HT-29) cells, eliminating the need for organic co-solvents in the former case. Fluorescence measurements with Nile Red as a probe indicate the reduction-sensitive disassembly of the nanogels. In photodynamic therapy (PDT) applications, Rose Bengal-loaded nanogels demonstrate notable improvements, with flow cytometry analysis evidencing increased apoptotic activity in the study with HT-29 cells.
Collapse
Affiliation(s)
- Ana M Bernal-Martínez
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - César A Angulo-Pachón
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain; Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Las Rozas, Madrid 28232, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain.
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| |
Collapse
|
14
|
Cao Z, Liu C, Wen J, Lu Y. Innovative Formulation Platform: Paving the Way for Superior Protein Therapeutics with Enhanced Efficacy and Broadened Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403116. [PMID: 38819929 PMCID: PMC11571700 DOI: 10.1002/adma.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Protein therapeutics offer high therapeutic potency and specificity; the broader adoptions and development of protein therapeutics, however, have been constricted by their intrinsic limitations such as inadequate stability, immunogenicity, suboptimal pharmacokinetics and biodistribution, and off-target effects. This review describes a platform technology that formulates individual protein molecules with a thin formulation layer of crosslinked polymers, which confers the protein therapeutics with high activity, enhanced stability, controlled release capability, reduced immunogenicity, improved pharmacokinetics and biodistribution, and ability to cross the blood brain barriers. Based on currently approved protein therapeutics, this formulating platform affords the development of a vast family of superior protein therapeutics with improved efficacy and broadened indications at significantly reduced cost.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, CA, 90066, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Changping Laboratory, Beijing, 100871, P. R. China
| |
Collapse
|
15
|
Chaudhary AA, Fareed M, Khan SUD, Alneghery LM, Aslam M, Alex A, Rizwanullah M. Exploring the therapeutic potential of lipid-based nanoparticles in the management of oral squamous cell carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1223-1246. [PMID: 39465011 PMCID: PMC11502080 DOI: 10.37349/etat.2024.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly malignant and invasive tumor with significant mortality and morbidity. Current treatment modalities such as surgery, radiotherapy, and chemotherapy encounter significant limitations, such as poor targeting, systemic toxicity, and drug resistance. There is an urgent need for novel therapeutic strategies that offer targeted delivery, enhanced efficacy, and reduced side effects. The advent of lipid-based nanoparticles (LNPs) offers a promising tool for OSCC therapy, potentially overcoming the limitations of current therapeutic approaches. LNPs are composed of biodegradable and biocompatible lipids, which minimize the risk of toxicity and adverse effects. LNPs can encapsulate hydrophobic drugs, improving their solubility and stability in the biological environment, thereby enhancing their bioavailability. LNPs demonstrate significantly higher ability to encapsulate lipophilic drugs than other nanoparticle types. LNPs offer excellent storage stability, minimal drug leakage, and controlled drug release, making them highly effective nanoplatforms for the delivery of chemotherapeutic agents. Additionally, LNPs can be modified by complexing them with specific target ligands on their surface. This surface modification allows the active targeting of LNPs to the tumors in addition to the passive targeting mechanism. Furthermore, the PEGylation of LNPs improves their hydrophilicity and enhances their biological half-life by reducing clearance by the reticuloendothelial system. This review aims to discuss current treatment approaches and their limitations, as well as recent advancements in LNPs for better management of OSCC.
Collapse
Affiliation(s)
- Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Fareed
- College of Medicine, AlMaarefa University, Diriyah, Riyadh 11597, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Arockia Alex
- Molecular and Nanobiotechnology Laboratory (MNBL), Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Md Rizwanullah
- Drug Delivery and Nanomedicine Unit, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| |
Collapse
|
16
|
Medina-Moreno A, El-Hammadi MM, Martínez-Soler GI, Ramos JG, García-García G, Arias JL. Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01701-y. [PMID: 39237670 DOI: 10.1007/s13346-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Methotrexate successful therapy encounters various challenges in chemotherapy, such as poor oral bioavailability, low specificity, side effects and the development of drug resistances. In this study, it is proposed a dual-targeted nanocarrier comprising magnetite/chitosan nanoparticles for an efficient Methotrexate delivery. The formation of the particles was confirmed through morphological analysis using electron microscopy and elemental mappings via energy dispersive X-ray spectroscopy. These nanoparticles exhibited a size of ≈ 270 nm, a zeta potential of ≈ 24 mV, and magnetic responsiveness, as demonstrated by hysteresis cycle analysis and visual observations under a magnetic field. In addition, these particles displayed high stability, as evidenced by size and surface electric charge measurements, during storage at both 4 ºC and 25 ºC for at least 30 days. Electrophoretic properties were examined in relation to pH and ionic strength, confirming these core/shell nanostructure. The nanoparticles demonstrated a pH-responsive drug release as observed by a sustained Methotrexate release over the next 90 h under pH ≈ 7.4, while complete release occurred within 3 h under acidic conditions (pH ≈ 5.5). In the biocompatibility assessment, the magnetite/chitosan particles showed excellent hemocompatibility ex vivo and no cytotoxic effects on normal MCF-10 A and cancer MCF-7 cells. Furthermore, the Methotrexate-loaded nanoparticles significantly enhanced the antitumor activity reducing the half-maximal inhibitory concentration by ≈ 2.7-fold less compared to the free chemotherapeutic.
