1
|
Vardanyan A, Polkaehn J, Bauder ML, Villinger A, Ehlers P, Langer P. Synthesis and properties of thienonaphtho[ bc]pyridines and thienonaphtho[ bc]quinolines. Org Biomol Chem 2024; 22:8631-8648. [PMID: 39373080 DOI: 10.1039/d4ob01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incorporation of heteroatoms within polycyclic aromatic compounds has gained significant interest due to its potential to effectively alter the inherent physicochemical properties of compounds without the need for profound structural changes. We herein report the development of a modular synthesis of hitherto unknown thienonaphtho[bc]pyridines and thienonaphtho[bc]quinolines in very good yields by Brønsted acid mediated cycloisomerization, permitting selective access to two isomeric products that are isoelectronic to the parent dibenzopyrene. The photophysical and electrochemical properties of the desired compounds were extensively studied and further complemented by DFT calculations.
Collapse
Affiliation(s)
- Arpine Vardanyan
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Jonas Polkaehn
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Marie-Louis Bauder
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Peter Langer
- Universität Rostock, Institut für Chemie, A.-Einstein-Str. 3a, 18059 Rostock, Germany.
| |
Collapse
|
2
|
Liang Y, Liu X, Hu X, Li X, Liu N, Xiao Y. Terminal halogen-containing rod-like liquid crystals: Synthesis, self-assembly, photophysical and mechanochromism properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124676. [PMID: 38909400 DOI: 10.1016/j.saa.2024.124676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Five series of cyanostilbene-based rod-like liquid crystals containing one different terminal atom (H, F, Cl, Br and I) at one end and one terminal aliphatic chain with different numbers of carbon atoms at the other end were reported by Suzuki coupling and Knoevenagel reactions. The influence of terminal halogen atoms and terminal chain length on the self-assembly, AIE behavior, temperature-dependent emission and mechanochromism behavior was explored by POM, DSC, XRD, SEM, absorption spectra and emission spectra. All the compounds are enantiotropic liquid crystals. The lowest non-halogen substituted homologue exhibited solo N phase, but the higher non-halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature. All the lowest halogen substituted homologues exhibited mesogenic transition from SmA phase to N phase upon rising temperature and all the higher homologues only exhibited SmA. The distinct mesogenic phase transition could be attributed to the intermolecular interaction produced by terminal halogen and the rigidity of the terminal aliphatic chain. All the non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom) exhibited AIE behaviors, whereas the iodinated compounds exhibited extremely weak emission in solution and aggregated states due to the heavy atoms effect. These compounds also exhibited distinct solid-state emission with blue or cyan fluorescence, which could be quenched by increasing temperature. The reversible mechanochromism behavior was also achieved in all the compounds. The mechanical force induced quench in emission in non-halogen substituted compounds and halogen substituted compounds with smaller terminal halogen atom (F, Cl and Br atom), whereas enhancement in iodinated compounds. The reversible mechanochromism behavior endowed these compounds with potential applications in rewritable paper and anti-counterfeiting. The interesting properties in these liquid crystals would be attributed to the balance of the halogen-halogen interactions, heavy atom effect, steric-hindrance effect and chain length. These investigations would be helpful to understand the relationship between chemical structures and properties.
Collapse
Affiliation(s)
- Yurun Liang
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiaotong Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xiuning Hu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Xuehong Li
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Nana Liu
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China
| | - Yulong Xiao
- Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, PR China.
