1
|
Zhang H, Shui T, Moloto N, Li A, Zhang R, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. J Colloid Interface Sci 2025; 678:1148-1157. [PMID: 39284243 DOI: 10.1016/j.jcis.2024.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Considering the desired energy density, safety and cost-effectiveness, rechargeable zinc-ion batteries (ZIBs) are regarded as one of the most promising energy storage units in next-generation energy systems. Nonetheless, the service life of the current ZIBs is significantly limited by rampant dendrite growth and severe parasitic reactions occurring on the anode side. To overcome these issues caused by poor interfacial ionic conduction and water erosion, we have developed a facile strategy to fabricate a uniform zinc borate layer at the zinc anode/electrolyte interface (ZnBO). Such protective layer integrates superhydrophobic-zincopholic properties, which can effectively eliminate the direct contact of water molecules on the anode, and homogenize the interfacial ionic transfer, thereby enhancing the cyclic stability of the zinc plating/stripping. As a result, the as-prepared ZnBO-coated anode exhibits extended lifespan of 1200 h at 1 mA cm-2 and demonstrates remarkable durability of 570 h at 20 mA cm-2 in Zn||Zn symmetric cells. Additionally, when coupled to an NH4V4O10 (NVO) cathode, it also delivers a superior cyclability (203.5 mAh/g after 2000 cycles at 5 A/g, 89.3 % capacity retention) in coin full cells and a feasible capacity of 2.5 mAh at 1 A/g after 200 cycles in pouch full cells. This work offers a unique perspective on integrating hydrophobicity and zincophilicity at the anode/electrolyte interface through an artificial layer, thereby enhancing the cycle lifespan of ZIBs.
Collapse
Affiliation(s)
- Hanning Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Tao Shui
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - An Li
- Analysis and Testing Center, Southeast University, Nanjing 211189, China
| | - Ruogu Zhang
- Nanjing Jinling High School International Department, No. 169, Zhongshan Road, Gulou District, Nanjing City 210009, China
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 4668555, Japan
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Gao H, Chen Y, Teng T, Yun X, Lu D, Zhou G, Zhao Y, Li B, Zhou X, Zheng C, Xiao P. Interface Engineering via Manipulating Solvation Chemistry for Liquid Lithium-Ion Batteries Operated≥100 °C. Angew Chem Int Ed Engl 2024; 63:e202410982. [PMID: 38935427 DOI: 10.1002/anie.202410982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
High-performance and temperature-resistant lithium-ion batteries (LIBs), which are able to operate at elevated temperatures (i.e., >60 °C) are highly demanded in various fields, especially in military or aerospace exploration. However, their applications were largely impeded by the poor electrochemical performance and unsatisfying safety issues, which were induced by the severe side reactions between electrolytes and electrodes at high temperatures. Herein, with the synergetic effects of solvation chemistry and functional additive in the elaborately designed weakly solvating electrolyte, a unique robust organic/inorganic hetero-interphase, composed of gradient F, B-rich inorganic components and homogeneously distributed Si-rich organic components, was successfully constructed on both cathodes and anodes, which would effectively inhibit the constant decomposition of electrolytes and dissolution of transition metal ions, thus highly enhancing the high-temperature electrochemical performance. As a result, both cathodes and anodes, without compromising their low-temperature performance, can operate at temperatures ≥100 °C, with excellent capacity retentions of 96.1 % after 500 cycles and 93.5 % after ≥200 cycles, respectively, at 80 °C. Ah-level LiCoO2||graphite full cells with a cut-off voltage of 4.3 V also exhibited superior temperature-resistance with a capacity retention of 89.9 % at temperature as high as 120 °C. Moreover, the fully charged pouch cells exhibited highly enhanced safety, demonstrating their potentials in practical applications at ultrahigh temperatures.
Collapse
Affiliation(s)
- Hongjing Gao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Tao Teng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Xiaoru Yun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Di Lu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xing Zhou
- College of System Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Chunman Zheng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
| |
Collapse
|
3
|
Wang M, Yin L, Zheng M, Liu X, Yang C, Hu W, Xie J, Sun R, Han J, You Y, Lu J. Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries. Nat Commun 2024; 15:8866. [PMID: 39402040 PMCID: PMC11473825 DOI: 10.1038/s41467-024-53259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 10/17/2024] Open
Abstract
Rechargeable batteries with high durability over wide temperature is needed in aerospace and submarine fields. Unfortunately, Current battery technologies suffer from limited operating temperatures due to the rapid performance decay at extreme temperatures. A major challenge for wide-temperature electrolyte design lies in restricting the parasitic reactions at elevated temperatures while improving the reaction kinetics at low temperatures. Here, we demonstrate a temperature-adaptive electrolyte design by regulating the dipole-dipole interactions at various temperatures to simultaneously address the issues at both elevated and subzero temperatures. This approach prevents electrolyte degradation while endowing it with the ability to undergo adaptive changes as temperature varies. Such electrolyte favors to form solvation structure with high thermal stability with rising temperatures and transits to one that prevents salt precipitation at lower temperatures. This ensures stably within a wide temperature range of ‒60 -55 °C. This temperature-adaptive electrolyte opens an avenue for wide-temperature electrolyte design, highlighting the significance of dipole-dipole interactions in regulating solvation structures.