Collapse
Affiliation(s)
- Ana Medina-Moreno
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Sevilla, 41012, Spain
| | - Gema I Martínez-Soler
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Javier G Ramos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain
| | - Gracia García-García
- Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, 04120, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, 18011, Spain.
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18016, Spain.
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, 18012, Spain.
| |
Collapse
|
17
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Assi S, Hayar B, Pisano C, Darwiche N, Saad W. Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1380. [PMID: 39269042 PMCID: PMC11396872 DOI: 10.3390/nano14171380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
Cancer is a major public health problem that ranks as the second leading cause of death. Anti-cancer drug development presents with various hurdles faced throughout the process. Nanoparticle (NP) formulations have emerged as a promising strategy for enhancing drug delivery efficiency, improving stability, and reducing drug toxicity. Previous studies have shown that the adamantyl retinoid ST1926 displays potent anti-tumor activities in several types of tumors, particularly in colorectal cancer (CRC). However, phase I clinical trials in cancer patients using ST1926 are halted due to its low bioavailability. In this manuscript, we developed ST1926-NPs using flash nanoprecipitation with polystyrene-b-poly (ethyleneoxide) as an amphiphilic stabilizer and cholesterol as a co-stabilizer. Dynamic light scattering revealed that the resulting ST1926-NPs Contin diameter was 97 nm, with a polydispersity index of 0.206. Using cell viability, cell cycle analysis, and cell death assays, we showed that ST1926-NP exhibited potent anti-tumor activities in human CRC HCT116 cells. In a CRC xenograft model, mice treated with ST1926-NP exhibited significantly lowered tumor volumes compared to controls at low drug concentrations and enhanced the delivery of ST1926 to the tumors. These findings highlight the potential of ST1926-NPs in attenuating CRC tumor growth, facilitating its further development in clinical settings.
Collapse
Affiliation(s)
- Sara Assi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Berthe Hayar
- Department of Biochemistry & Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, AV, Italy
| | - Nadine Darwiche
- Department of Biochemistry & Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Walid Saad
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
20
|
Zhou H, Xu H, Man J, Wang G. Bortezomib-encapsulated metal-phenolic nanoparticles for intracellular drug delivery. RSC Adv 2024; 14:26176-26182. [PMID: 39161451 PMCID: PMC11332358 DOI: 10.1039/d4ra03504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Bortezomib (BTZ) is an important boronate proteasome inhibitor that is widely used in cancer therapy. However, the clinical application of BTZ suffers from poor stability and serious adverse effects. Herein, we fabricated metal-polyphenol nanoparticles for the covalent encapsulation of BTZ. BTZ-encapsulated tannic acid (TA)-Fe3+ nanoparticles can be prepared by mixing BTZ, TA, and ferric chloride owing to the formation of metal-polyphenol coordination interaction and dynamic boronate ester bonds. The BTZ-encapsulated TA-Fe3+ nanoparticles (BTZ NPs) are stable in physiological environment (pH 7.4) with minimal drug leakage. However, BTZ NPs can be disassembled in an acidic environment. Therefore, BTZ can be rapidly released from BTZ NPs in an acidic environment (pH 5.0). More than 50% BTZ can be released from BTZ NPs after 8 h incubation at pH 5.0. BTZ NPs exhibited high cytotoxicity against human osteosarcoma Saos-2 cells and human multiple myeloma OPM-2 cells. The metal-polyphenol nanoparticles can be a promising nanoplatform for the delivery of BTZ with simultaneously enhanced therapeutic efficacy and reduced side effects.