| |
Collapse
|
3
|
Sanfui MH, Hassan N, Roy S, Chowdhury D, Nandy P, Chang M, Rahaman M, Ghosh NN, Majumdar S, Chattopadhyay PK, Maiti DK, Singha NR. Uncovering Integrated Dual-State ESIPT-Conductivity, Redox-Capacity, and Opto-Electronic Responses Toward Hg(II)/ Cr(III) of Aliphatic Fluorescent Polymers. Macromol Rapid Commun 2024:e2400677. [PMID: 39461889 DOI: 10.1002/marc.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-associated dual-state emissive aliphatic dual-light emitting conducting polymers (DLECPs) having oxidation-reduction capacities are prepared polymerizing 2-acrylamido-2-methylpropane-1-sulfonic acid, methacrylic acid, and 2-methyl-3-(N-(2-methyl-1-sulfopropan-2-yl)acrylamido)propanoic acid monomers. Of as-synthesized DLECPs, nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies, fluorescent enhancements (I/I0), and computational investigation indicate intriguing photophysical features in DLECP3 (optimum composition). In DLECP3, ─CONH─, ─CON<, and ─COOH subluminophores are recognized by density-functional theory (DFT)/time-dependent-DFT calculations and experimental investigations. ESIPT-associated dual-state emission/conductivity, aggregation-enhanced emissions, selective opto-electronic responses toward Hg(II)/Cr(III) at 437/574 nm, and redox properties of DLECP3 are supported by solid-state/solution spectroscopies, time-correlated single photon counting (TCSPC) measurements, dual-state excitation dependent emissions, microscopic images, electrochemical measurements, and DFT calculations. Here, preferential interaction of Hg(II)/Cr(III) with DLECP3 (amide)/DLECP3 (imidol) and reduction/oxidation of Hg(II)/Cr(III) to Hg(I)/Cr(VI) are substantiated by UV-vis, FTIR, and X-ray photoelectron spectroscopies; TCSPC measurements; NMR-titration; electrochemical studies; alongside computational calculations. The proton-electrical conductivities of DLECP3, Hg(II/I)-DLECP3, and Cr(III/VI)-DLECP3 in solids/solutions are 15.27 × 10-5/6.16 × 10-5, 19.60 × 10-5/25.52 × 10-5, and 26.69 × 10-5/27.60 × 10-5 S cm-1, respectively.
Collapse
Affiliation(s)
- Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Preetam Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, South Korea, 61186
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| |
Collapse
|
4
|
Li H, Zhang S, Zhu QL, Sheng TL, Wu XT, Wen Y. Fluorescent Dye-Based Chiral Crystalline Organic Salt Networks for Circularly Polarized Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408874. [PMID: 39449222 DOI: 10.1002/smll.202408874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 10/26/2024]
Abstract
A facile and general strategy is developed herein for the construction of circularly polarized luminescence (CPL) materials with simultaneously high fluorescence quantum efficiency (Φ) and large luminescence dissymmetry factor (glum). The self-assembly of fluorescent dye, disodium 4,4'-bis(2-sulfonatostyryl)biphenyl (CBS), with chiral diamines such as (R,R)/(S,S)-1,2-diaminocyclohexane (R/S-DACH) and R/S-1,2-diaminopropane (R/S-DAP), produces four chiral crystalline organic salt networks (COSNs). These as-synthesized organic salts emit strong blue-color CPL upon excitation, with both high Φ and glum values of up to 79% and 0.022. The well-defined molecular structures and arrangements of CBS are directly observed through single crystal X-ray analysis, offering crucial information regarding the origins of high-efficiency CPL performance. The chirality of amine is effectively transferred to CBS and further amplified to the supramolecular structure by multiple hydrogen bonding and π-π stacking interactions, giving rise to the large glum factors; meanwhile, the fixation and the ordered arrangement of CBS by these multiple interactions empower efficient suppression of molecular motions, facilitating strong fluorescence. This work can inspire the assembly of CPL organic materials with high Φ and glum via charge-assisted hydrogen bonds between fluorescent dyes and chiral inducers. It also offers important insight into the structural origins of supramolecular chirality and CPL performance.
Collapse
Affiliation(s)
- Haitao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhai XJ, Luo MY, Luo XM, Dong XY, Si Y, Zhang C, Han Z, Han R, Zang SQ, Mak TCW. Hierarchical assembly of Ag 40 nanowheel ranging from building blocks to diverse superstructure regulation. Nat Commun 2024; 15:9155. [PMID: 39443465 PMCID: PMC11500184 DOI: 10.1038/s41467-024-53471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Achieving precise and controllable hierarchical self-assembly of functional nanoclusters within crystal lattices to create distinct architectures is of immense significance, yet it creates considerable challenges. Here we successfully synthesized a silver nanowheel Ag40, along with its optically pure enantiomers S-/R-Ag40. Each species possesses an internal nanospace and exhibits host-guest interactions. These structures are constructed from primary building blocks (Ag9). By manipulating the surface anions and guest molecules, the nanowheels function as secondary building blocks, spontaneously organizing into complex double- and triple-helical crystalline superstructures or one-dimensional chains {Ag41}n through conformational matching and diverse noncovalent interactions. Moreover, we demonstrate that the water-mediated complex specifically assembled with uridine monophosphate nucleotides, resulting in chiral assemblies of Ag40 that exhibit chiroptical activity for specific recognition. Our findings provide insights into the efficient construction of assemblies with hollow frameworks and propose strategies for superstructure engineering by manipulating surface motifs.