Collapse
Affiliation(s)
- Meilong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Luming Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Mengting Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Xiaowei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Wenxi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Ruitao Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Jin Han
- International School of Materials Science and Engineering, School of Materials Science and Microelectronics, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China.
- International School of Materials Science and Engineering, School of Materials Science and Microelectronics, Wuhan University of Technology, Hubei, Wuhan, 430070, P. R. China.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
| |
Collapse
|
4
|
Qiu C, Pan J, Huang W, Yang Z, Shi K, Chen Z, Yang T, Zhang R, Lu Z, Liu Q, Liang Z. Multistage Linkage Internal Exclusion External Electrolyte Tactic Unlocks Extreme Fast Charge Lithium Metal Batteries. NANO LETTERS 2024. [PMID: 39377299 DOI: 10.1021/acs.nanolett.4c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Lithium metal batteries are booming because of their inherent preponderance, but a negative electric field from concentration dipolarization and slow solid-phase transfer at the electrode interface become blocking modules for extreme fast charging. Achieving an anion-rich solvation shell with a high dielectric constant (ε) is a feasible strategy to bootstrap an interface microenvironment for mass-transport reaction, but it is still an uncultivated field. Herein, the superposition, including the donor number values, the high ε, and the spatial potential resistance, are complementarily considered; we propose a low-cost electrolyte with an internal excluding external tactic to answer the above issue. Explanatorily, an optimized solvation shell follows the cascading exclusion relationship of nitrate ion (NO3-) → tetraglyme → ethylene carbonate → dimethyl carbonate. And the culminated bilayer structure establishes ideal conditions for Li+ transfer-reaction kinetics, of which an anion-rich internal shell facilitates solid-phase transport and a high-ε external shell slashes the negative electric field.
Collapse
Affiliation(s)
- Chao Qiu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center (Rongjiang Laboratory), Jieyang 515200, China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiajie Pan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenzhi Huang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zihao Yang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kaixiang Shi
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center (Rongjiang Laboratory), Jieyang 515200, China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikang Chen
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tianxiang Yang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Zhang
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quanbing Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center (Rongjiang Laboratory), Jieyang 515200, China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Jiang Y, Liu W, Wang T, Wu Y, Mei T, Wang L, Xu G, Wang Y, Liu N, Xiao K. A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron Coulomb drag. Nat Commun 2024; 15:8582. [PMID: 39362886 PMCID: PMC11449912 DOI: 10.1038/s41467-024-52892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm-2 is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications.
Collapse
Affiliation(s)
- Yisha Jiang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, P.R. China
| | - Wenchao Liu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Tao Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China.
| | - Yitian Wu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Tingting Mei
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Li Wang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Guoheng Xu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, P.R. China.
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, P.R. China.
| | - Kai Xiao
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China.
| |
Collapse
|
6
|
Ge B, Deng J, Wang Z, Liang Q, Hu L, Ren X, Li R, Lin Y, Li Y, Wang Q, Han B, Deng Y, Fan X, Li B, Chen G, Yu X. Aggregate-Dominated Dilute Electrolytes with Low-Temperature-Resistant Ion-Conducting Channels for Highly Reversible Na Plating/Stripping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408161. [PMID: 39136199 DOI: 10.1002/adma.202408161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Indexed: 10/11/2024]
Abstract
Developing rechargeable batteries with high power delivery at low temperatures (LT) below 0 °C is significant for cold-climate applications. Initial anode-free sodium metal batteries (AFSMBs) promise high LT performances because of the low de-solvation energy and smaller Stokes radius of Na+, nondiffusion-limited plating/stripping electrochemistry, and maximized energy density. However, the severe reduction in electrolyte ionic conductivity and formation of unstable solid electrolyte interphase (SEI) hinder their practical applications at LT. In this study, a 2-methyltetrahydrofuran-based dilute electrolyte is designed to concurrently achieve an anion-coordinated solvation structure and impressive ionic conductivity of 3.58 mS cm-1 at -40 °C. The dominant aggregate solvates enable the formation of highly efficient and LT-resistant Na+ hopping channels in the electrolyte. Moreover, the methyl-regulated electronic structure in 2-methyltetrahydrofuran induces gradient decomposition toward an inorganic-organic bilayer SEI with high Na+ mobility, composition homogeneity, and mechanical robustness. As such, a record-high Coulombic efficiency beyond 99.9% is achieved even at -40 °C. The as-constructed AFSMBs sustain 300 cycles with 80% capacity maintained, and a 0.5-Ah level pouch cell delivers 85% capacity over 180 cycles at -25 °C. This study affords new insights into electrolyte formulation for fast ionic conduction and superior Na reversibility at ultralow temperatures.