Collapse
Affiliation(s)
- Haidong Zhou
- Department of Orthopaedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine) 666 Dangui Road Shengzhou 312400 P. R. China
| | - Hongyu Xu
- Department of Orthopaedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine) 666 Dangui Road Shengzhou 312400 P. R. China
| | - Jiaping Man
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310058 P. R. China
| | - Gangxiang Wang
- Department of Orthopaedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine) 666 Dangui Road Shengzhou 312400 P. R. China
| |
Collapse
|
21
|
Abdel Halim AS, Ali MAM, Inam F, Alhalwan AM, Daoush WM. Fe 3O 4-Coated CNTs-Gum Arabic Nano-Hybrid Composites Exhibit Enhanced Anti-Leukemia Potency Against AML Cells via ROS-Mediated Signaling. Int J Nanomedicine 2024; 19:7323-7352. [PMID: 39055376 PMCID: PMC11269411 DOI: 10.2147/ijn.s467733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prior studies on magnetite (Fe3O4) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. Purpose Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized Fe3O4 NPs and CNTs, alone or in combination, on AML cell proliferation. Methods Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34+ cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. Results The Fe3O4 NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC50 values ranging from 42.437 to 189.842 μg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC50: 113.529‒162.656 μg/mL). The incorporation of Fe3O4 NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. Conclusion We provide an effective Fe3O4 NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia
| | - Fawad Inam
- Department of Engineering and Computing, School of Architecture, Computing and Engineering, University of East London, London, UK
- Executive Principal Office, Oxford Business College, Oxford, OX1 2EP, UK
| | - Abdulrahman M Alhalwan
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Walid M Daoush
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Cairo, 11281, Egypt
| |
Collapse
|
22
|
Rafique A, Amjad F, Janjua MRSA, Naqvi SAR, Hassan SU, Abdullah H, Nazir MS, Ali Z, Alshihri AA, Momenah MA, Mansour AA, Bajaber MA, Alalwiat AA. Chia seed-mediated fabrication of ZnO/Ag/Ag 2O nanocomposites: structural, antioxidant, anticancer, and wound healing studies. Front Chem 2024; 12:1405385. [PMID: 39055045 PMCID: PMC11269097 DOI: 10.3389/fchem.2024.1405385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Plant extract-mediated fabrication of metal nanocomposites is used in cell proliferation inhibition and topical wound treatment, demonstrating significant effectiveness. Salvia hispanica L. (chia) seed extract (CE) is used as the reaction medium for the green fabrication of ecofriendly ZnO(CE) nanoparticles (NPs) and Ag/Ag2O(CE) and ZnO/Ag/Ag2O(CE) nanocomposites. The resultant nanoparticles and nanocomposite materials were characterized using UV-visible, Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) techniques. In the context of antioxidant studies, ZnO/Ag/Ag2O(CE) exhibited 57% reducing power and 86% 2,2, diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. All three materials showed strong antibacterial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E.coli), and Bacillus subtilis (B. subtilis) bacterial strains. Additionally, ZnO(CE), Ag/Ag2O(CE), and ZnO/Ag/Ag2O(CE) also revealed 64.47%, 42.56%, and 75.27% in vitro Michigan Cancer Foundation-7 (MCF7) cancer cell line inhibition, respectively, at a concentration of 100 μg/mL. Selectively, the most effective composite material, ZnO/Ag/Ag2O(CE), was used to evaluate in vivo wound healing potential in rat models. The study revealed 96% wound closure in 10 days, which was quite rapid healing compared to wound healing using clinically available ointment. Therefore, in conclusion, the ZnO/Ag/Ag2O(CE) nanocomposite material could be considered for further testing and formulation as a good anticancer and wound healing agent.
Collapse
Affiliation(s)
- Aisha Rafique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Amjad
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | - Hanzla Abdullah
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahlam A. Alalwiat
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
23
|
Pinheiro M, Mu Q. Editorial: Editor's challenge: Dr. Qingxin Mu - how can nanomedicine approaches advance multi-targeting strategy in combination cancer therapy? Front Oncol 2024; 14:1437497. [PMID: 38919540 PMCID: PMC11196825 DOI: 10.3389/fonc.2024.1437497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Affiliation(s)
- Marina Pinheiro
- Department of Chemistry, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Public Health Unit, Local Health Unit Barcelos/Esposende, Barcelos, Portugal
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Talebian S, Shahnavaz B, Shakiba M, Rassouli FB. Illuminating new possibilities: Effects of copper oxide nanoparticles on gastrointestinal adenocarcinoma cells in hypoxic condition. Heliyon 2024; 10:e31414. [PMID: 38813193 PMCID: PMC11133906 DOI: 10.1016/j.heliyon.2024.e31414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a major global health concern, necessitating the development of novel therapeutic approaches. Hypoxia is a common characteristic of solid tumors that plays a critical role in tumor progression, making it a prime target for anticancer therapies. This study aimed to determine the effects of copper oxide nanoparticles (CuONPs) on human gastrointestinal cancer cells in hypoxic condition for the first time. Toxicity of CuONPs was evaluated on human colon and gastric adenocarcinoma cells and normal fibroblasts by alamarBlue assay. Real-time polymerase chain reaction (PCR) was performed to study the effects of CuONPs on genes involved in cell apoptosis. To elucidate the molecular mechanisms underlying the effects of CuONPs in hypoxic condition, molecular docking was conducted on HIF-1α. Results revealed dose- and cell-type-dependent toxic effects of CuONPs, as a more significant (p < 0.0001) decrease in viability of LoVo cells (23 %) was observed compared to MKN-45 and HDF cells. In addition, CuONPs significantly (p < 0.0001) reduced LoVo cell viability down to 30.2 % in hypoxic condition. Gene expression analysis revealed significant (p < 0.0001) overexpression of P53 and BAX but downregulation of BCL-2 and CCND1 after treatment with CuONPs. Molecular docking indicated the preferable binding of CuONPs to the HIF-1α PAS-B domain through interaction with 15 residues with -4.8 kcal/mol binding energy. Our findings open up new possibilities for modulating HIF-1 activity and inhibiting hypoxia-induced tumor progression.
Collapse
Affiliation(s)
- Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
25
|
Sahoo S, Sahoo SK. Phytonanomedicine as a therapeutic regulator of the tumor microenvironment for inhibiting cancer metastasis. Nanomedicine (Lond) 2024; 19:1227-1229. [PMID: 38686943 PMCID: PMC11285211 DOI: 10.2217/nnm-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
“The development of phytonanomedicine-based approach seems to be a very promising candidate for modulating protumorigenic tumor microenvironment to suppress cancer metastasis.”
Collapse
Affiliation(s)
- Sonali Sahoo
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
| | - Sanjeeb Kumar Sahoo
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
26
|
Kommineni N, Yerra VG. Special Issue "Latest Advances in Nanomedicine Strategies for Different Diseases". Int J Mol Sci 2024; 25:5835. [PMID: 38892023 PMCID: PMC11172157 DOI: 10.3390/ijms25115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
We launched this Special Issue amidst the COVID-19 pandemic, spurred by the growing interest in nanotherapeutic formulations for delivering SARS-CoV-2 viral messenger Ribonucleic Acid (mRNA) vaccines [...].
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research (CBR) Population Council, The Rockefeller University, New York, NY 10065, USA
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| |
Collapse
|
27
|
Angelopoulou A. Nanostructured Biomaterials in 3D Tumor Tissue Engineering Scaffolds: Regenerative Medicine and Immunotherapies. Int J Mol Sci 2024; 25:5414. [PMID: 38791452 PMCID: PMC11121067 DOI: 10.3390/ijms25105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The evaluation of nanostructured biomaterials and medicines is associated with 2D cultures that provide insight into biological mechanisms at the molecular level, while critical aspects of the tumor microenvironment (TME) are provided by the study of animal xenograft models. More realistic models that can histologically reproduce human tumors are provided by tissue engineering methods of co-culturing cells of varied phenotypes to provide 3D tumor spheroids that recapitulate the dynamic TME in 3D matrices. The novel approaches of creating 3D tumor models are combined with tumor tissue engineering (TTE) scaffolds including hydrogels, bioprinted materials, decellularized tissues, fibrous and nanostructured matrices. This review focuses on the use of nanostructured materials in cancer therapy and regeneration, and the development of realistic models for studying TME molecular and immune characteristics. Tissue regeneration is an important aspect of TTE scaffolds used for restoring the normal function of the tissues, while providing cancer treatment. Thus, this article reports recent advancements in the development of 3D TTE models for antitumor drug screening, studying tumor metastasis, and tissue regeneration. Also, this review identifies the significant opportunities of using 3D TTE scaffolds in the evaluation of the immunological mechanisms and processes involved in the application of immunotherapies.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
28
|
Bae C, Hernández Millares R, Ryu S, Moon H, Kim D, Lee G, Jiang Z, Park MH, Kim KH, Koom WS, Ye SJ, Lee K. Synergistic Effect of Ferroptosis-Inducing Nanoparticles and X-Ray Irradiation Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310873. [PMID: 38279618 DOI: 10.1002/smll.202310873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.