Collapse
Affiliation(s)
- Bingcheng Ge
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiaojiao Deng
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijie Wang
- Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Qinghua Liang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Liang Hu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiuyun Ren
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Runmin Li
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yunsong Li
- Zhejiang Laboratory, Hangzhou, 311100, China
| | - Qingrong Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
7
|
Fang R, Li YX, Wang WW, Gu Y, Mao BW. Kinetic understanding of lithium metal electrodeposition for lithium anodes. Phys Chem Chem Phys 2024; 26:23544-23560. [PMID: 39129412 DOI: 10.1039/d4cp01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Lithium, a representative alkali metal, holds the coveted status of the "holy grail" in the realm of next-generation rechargeable batteries, owing to its remarkable theoretical specific capacity and low electrode potential. However, the inherent reactivity of Li metal inevitably results in the formation of the solid-electrolyte interphase (SEI) on its surface, adding complexity to the Li electrodeposition process compared to conventional metal electrodeposition. Attaining uniform Li deposition is crucial for ensuring stable, long-cycle performance and high Coulombic efficiency in Li metal batteries, which requires a comprehensive understanding of the underlying factors governing the electrodeposition process. This review delves into the intricate kinetics of Li electrodeposition, elucidating the multifaceted factors that influence charge and mass transfer kinetics. The intrinsic relationship between charge transfer kinetics and Li deposition is scrutinized, exploring how parameters such as current density and electrode potential impact Li nucleation and growth, as well as dendrite formation. Additionally, the applicability of classical mass-transfer-controlled electrodeposition models to Li anode systems is evaluated, considering the influence of ionic concentration and solvation structure on Li+ transport, SEI formation, and subsequent deposition kinetics. The pivotal role of SEI compositional structure and physicochemical properties in governing charge and mass transfer processes is underscored, with an emphasis on strategies for regulating Li deposition kinetics from both electrolyte and SEI perspectives. Finally, future directions in Li electrodeposition research are outlined, emphasizing the importance of ongoing exploration from a kinetic standpoint to fully unlock the potential of Li metal batteries.
Collapse
Affiliation(s)
- Rong Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu-Xi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
8
|
Li M, Liu Y, Yang X, Zhang Q, Cheng Y, Deng L, Zhou Q, Cheng T, Gu MD. Acetonitrile-Based Local High-Concentration Electrolytes for Advanced Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404271. [PMID: 39072813 DOI: 10.1002/adma.202404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Acetonitrile (AN) is a compelling electrolyte solvent for high-voltage and fast-charging batteries, but its reductive instability makes it incompatible with lithium metal anodes (LMAs). Herein, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is used as the diluent to build an AN-based local high-concentration electrolyte (LHCE) to realize dense, dendrite-free, and stable LMAs. Such LHCE exhibits an exceptional electrochemical stability window close to 6 V (vs Li+/Li), excellent wettability, and promising flame retardancy. Compared to a baseline carbonate-based electrolyte, its electrochemical performance is prominent: the overpotential of lithium nucleation is minimal (only 24 mV), the average half-cell coulombic efficiency (CE) reaches 99.5% at 0.5 mA cm-2, and its practicality in full cells with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes is also demonstrated. Compounding factors are identified to decipher the superiority of the AN-based LHCE. From the respect of solvation structures, both the elimination of free AN molecule and the diluent separation would contribute to prevention of anodic AN decomposition. Based on cryogenic electron microscopy (Cryo-EM) characterization and theoretical simulations results, the produced solid-electrolyte interphase (SEI) layer is uniform and compact. Thus, this work demonstrates a successful application of AN-based electrolytes in LMAs-traditionally deemed impractical-via the combined regulation of solvation and SEI structures.
Collapse
Affiliation(s)
- Menghao Li
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Xuming Yang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yifeng Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiwei Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China
| |
Collapse
|
9
|
Zhang BH, Chen PP, Hou YL, Chen JZ, Wang HY, Wen WX, Li ZA, Lei JT, Zhao DL. Localized High-Concentration Sulfone Electrolytes with High-Voltage Stability and Flame Retardancy for Ni-Rich Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402123. [PMID: 38804876 DOI: 10.1002/smll.202402123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The localized high-concentration electrolyte (LHCE) propels the advanced high-voltage battery system. Sulfone-based LHCE is a transformative direction compatible with high energy density and high safety. In this work, the application of lithium bis(trifluoromethanesulphonyl)imide and lithium bis(fluorosulfonyl)imide (LiFSI) in the LHCE system constructed from sulfolane and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is investigated. The addition of diluent causes an increase of contact ion pairs and ionic aggregates in the solvation cluster and an acceptable quantity of free solvent molecules. A small amount of LiFSI as an additive can synergistically decompose with TTE on the cathode and participate in the construction of both electrode interfaces. The designed electrolyte helps the Ni-rich system to cycle firmly at a high voltage of 4.5 V. Even with high mass load and lean electrolyte, it can keep a reversible specific capacity of 91.5% after 50 cycles. The constructed sulfone-based electrolyte system exhibits excellent thermal stability far beyond the commercial electrolytes. Further exploration of in-situ gelation has led to a quick conversion of the designed liquid electrolyte to the gel state, accompanied by preserved stability, which provides a direction for the synergistic development of LHCE with gel electrolytes.
Collapse
Affiliation(s)
- Bo-Han Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Pei-Pei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Yun-Lei Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Jing-Zhou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Hua-Ying Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Wan-Xin Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Zi-Ang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Jia-Ting Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| | - Dong-Lin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Zhu X, Chen J, Liu G, Mo Y, Xie Y, Zhou K, Wang Y, Dong X. Non-Fluorinated Cyclic Ether-Based Electrolyte with Quasi-Conjugate Effect for High-Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2024:e202412859. [PMID: 39206507 DOI: 10.1002/anie.202412859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fluorinated ether-based electrolytes are commonly employed in lithium metal batteries (LMBs) to attenuate the coordination ability of ether solvents with Li+ and induce inorganic-rich interphase, whereas fluorination inevitably introduces exorbitant production expenses and environmental anxieties. Herein, a non-fluorinated molecular design strategy has been conceptualized by incorporating methoxy as an electron-donating group to generate a quasi-conjugate effect for tuning the affinity of Li+-solvent, thereby enabling the cyclic ether solvent 2-methoxy-1,3-dioxolane with weak solvation ability and exceptional Li metal-compatibility. Accordingly, the optimized electrolyte exhibits anion-dominant solvation structure for inorganic-rich interphase and fulfills an impressive Li plating/stripping Coulombic efficiency of 99.6 %. As-fabricated Li||LiFePO4 full cells with limited Li (N/P=2.5) showcase a high capacity retention of 83 % after 150 cycles, indicating excellent cycling stability. Moreover, the full LMBs demonstrate exceptional tolerance towards a wide temperature range from -20 °C to 60 °C, displaying a remarkable capacity retention of 90 % after 110 cycles at -20 °C. Such a molecular design strategy offers a promising avenue for electrolyte engineering beyond fluorination in order to cultivate high-performance LMBs.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Gaopan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yanbing Mo
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yihua Xie
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Kang Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
12
|
Du H, Wang Y, Kang Y, Zhao Y, Tian Y, Wang X, Tan Y, Liang Z, Wozny J, Li T, Ren D, Wang L, He X, Xiao P, Mao E, Tavajohi N, Kang F, Li B. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401482. [PMID: 38695389 DOI: 10.1002/adma.202401482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and over-discharge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components.
Collapse
Affiliation(s)
- Hao Du
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yadong Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuqiong Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yao Tian
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xianshu Wang
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yihong Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Dongsheng Ren
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Eryang Mao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
13
|
Miao X, Song C, Hu W, Ren Y, Shen Y, Nan CW. Achieving High-Performance Lithium-Sulfur Batteries by Modulating Li + Desolvation Barrier with Liquid Crystal Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401473. [PMID: 38663859 DOI: 10.1002/adma.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/17/2024] [Indexed: 05/08/2024]
Abstract
Lithium-sulfur (Li-S) batteries offer high theoretical capacity but are hindered by poor rate capability and cycling stability due to sluggish Li2S precipitation kinetics. Here a sulfonate-group-rich liquid crystal polymer (poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide, PBDT) is designed and fabricated to accelerate Li2S precipitation by promoting the desolvation of Li+ from electrolyte. PBDT-modified separators are employed to assemble Li-S batteries, which deliver a remarkable rate capacity (761 mAh g-1 at 4 C) and cycling stability (500 cycles with an average decay rate of 0.088% per cycle at 0.5 C). A PBDT-based pouch cell even delivers an exceptional capacity of ≈1400 mAh g-1 and an areal capacity of ≈11 mAh cm-2 under lean-electrolyte and high-sulfur-loading condition, demonstrating promise for practical applications. Results of Raman spectra, molecular dynamic (MD) and density functional theory (DFT) calculations reveal that the abundant anionic sulfonate groups of PBDT aid in Li+ desolvation by attenuating Li+-solvent interactions and lowering the desolvation energy barrier. Plus, the polysulfide adsorption/catalysis is also excluded via electrostatic repulsion. This work elucidates the critical impact of Li+ desolvation on Li-S batteries and provides a new design direction for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiang Miao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenxi Song
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Hu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaoyu Ren
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhang Y, Cao Y, Zhang B, Gong H, Zhang S, Wang X, Han X, Liu S, Yang M, Yang W, Sun J. Rational Molecular Engineering via Electron Reconfiguration toward Robust Dual-Electrode/Electrolyte Interphases for High-Performance Lithium Metal Batteries. ACS NANO 2024; 18:14764-14778. [PMID: 38776362 DOI: 10.1021/acsnano.4c04517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
High-energy-density lithium-metal batteries (LMBs) coupling lithium-metal anodes and high-voltage cathodes are hindered by unstable electrode/electrolyte interphases (EEIs), which calls for the rational design of efficient additives. Herein, we analyze the effect of electron structure on the coordination ability and energy levels of the additive, from the aspects of intramolecular electron cloud density and electron delocalization, to reveal its mechanism on solvation structure, redox stability, as-formed EEI chemistry, and electrochemical performances. Furthermore, we propose an electron reconfiguration strategy for molecular engineering of additives, by taking sorbide nitrate (SN) additive as an example. The lone pair electron-rich group enables strong interaction with the Li ion to regulate solvation structure, and intramolecular electron delocalization yields further positive synergistic effects. The strong electron-withdrawing nitrate moiety decreases the electron cloud density of the ether-based backbone, improving the overall oxidation stability and cathode compatibility, anchoring it as a reliable cathode/electrolyte interface (CEI) framework for cathode integrity. In turn, the electron-donating bicyclic-ring-ether backbone breaks the inherent resonance structure of nitrate, facilitating its reducibility to form a N-contained and inorganic Li2O-rich solid electrolyte interface (SEI) for uniform Li deposition. Optimized physicochemical properties and interfacial biaffinity enable significantly improved electrochemical performance. High rate (10 C), low temperature (-25 °C), and long-term stability (2700 h) are achieved, and a 4.5 Ah level Li||NCM811 multilayer pouch cell under harsh conditions is realized with high energy density (462 W h/kg). The proof of concept of this work highlights that the rational ingenious molecular design based on electron structure regulation represents an energetic strategy to modulate the electrolyte and interphase stability, providing a realistic reference for electrolyte innovations and practical LMBs.