Collapse
Affiliation(s)
- Chaewon Bae
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rodrigo Hernández Millares
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhyun Ryu
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyowon Moon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Hee Park
- THEDONEE, 1208, 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16506, Republic of Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, South Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
30
|
Babunagappan KV, Seetharaman A, Ariraman S, Santhosh PB, Genova J, Ulrih NP, Sudhakar S. Doxorubicin loaded thermostable nanoarchaeosomes: a next-generation drug carrier for breast cancer therapeutics. NANOSCALE ADVANCES 2024; 6:2026-2037. [PMID: 38633044 PMCID: PMC11019490 DOI: 10.1039/d3na00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
Breast cancer has a poor prognosis due to the toxic side effects associated with high doses of chemotherapy. Liposomal drug encapsulation has resulted in clinical success in enhancing chemotherapy tolerability. However, the formulation faces severe limitations with a lack of colloidal stability, reduced drug efficiency, and difficulties in storage conditions. Nanoarchaeosomes (NA) are a new generation of highly stable nanovesicles composed of the natural ether lipids extracted from archaea. In our study, we synthesized and characterized the NA, evaluated their colloidal stability, drug release potential, and anticancer efficacy. Transmission electron microscopy images have shown that the NA prepared from the hyperthermophilic archaeon Aeropyrum pernix K1 was in the size range of 61 ± 3 nm. The dynamic light scattering result has confirmed that the NA were stable at acidic pH (pH 4) and high temperature (70 °C). The NA exhibited excellent colloidal stability for 50 days with storage conditions at room temperature. The cell viability results have shown that the pure NA did not induce cytotoxicity in NIH 3T3 fibroblast cells and are biocompatible. Then NA were loaded with doxorubicin (NAD), and FTIR and UV-vis spectroscopy results have confirmed high drug loading efficiency of 97 ± 1% with sustained drug release for 48 h. The in vitro cytotoxicity studies in MCF-7 breast cancer cell lines showed that NAD induced cytotoxicity at less than 10 nM concentration. Fluorescence-activated cell sorting (FACS) results confirmed that NAD induced late apoptosis in nearly 92% of MCF-7 cells and necrosis in the remaining cells with cell cycle arrest at the G0/G1 phase. Our results confirmed that the NA could be a potential next-generation carrier with excellent stability, high drug loading efficiency, sustained drug release ability, and increased therapeutic efficacy, thus reducing the side effects of conventional drugs.
Collapse
Affiliation(s)
| | - Abirami Seetharaman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Subastri Ariraman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana Ljubljana Slovenia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| |
Collapse
|
31
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
32
|
Wang W, Wei J, Feng D, Ling B. Current trends and emerging patterns in the application of nanomaterials for ovarian cancer research: a bibliometric analysis. Front Pharmacol 2024; 15:1344855. [PMID: 38523638 PMCID: PMC10957662 DOI: 10.3389/fphar.2024.1344855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: Ovarian cancer remains to be a significant cause of global cancer-related mortality. In recent years, there has been a surge of studies in investigating the application of nanomaterials in the diagnosis and treatment of ovarian cancer. This study aims to conduct a comprehensive bibliometric analysis regarding nanomaterial-based researches on ovarian cancer to evaluate the current state and emerging patterns in this field. Methods: A thorough literature search on the Web of Science Core Collection database was conducted to identify articles focused on nanomaterial-based ovarian cancer researches. The studies that met the inclusion criteria were selected for further analysis. VOSviewer and CiteSpace were applied for the bibliometric and visual analyses of the selected publications. Results: A total of 2,426 studies were included in this study. The number of annual publications showed a consistent upward trend from 2003 to 2023. Notably, China, the United States, and India have emerged as the leading contributors in this field, accounting for 37.39%, 34.04%, and 5.69% of the publications, respectively. The Chinese Academy of Sciences and Anil K. Sood were identified as the most influential institution and author, respectively. Furthermore, the International Journal of Nanomedicine was the most frequently cited journal. In terms of the research focus, significant attention has been directed towards nanomaterial-related drug delivery, while the exploration of immunogenic cell death and metal-organic frameworks represented recent areas of interest. Conclusion: Through comprehensive analyses, an overview of current research trends and emerging areas of interest regarding the application of nanomaterials in ovarian cancer was illustrated. These findings offered valuable insights into the status and future directions of this dynamic field.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
33
|
Sarkar A, Sarkhel S, Bisht D, Jaiswal A. Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome C in cancer therapy. RSC Chem Biol 2024; 5:249-261. [PMID: 38456040 PMCID: PMC10915965 DOI: 10.1039/d3cb00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/19/2023] [Indexed: 03/09/2024] Open
Abstract
Intracellular protein delivery shows promise as a selective and specific approach to cancer therapy. However, a major challenge is posed by delivering proteins into the target cells. Despite the development of nanoparticle (NP)-based approaches, a versatile and biocompatible delivery system that can deliver active therapeutic cargo into the cytosol while escaping endosome degradation remains elusive. In order to overcome these challenges, a polymeric nanocarrier was prepared using cationic dextrin (CD), a biocompatible and biodegradable polymer, to encapsulate and deliver cytochrome C (Cyt C), a therapeutic protein. The challenge of endosomal escape of the nanoparticles was addressed by co-delivering the synthesized NP construct with chloroquine, which enhances the endosomal escape of the therapeutic protein. No toxicity was observed for both CD NPs and chloroquine at the concentration tested in this study. Spectroscopic investigations confirmed that the delivered protein, Cyt C, was structurally and functionally active. Additionally, the delivered Cyt C was able to induce apoptosis by causing depolarization of the mitochondrial membrane in HeLa cells, as evidenced by flow cytometry and microscopic observations. Our findings demonstrate that an engineered delivery system using CD NPs is a promising platform in nanomedicine for protein delivery applications.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Deepali Bisht
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| |
Collapse
|
34
|
Azizi A, Ghasemirad M, Mortezagholi B, Movahed E, Aryanezhad SS, Makiya A, Ghodrati H, Nasiri K. Study of Cytotoxic and Antibacterial Activity of Ag- and Mg-Dual-Doped ZnO Nanoparticles. ChemistryOpen 2024; 13:e202300093. [PMID: 37955867 PMCID: PMC10924039 DOI: 10.1002/open.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.