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yu Cao
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Baoshan Zhang
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Haochen Gong
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Shaojie Zhang
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xiaoyi Wang
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xinpeng Han
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Shuo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Sun
- School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Wu X, Piao Z, Zhang M, Lu G, Li C, Jia K, Zhuang Z, Gao R, Zhou G. In Situ Construction of a Multifunctional Interphase Enabling Continuous Capture of Unstable Lattice Oxygen Under Ultrahigh Voltages. J Am Chem Soc 2024; 146:14036-14047. [PMID: 38725301 DOI: 10.1021/jacs.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The use of nickel-rich layered materials as cathodes can boost the energy density of lithium batteries. However, developing a safe and long-term stable nickel-rich layered cathode is challenging primarily due to the release of lattice oxygen from the cathode during cycling, especially at high voltages, which will cause a series of adverse effects, leading to battery failure and thermal runaway. Surface coating is often considered effective in capturing active oxygen species; however, its process is rather complicated, and it is difficult to maintain intact on the cathode with large volume changes during cycling. Here, we propose an in situ construction of a multifunctional cathode/electrolyte interphase (CEI), which is easy to prepare, repairable, and, most importantly, capable of continuously capturing active oxygen species during the entire life span. This unique protective mechanism notably improves the cycling stability of Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cells at rigorous working conditions, including ultrahigh voltage (4.8 V), high temperature (60 °C), and fast charging (10 C). An industrial 1 A h graphite||NCM811 pouch cell achieved stable operation of 600 cycles with a capacity retention of 79.6% at 4.4 V, exhibiting great potential for practical use. This work provides insightful guidance for constructing a multifunctional CEI to bypass limitations associated with high-voltage operations of nickel-rich layered cathodes.
Collapse
Affiliation(s)
- Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Gongxun Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chuang Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Kai Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zhaofeng Zhuang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
16
|
Li H, Kang Y, Wei W, Yan C, Ma X, Chen H, Sang Y, Liu H, Wang S. Branch-Chain-Rich Diisopropyl Ether with Steric Hindrance Facilitates Stable Cycling of Lithium Batteries at - 20 °C. NANO-MICRO LETTERS 2024; 16:197. [PMID: 38753176 PMCID: PMC11098989 DOI: 10.1007/s40820-024-01419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
Li metal batteries (LMBs) offer significant potential as high energy density alternatives; nevertheless, their performance is hindered by the slow desolvation process of electrolytes, particularly at low temperatures (LT), leading to low coulombic efficiency and limited cycle stability. Thus, it is essential to optimize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT. Herein, we introduce branch chain-rich diisopropyl ether (DIPE) into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether (DPE) electrolyte as a co-solvent for high-performance LMBs at - 20 °C. The incorporation of DIPE not only enhances the disorder within the electrolyte, but also induces a steric hindrance effect form DIPE's branch chain, excluding other solvent molecules from Li+ solvation sheath. Both of these factors contribute to the weak interactions between Li+ and solvent molecules, effectively reducing the desolvation energy of the electrolyte. Consequently, Li (50 μm)||LFP (mass loading ~ 10 mg cm-2) cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at - 20 °C, delivering 87.2 mAh g-1, and over 255 cycles at 25 °C with 124.8 mAh g-1. DIPE broadens the electrolyte design from molecular structure considerations, offering a promising avenue for highly stable LMBs at LT.
Collapse
Affiliation(s)
- Houzhen Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Yongchao Kang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Wangran Wei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Chuncheng Yan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Xinrui Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
17
|
Tu H, He Z, Sun A, Mushtaq F, Li L, Wang Z, Kong Y, Huang R, Lin H, Li W, Ye F, Xue P, Liu M. Superior Li + Kinetics by "Low-Activity-Solvent" Engineering for Stable Lithium Metal Batteries. NANO LETTERS 2024; 24:5714-5721. [PMID: 38695488 DOI: 10.1021/acs.nanolett.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The structure of solvated Li+ has a significant influence on the electrolyte/electrode interphase (EEI) components and desolvation energy barrier, which are two key factors in determining the Li+ diffusion kinetics in lithium metal batteries. Herein, the "solvent activity" concept is proposed to quantitatively describe the correlation between the electrolyte elements and the structure of solvated Li+. Through fitting the correlation of the electrode potential and solvent concentration, we suggest a "low-activity-solvent" electrolyte (LASE) system for deriving a stable inorganic-rich EEI. Nano LiF particles, as a model, were used to capture free solvent molecules for the formation of a LASE system. This advanced LASE not only exhibits outstanding antidendrite growth behavior but also delivers an impressive performance in Li/LiNi0.8Co0.1Mn0.1O2 cells (a capacity of 169 mAh g-1 after 250 cycles at 0.5 C).
Collapse
Affiliation(s)
- Haifeng Tu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zhigang He
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Ao Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Farwa Mushtaq
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Linge Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Zhicheng Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yaping Kong
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Rong Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hongzhen Lin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Wanfei Li
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Fangmin Ye
- Center for Optoelectronic Materials and Devices, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Meinan Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangdong Institute of Semiconductor Micro-nano Manufacturing Technology, Foshan 528225, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| |
Collapse
|
18
|
Huang C, Li H, Teng Z, Luo Y, Chen W. MOF-modified dendrite-free gel polymer electrolyte for zinc-ion batteries. RSC Adv 2024; 14:15337-15346. [PMID: 38741973 PMCID: PMC11089459 DOI: 10.1039/d4ra02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Zinc-ion batteries are promising candidates for large-scale energy storage, and gel polymer electrolytes (GPEs) play an important role in zinc-ion battery applications. Metal-organic frameworks (MOFs) are characterized by large specific surface areas and ordered pores. This highly ordered microporous structure provides a continuous transport channel for ions, thus realizing the high-speed transmission of ions. In this paper, an MOF-modified dendrite-free GPE was designed. The incorporation of MOF particles not only reduces the crystallinity of the polymer, increases the motility of the molecular chains, and facilitates the transfer of Zn2+, but also attracts anions to reduce polarization during electrochemical reactions. It was shown that this MOF-modified gel polymer electrolyte has a higher ionic conductivity compared to other PVDF-based polymer electrolytes (approximate range of 2 × 10-4 to 3 × 10-3 S cm-1), with a very high conductivity (1.63 mS cm-1) even at -20 °C. The Zn/Zn symmetric cell could maintain operation for more than 3600 h at a current density of 1 mA cm-2, and SEM showed that the MOF-modified gel electrolyte had uniform Zn2+ deposition.
Collapse
Affiliation(s)
- Changmiao Huang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Hui Li
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zixuan Teng
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yushu Luo
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Wanyu Chen
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
19
|
Lu J, Xu C, Dose W, Dey S, Wang X, Wu Y, Li D, Ci L. Microstructures of layered Ni-rich cathodes for lithium-ion batteries. Chem Soc Rev 2024; 53:4707-4740. [PMID: 38536022 DOI: 10.1039/d3cs00741c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.
Collapse
Affiliation(s)
- Jingyu Lu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Chao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wesley Dose
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Sunita Dey
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Xihao Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yehui Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
20
|
Wu Z, Li Y, Amardeep A, Shao Y, Zhang Y, Zou J, Wang L, Xu J, Kasprzak D, Hansen EJ, Liu J. Unveiling the Mysteries: Acetonitrile's Dance with Weakly-Solvating Electrolytes in Shaping Gas Evolution and Electrochemical Performance of Zinc-ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202402206. [PMID: 38457347 DOI: 10.1002/anie.202402206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Aqueous Zn-metal battery (AZMB) is a promising candidate for future large-scale energy storage with commendable capacity, exceptional safety characteristics, and low cost. Acetonitrile (AN) has been widely used as an effective electrolyte constituent to improve AZMBs' performance. However, its functioning mechanisms remain unclear. In this study, we unveiled the critical roles of AN in AZMBs via comparative in situ electrochemical, gaseous, and morphological analyses. Despite its limited ability to solvate Zn ions, AN-modulated Zn-ion solvation sheath with increased anions and decreased water achieves a weakly-solvating electrolyte. As a result, the Zn||Zn cell with AN addition exhibited 63 times longer cycle life than cell without AN and achieved a 4 Ah cm-2 accumulated capacity with no H2 generation. In V2O5||Zn cells, for the first time, AN suppressing CO2 generation, elevating CO2-initiation voltage from 2→2.44 V (H2: 2.43→2.55 V) was discovered. AN-impeded transit and Zn-side deposition of dissolved vanadium ions, known as "crosstalk," ameliorated inhomogeneous Zn deposition and dendritic Zn growth. At last, we demonstrated an AN-enabled high-areal-capacity AZMB (3.3 mAh cm-2) using high-mass-loading V2O5 cathode (26 mg cm-2). This study shed light on the strategy of constructing fast-desolvation electrolytes and offered insights for future electrolyte accommodation for high-voltage AZMB cathodes.
Collapse
Affiliation(s)
- Zhenrui Wu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| | - Yihu Li
- Department of Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden
| | - Amardeep Amardeep
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| | - Yijia Shao
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| | - Jian Zou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liping Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jia Xu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| | - Dawid Kasprzak
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4 St., 60-965, Poznan, Poland
| | - Evan J Hansen
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, V1 V 1 V7, Canada
| |
Collapse
|
21
|
Zhang X, Cui X, Li Y, Yang J, Pan Q. A Star-Structured Polymer Electrolyte for Low-Temperature Solid-State Lithium Batteries. SMALL METHODS 2024:e2400356. [PMID: 38682271 DOI: 10.1002/smtd.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Solid-state polymer lithium metal batteries (SSLMBs) have attracted considerable attention because of their excellent safety and high energy density. However, the application of SSLMBs is significantly impeded by uneven Li deposition at the interface between solid-state electrolytes and lithium metal anode, especially at a low temperature. Herein, this issue is addressed by designing an agarose-based solid polymer electrolyte containing branched structure. The star-structured polymer is synthesized by grafting poly (ethylene glycol) monomethyl-ether methacrylate and lithium 2-acrylamido-2-methylpropanesulfonate onto tannic acid. The star structure regulates Li-ion flux in the bulk of the electrolyte and at the electrolyte/electrode interfaces. This unique omnidirectional Li-ion transportation effectively improves ionic conductivity, facilitates a uniform Li-ion flux, inhibits Li dendrite growth, and alleviates polarization. As a result, a solid-state LiFePO4||Li battery with the electrolyte exhibits outstanding cyclability with a specific capacity of 134 mAh g-1 at 0.5C after 800 cycles. The battery shows a high discharge capacity of 145 mAh g-1 at 0.1 C after 200 cycles, even at 0 °C. The study offers a promising strategy to address the uneven Li deposition at the solid-state electrolyte/electrode interface, which has potential applications in long-life solid-state lithium metal batteries at a low temperature.