Collapse
Affiliation(s)
- Aytan Azizi
- Department of Endodontics Dental SchoolQazvin university of medical sciencesshahid bahounar boulevard, P.O. Box: 3419759811QazvinIran
| | - Mohammad Ghasemirad
- Department of Periodontics Faculty of DentistryRafsanjan University of Medical SciencesKhalije Fars Blvd., Pasdaran street, P.O. Box: 1946853314RafsanjanIran
| | - Bardia Mortezagholi
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Emad Movahed
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Seyed Sasan Aryanezhad
- Oral and Maxillofacial Radiology, Private PracticeDaroost street, P.O. Box 1944614581TehranIran
| | - Ali Makiya
- Student Research Committee, Faculty of DentistryMashhad University of Medical ScienceMashhadIran
| | - Hoda Ghodrati
- Department of ProsthodonticsShahid Beheshti University of Medical SciencesDaneshjoo Blvd, Velenjak, St., P.O. Box 1983969411TehranIran
| | - Kamyar Nasiri
- Department of dentistryIslamic Azad University of Medical SciencesP.O. Box 19585-466TehranIran
| |
Collapse
|
35
|
Solanki R, Srivastav AK, Patel S, Singh SK, Jodha B, Kumar U, Patel S. Folate conjugated albumin as a targeted nanocarrier for the delivery of fisetin: in silico and in vitro biological studies. RSC Adv 2024; 14:7338-7349. [PMID: 38433936 PMCID: PMC10906141 DOI: 10.1039/d3ra08434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Fisetin (FST), a natural flavonoid compound derived from various fruits and vegetables, including apple, strawberry, and onion, demonstrates potential for a wide range of pharmaceutical applications, including potential anticancer properties. However, challenges such as low bioavailability, poor aqueous solubility, and limited permeability restrict the use of FST in the pharmaceutical sector. Nowadays, targeted nanomedicines have garnered attention to overcome limitations associated with phytochemicals, including FST. In the present study, we have designed and successfully prepared folate-targeted FST nanoparticles (FFNPs). Characterization through DLS and FE-SEM revealed the successful preparation of monodisperse (PDI: 0.117), nanoscale-sized (150 nm), and spherical nanoparticles. Physicochemical characterization including FTIR, XRD, DSC, and TGA analysis, confirmed the encapsulation of the FST within the Folic acid (FA) - conjugated nanoparticles (CNPs) and revealed its amorphous nature. Molecular docking analysis revealed the strong binding affinity and specific amino acid interactions involved in the BSA-FST-FA complex, suggesting the potential synergistic effect of FST and FA in enhancing the therapeutic activity of the FFANPs. Cytotoxic assessments by the MTT assay, migration assay, AO-EtBr staining assay, colony formation assay, and cellular uptake study demonstrated enhanced anticancer efficacy, apoptosis induction, and enhanced uptake of FFNPs compared to pure FST. These findings propose prepared FFNPs as a promising targeted drug delivery nanocarrier for effective FST delivery in cancer therapy.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | | | - Sejal Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Sanju Kumari Singh
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Bhavana Jodha
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
- Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana Mahendergarh 123031 India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| |
Collapse
|
36
|
Amodu IO, Olaojotule FA, Ogbogu MN, Olaiya OA, Benjamin I, Adeyinka AS, Louis H. Adsorption and sensor performance of transition metal-decorated zirconium-doped silicon carbide nanotubes for NO 2 gas application: a computational insight. RSC Adv 2024; 14:5351-5369. [PMID: 38348297 PMCID: PMC10859909 DOI: 10.1039/d3ra08796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.
Collapse
Affiliation(s)
- Ismail O Amodu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Mathematics, University of Calabar Calabar Nigeria
| | - Faith A Olaojotule
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | - Miracle N Ogbogu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg Pretoria South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
37
|
Maphutha J, Twilley D, Lall N. The Role of the PTEN Tumor Suppressor Gene and Its Anti-Angiogenic Activity in Melanoma and Other Cancers. Molecules 2024; 29:721. [PMID: 38338464 PMCID: PMC10856229 DOI: 10.3390/molecules29030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.
Collapse
Affiliation(s)
- Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
38
|
Manhas P, Cokca C, Sharma R, Peneva K, Wangoo N, Sharma D, Sharma RK. Chitosan functionalized doxorubicin loaded poly(methacrylamide) based copolymeric nanoparticles for enhanced cellular internalization and in vitro anticancer evaluation. Int J Biol Macromol 2024; 259:129242. [PMID: 38199540 DOI: 10.1016/j.ijbiomac.2024.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.
Collapse
Affiliation(s)
- Priya Manhas
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India
| | - Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
39
|
Skrodzki D, Molinaro M, Brown R, Moitra P, Pan D. Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium. ACS NANO 2024; 18:1289-1324. [PMID: 38166377 DOI: 10.1021/acsnano.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.
Collapse
Affiliation(s)
- David Skrodzki
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Richard Brown
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Kizhakkanoodan KS, Rallapalli Y, Praveena J, Acharya S, Guru BR. Cancer nanomedicine: emergence, expansion, and expectations. SN APPLIED SCIENCES 2023; 5:385. [DOI: 10.1007/s42452-023-05593-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
AbstractThe introduction of cancer nanomedicine has substantially enhanced the effectiveness of cancer treatments. Nano-formulations are becoming more prevalent among other treatment methods due to their improved therapeutic efficacy and low systemic toxicity. The discovery of the enhanced permeability and retention (EPR) effect has led to the development of numerous nanodrugs that passively target tumours. Then researchers identified certain cancer cells overexpress certain receptors, targeting these over-expressing receptors using targeting moiety on the surface of the nanoparticles becomes promising and surface functionalization of nanoparticles has become an important area of cancer nanomedicine. This leads to the physiochemical modification of nanoparticles for strengthening the EPR effect and active targeting. This review comprehensively outlines the origins of cancer nanomedicine, the role of the EPR effect, the tools of nanotechnology and their specifications, and the nature of passive and active targeting, which gives important direction for the progress of cancer therapy using nanomedicine. The review briefly enlists the available nano formulations for different cancers and attempts were made to account for the barriers to clinical translation. The review also briefly describes the transition of research from nanomedicine to nano-immunotherapy.
Collapse
|
41
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
42
|
Cazzoli R, Zamborlin A, Ermini ML, Salerno A, Curcio M, Nicoletta FP, Iemma F, Vittorio O, Voliani V, Cirillo G. Evolving approaches in glioma treatment: harnessing the potential of copper metabolism modulation. RSC Adv 2023; 13:34045-34056. [PMID: 38020008 PMCID: PMC10661684 DOI: 10.1039/d3ra06434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.
Collapse
Affiliation(s)
- Riccardo Cazzoli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Antonietta Salerno
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales Sydney NSW Australia
- School of Biomedical Sciences, University of New South Wales Sydney NSW Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria 87036 Rende Italy +39 0984493208
| |
Collapse
|
43
|
Fan D, Wang S, Huang R, Liu X, He H, Zhang G. Light-Assisted "Nano-Neutrophils" with High Drug Loading for Targeted Cancer Therapy. Int J Nanomedicine 2023; 18:6487-6502. [PMID: 37965278 PMCID: PMC10642559 DOI: 10.2147/ijn.s432854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Background Nanomedicine presents a promising alternative for cancer treatment owing to its outstanding features. However, the therapeutic outcome is still severely compromised by low tumor targeting, loading efficiency, and non-specific drug release. Methods Light-assisted "nano-neutrophils (NMPC-NPs)", featuring high drug loading, self-amplified tumor targeting, and light-triggered specific drug release, were developed. NMPC-NPs were composed of neutrophil membrane-camouflaged PLGA nanoparticles (NPs) loaded with a hypoxia-responsive, quinone-modified PTX dimeric prodrug (hQ-PTX2) and photosensitizer (Ce6). Results hQ-PTX2 significantly enhanced the drug loading of NPs by preventing intermolecular π-π interactions, and neutrophil membrane coating imparted the biological characteristics of neutrophils to NMPC-NPs, thus improving the stability and inflammation-targeting ability of NMPC-NPs. Under light irradiation, extensive NMPC-NPs were recruited to tumor sites based on photodynamic therapy (PDT)-amplified intratumoral inflammatory signals for targeted drug delivery to inflammatory tumors. Besides, PDT could effectively eliminate tumor cells via reactive oxygen species (ROS) generation, while the PDT-aggravated hypoxic environment accelerated hQ-PTX2 degradation to realize the specific release of PTX, thus synergistically combining chemotherapy and PDT to suppress tumor growth and metastasis with minimal adverse effects. Conclusion This nanoplatform provides a prospective and effective avenue toward enhanced tumor-targeted delivery and synergistic cancer therapy.