Collapse
Affiliation(s)
- Xingzhao Zhang
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ximing Cui
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuxuan Li
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jing Yang
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qinmin Pan
- State Key Laboratory of Space Power-Source, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
22
|
Yang W, Liu Y, Sun X, He Z, He P, Zhou H. Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202401428. [PMID: 38470429 DOI: 10.1002/anie.202401428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Poly(vinylidene fluoride) (PVDF)-based polymer electro-lytes are attracting increasing attention for high-voltage solid-state lithium metal batteries because of their high room temperature ionic conductivity, adequate mechanical strength and good thermal stability. However, the presence of highly reactive residual solvents, such as N, N-dimethylformamide (DMF), severely jeopardizes the long-term cycling stability. Herein, we propose a solvation-tailoring strategy to confine residual solvent molecules by introducing low-cost 3 Å zeolite molecular sieves as fillers. The strong interaction between DMF and the molecular sieve weakens the ability of DMF to participate in the solvation of Li+, leading to more anions being involved in solvation. Benefiting from the tailored anion-rich coordination environment, the interfacial side reactions with the lithium anode and high-voltage NCM811 cathode are effectively suppressed. As a result, the solid-state Li||Li symmetrical cells demonstrates ultra-stable cycling over 5100 h at 0.1 mA cm-2, and the Li||NCM811 full cells achieve excellent cycling stability for more than 1130 and 250 cycles under the charging cut-off voltages of 4.3 V and 4.5 V, respectively. Our work is an innovative exploration to address the negative effects of residual DMF in PVDF-based solid-state electrolytes and highlights the importance of modulating the solvation structures in solid-state polymer electrolytes.
Collapse
Affiliation(s)
- Wujie Yang
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yiwen Liu
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xinyi Sun
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhiying He
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ping He
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoshen Zhou
- Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
23
|
Yue L, Yu M, Li X, Shen Y, Wu Y, Fa C, Li N, Xu J. Wide Temperature Electrolytes for Lithium Batteries: Solvation Chemistry and Interfacial Reactions. SMALL METHODS 2024:e2400183. [PMID: 38647122 DOI: 10.1002/smtd.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Improving the wide-temperature operation of rechargeable batteries is crucial for boosting the adoption of electric vehicles and further advancing their application scope in harsh environments like deep ocean and space probes. Herein, recent advances in electrolyte solvation chemistry are critically summarized, aiming to address the long-standing challenge of notable energy diminution at sub-zero temperatures and rapid capacity degradation at elevated temperatures (>45°C). This review provides an in-depth analysis of the fundamental mechanisms governing the Li-ion transport process, illustrating how these insights have been effectively harnessed to synergize with high-capacity, high-rate electrodes. Another critical part highlights the interplay between solvation chemistry and interfacial reactions, as well as the stability of the resultant interphases, particularly in batteries employing ultrahigh-nickel layered oxides as cathodes and high-capacity Li/Si materials as anodes. The detailed examination reveals how these factors are pivotal in mitigating the rapid capacity fade, thereby ensuring a long cycle life, superior rate capability, and consistent high-/low-temperature performance. In the latter part, a comprehensive summary of in situ/operational analysis is presented. This holistic approach, encompassing innovative electrolyte design, interphase regulation, and advanced characterization, offers a comprehensive roadmap for advancing battery technology in extreme environmental conditions.
Collapse
Affiliation(s)
- Liguo Yue
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Manqing Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiangrong Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yinlin Shen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yingru Wu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chang Fa
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Nan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jijian Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
24
|
Senadheera D, Carrillo-Bohorquez O, Nachaki EO, Jorn R, Kuroda DG, Kumar R. Probing the Electrode-Electrolyte Interface of Sodium/Glyme-Based Battery Electrolytes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5798-5808. [PMID: 38629115 PMCID: PMC11017320 DOI: 10.1021/acs.jpcc.3c08083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Sodium-ion batteries (NIBs) are promising systems for large-scale energy storage solutions; yet, further enhancements are required for their commercial viability. Improving the electrochemical performance of NIBs goes beyond the chemical description of the electrolyte and electrode materials as it requires a comprehensive understanding of the underlying mechanisms that govern the interface between electrodes and electrolytes. In particular, the decomposition reactions occurring at these interfaces lead to the formation of surface films. Previous work has revealed that the solvation structure of cations in the electrolyte has a significant influence on the formation and properties of these surface films. Here, an experimentally validated molecular dynamics study is performed on a 1 M NaTFSI salt in glymes of different lengths placed between two graphite electrodes having a constant bias potential. The focus of this study is on describing the solvation environment around the sodium ions at the electrode-electrolyte interface as a function of glyme chain length and applied potential. The results of the study show that the diglyme/TFSI system presents features at the interface that significantly differ from those of the triglyme/TFSI and tetraglyme/TFSI systems. These computational predictions are successfully corroborated by the experimentally measured capacitance of these systems. In addition, the dominant solvation structures at the interface explain the electrochemical stability of the system as they are consistent with cyclic voltammetry characterization.