Collapse
Affiliation(s)
- Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Xiaoning Liu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
- Longhu Laboratory, Zhengzhou, 450046, People’s Republic of China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, People’s Republic of China
| |
Collapse
|
44
|
Craciun BF, Sandu IA, Peptanariu D, Pinteala M. Novel Nanotherapeutic Systems Based on PEGylated Squalene Micelles for Enhanced In Vitro Activity of Methotrexate and Cytarabine. Polymers (Basel) 2023; 15:4225. [PMID: 37959905 PMCID: PMC10650902 DOI: 10.3390/polym15214225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nanomedicine has garnered significant attention due to the advantages it offers in the treatment of cancer-related disorders, some of the deadliest diseases affecting human lives. Conventional medication formulations often encounter issues of instability or insolubility in biological environments, resulting in low bioavailability. Nanocarriers play a crucial role in transporting and safeguarding drugs at specific sites of action, enabling gradual release under particular conditions. This study focuses on methotrexate (MTx) and cytarabine (Cyt), essential antitumoral drugs, loaded into PEGylated squalene micellar structures to enhance therapeutic effectiveness and minimize drawbacks. The micelles were prepared using ultrasound-assisted methods in both water and phosphate buffer saline solutions. Evaluation of drug-loaded micelles encompassed parameters such as particle size, colloidal stability, surface charge, morphology, encapsulation efficiency, drug loading capacity, and in vitro release profiles under simulated physiological and tumoral conditions. In vitro cell inhibition studies conducted on MCF-7 and HeLa cell lines demonstrated higher antitumoral activity for the drug-encapsulated micelles compared to free drugs. The encapsulation effectively addressed the burst effect, providing sustained release for at least 48 h while enhancing the drug's protection under physiological conditions.
Collapse
Affiliation(s)
- Bogdan-Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| | | | | | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| |
Collapse
|
45
|
Sinha BK. Can Nitric Oxide-Based Therapy Be Improved for the Treatment of Cancers? A Perspective. Int J Mol Sci 2023; 24:13611. [PMID: 37686417 PMCID: PMC10487592 DOI: 10.3390/ijms241713611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Since the early observations that nitric oxide (•NO) at high concentrations is cytotoxic to cancer cells and that it may play an important role in the treatment of human cancers, a significant number of compounds (NO-donors) have been prepared to deliver •NO to tumors. •NO also sensitizes various clinically active anticancer drugs and has been shown to induce the reversal of multi-drug resistance in tumor cells expressing ATP-binding cassette-transporter proteins. For the successful treatment of cancers, •NO needs to be delivered precisely to tumors, and its adverse toxicity must be limited. Like other chemotherapeutics, the precise delivery of drugs has been a problem and various attempts have been made, such as the encapsulation of drugs in lipid polymers, to overcome this. This prospective study examines the use of various strategies for delivering •NO (using NO-donors) for the treatment of cancers. Finding and utilizing such a delivery system is an important step in delivering cytotoxic concentrations of •NO to tumors without adverse reactions, leading to a successful clinical outcome for patient management.
Collapse
Affiliation(s)
- Birandra K Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
46
|
Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, Trivanović D. Nanoparticles in Medicine: Current Status in Cancer Treatment. Int J Mol Sci 2023; 24:12827. [PMID: 37629007 PMCID: PMC10454499 DOI: 10.3390/ijms241612827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is still a leading cause of deaths worldwide, especially due to those cases diagnosed at late stages with metastases that are still considered untreatable and are managed in such a way that a lengthy chronic state is achieved. Nanotechnology has been acknowledged as one possible solution to improve existing cancer treatments, but also as an innovative approach to developing new therapeutic solutions that will lower systemic toxicity and increase targeted action on tumors and metastatic tumor cells. In particular, the nanoparticles studied in the context of cancer treatment include organic and inorganic particles whose role may often be expanded into diagnostic applications. Some of the best studied nanoparticles include metallic gold and silver nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes and graphene, with diverse mechanisms of action such as, for example, the increased induction of reactive oxygen species, increased cellular uptake and functionalization properties for improved targeted delivery. Recently, novel nanoparticles for improved cancer cell targeting also include nanobubbles, which have already demonstrated increased localization of anticancer molecules in tumor tissues. In this review, we will accordingly present and discuss state-of-the-art nanoparticles and nano-formulations for cancer treatment and limitations for their application in a clinical setting.
Collapse
Affiliation(s)
- Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova Ulica 52, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Barbara Rojnić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Miroslav Čolić
- Clear Water Technology Inc., 13008 S Western Avenue, Gardena, CA 90429, USA;
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52200 Pula, Croatia
| |
Collapse
|
47
|
Das P, Pujals S, Ali LMA, Gary-Bobo M, Albertazzi L, Durand JO. Super-resolution imaging of antibody-conjugated biodegradable periodic mesoporous organosilica nanoparticles for targeted chemotherapy of prostate cancer. NANOSCALE 2023; 15:12008-12024. [PMID: 37403617 DOI: 10.1039/d3nr01571h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.
Collapse
Affiliation(s)
- Pradip Das
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean-Olivier Durand
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
| |
Collapse
|
48
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
49
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
50
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|