Collapse
Affiliation(s)
| | - Orlando Carrillo-Bohorquez
- Department
of Chemistry, 232 Choppin Hall, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ernest O. Nachaki
- Department
of Chemistry, 232 Choppin Hall, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ryan Jorn
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Daniel G. Kuroda
- Department
of Chemistry, 232 Choppin Hall, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Revati Kumar
- Department
of Chemistry, 232 Choppin Hall, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
25
|
Lan S, Yu C, Yu J, Zhang X, Liu Y, Xie Y, Wang J, Qiu J. Recent Advances in Low‐Temperature Liquid Electrolyte for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2309286. [PMID: 38453682 DOI: 10.1002/smll.202309286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Indexed: 03/09/2024]
Abstract
As one of the key components of supercapacitors, electrolyte is intensively investigated to promote the fast development of the energy supply system under extremely cold conditions. However, high freezing point and sluggish ion transport kinetics for routine electrolytes hinder the application of supercapacitors at low temperatures. Resultantly, the liquid electrolyte should be oriented to reduce the freezing point, accompanied by other superior characteristics, such as large ionic conductivity, low viscosity and outstanding chemical stability. In this review, the intrinsically physical parameters and microscopic structure of low-temperature electrolytes are discussed thoroughly, then the previously reported strategies that are used to address the associated issues are summarized subsequently from the aspects of aqueous and non-aqueous electrolytes (organic electrolyte and ionic liquid electrolyte). In addition, some advanced spectroscopy techniques and theoretical simulation to better decouple the solvation structure of electrolytes and reveal the link between the key physical parameters and microscopic structure are briefly presented. Finally, the further improvement direction is put forward to provide a reference and guidance for the follow-up research.
Collapse
Affiliation(s)
- Shuqin Lan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jinhe Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiubo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingbin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuanyang Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianjian Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
26
|
Hu X, Wang Y, Qiu Y, Yu X, Shi Q, Liu Y, Feng W, Zhao Y. Non-aqueous Liquid Electrolyte Additives for Sodium-Ion Batteries. Chem Asian J 2024; 19:e202300960. [PMID: 38143238 DOI: 10.1002/asia.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/26/2023]
Abstract
Sodium-ion batteries (SIBs) have been recognized as one of the most promising new energy storage devices for their rich sodium resources, low cost and high safety. The electrolyte, as a bridge connecting the cathode and anode electrodes, plays a vital role in determining the performance of SIBs, such as coulombic efficiency, energy density and cycle life. Therefore, the overall performance of SIBs could be significantly improved by adjusting the electrolyte composition or adding a small number of functional additives. In this review, the fundamentals of SIB electrolytes including electrode-electrolyte interface and solvation structure are introduced. Then, the mechanisms of electrolyte additive action on SIBs are discussed, with a focus on film-forming additives, flame-retardant additives and overcharge protection additives. Finally, the future research of electrolytes is prospected from the perspective of scientific concepts and practical applications.
Collapse
Affiliation(s)
- Xinhong Hu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yirong Wang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yi Qiu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuan Yu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qinhao Shi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yiming Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wuliang Feng
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yufeng Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
27
|
González-Jiménez M, Liao Z, Williams EL, Wynne K. Lifting Hofmeister's Curse: Impact of Cations on Diffusion, Hydrogen Bonding, and Clustering of Water. J Am Chem Soc 2024; 146:368-376. [PMID: 38124370 PMCID: PMC10786029 DOI: 10.1021/jacs.3c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Water plays a role in the stability, reactivity, and dynamics of the solutes that it contains. The presence of ions alters this capacity by changing the dynamics and structure of water. However, our understanding of how and to what extent this occurs is still incomplete. Here, a study of the low-frequency Raman spectra of aqueous solutions of various cations by using optical Kerr-effect spectroscopy is presented. This technique allows for the measurement of the changes that ions cause in both the diffusive dynamics and the vibrations of the hydrogen-bond structure of water. It is found that when salts are added, some of the water molecules become part of the ion solvation layers, while the rest retain the same diffusional properties as those of pure water. The slowing of the dynamics of the water molecules in the solvation shell of each ion was found to depend on its charge density at infinite dilution conditions and on its position in the Hofmeister series at higher concentrations. It is also observed that all cations weaken the hydrogen-bond structure of the solution and that this weakening depends only on the size of the cation. Finally, evidence is found that ions tend to form amorphous aggregates, even at very dilute concentrations. This work provides a novel approach to water dynamics that can be used to better study the mechanisms of solute nucleation and crystallization, the structural stability of biomolecules, and the dynamic properties of complex solutions, such as water-in-salt electrolytes.
Collapse
Affiliation(s)
| | - Zhiyu Liao
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|