Collapse
Affiliation(s)
- Xue-Jing Zhai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yu Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Runping Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| |
Collapse
|
6
|
Alomar SA, Wang JX, Gutiérrez-Arzaluz L, Thomas S, Alshareef HN, Bakr OM, Eddaoudi M, Mohammed OF. Enhancing the Sensitivity and Spatial Imaging Resolution of a Hybrid X-Ray Imaging Screen via Energy Transfer at the ZnS (Ag) and a Thermally Activated Delayed Fluorescence Interface. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39423296 DOI: 10.1021/acsami.4c11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor. The TADF component, on the contrary, is an energy acceptor and forms an active scintillating layer. By harnessing TADF chromophores that can efficiently capture both singlet and triplet excitons, our composite material offers a remarkable spatial imaging resolution of 24 line pairs per millimeter, surpassing those of the majority of existing organic and inorganic scintillators. Further, our interfacial energy transfer strategy effectively amplifies the radioluminescence intensity of the TADF scintillator by a factor of 75, offering an outstanding light yield of 38,000 photons/MeV. This advancement represents a remarkable breakthrough in organic X-ray scintillation technology and is a notable achievement within the X-ray imaging field, paving the way for novel applications in medical imaging and security inspection.
Collapse
Affiliation(s)
- Shorooq A Alomar
- Advanced Membranes and Porous Materials Center and KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jian-Xin Wang
- Advanced Membranes and Porous Materials Center and KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center and KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center and KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Materials Science and Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center and KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Czernek J, Brus J. On the Potential Energy Surface of the Pyrene Dimer. Int J Mol Sci 2024; 25:10762. [PMID: 39409090 PMCID: PMC11476719 DOI: 10.3390/ijms251910762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Knowledge of reliable geometries and associated intermolecular interaction energy (ΔE) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the ΔE at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD. For geometries with the distance between stacked monomers close to a value of such a distance in the ΔE minimum structure, an excellent agreement between the canonical CCSD(T)/CBS results and their DLPNO counterparts was found. This finding enabled us to accurately characterize the lowest-lying configurations of the PYD, and the physical origin of their stabilization was thoroughly analyzed. The proposed DLPNO-CCSD(T)/CBS procedure should be applied with the aim of safely locating a global minimum of the PES and firmly establishing the pertaining ΔE of even larger dimers in studies of packing motifs of organic electronic devices and other novel materials.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic;
| | | |
Collapse
|
8
|
Jia D, Luo Q, Liu S, Hou C, Liu J. An Artificial Light-Harvesting System based on Supramolecular AIEgen Assembly. Chemistry 2024; 30:e202402438. [PMID: 39022852 DOI: 10.1002/chem.202402438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Photosynthesis is a complex multi-step process in which light collection is the initial step of photosynthesis and plays an important role in the utilization of solar energy. In order to improve the utilization of sunlight, researchers have developed a variety of artificial light-harvesting systems to simulate photosynthesis in nature. Here, we report a supramolecular artificial light-harvesting system in aqueous solution. Since β-cyclodextrin (β-CD) has a hydrophobic cavity and a hydrophilic outer surface, we adopt β-cyclodextrin (β-CD) as the host molecule and use adamantane as the guest molecule. At the same time, we modified β-CD with the donor molecule naphthalimide and adamantane with the tetraphenylethylene molecule which has aggregation-induced emission (AIE) effects. By using fluorescent molecules with AIE, the self-quenching effect caused by aggregation in aqueous solution can be effectively avoided. Due to the host-guest interaction of β-CD and adamantane, nanoparticles with stable structure and uniform size can be spontaneously assembled in water. Because of the close distance and strong spectral overlap between naphthalimide and tetraphenylethylene, Förster resonance energy transfer (FRET) was realized, and artificial light-harvesting system was successfully constructed in aqueous solution. Therefore, this study provides a new strategy for constructing artificial light-harvesting system, and the artificial light-harvesting system shows broad application prospects in aqueous solutions.
Collapse
Affiliation(s)
- Dan Jia
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Quan Luo
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shicong Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
9
|
Huang J, Ma Y, Jiang X, Xian J, Fu Z, Ouyang H. Robust Luminescent Pyrene-Based Metal-Organic Framework Hydrogel as a pH-Responsive Fluorescence Emitter for Sensitive Immunoassay of Cardiac Troponin I. Anal Chem 2024; 96:15042-15049. [PMID: 39219053 DOI: 10.1021/acs.analchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Collapse
Affiliation(s)
- Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Kaur B, Gourkhede R, Balakrishna MS. Luminescence Behavior of Cationic and Neutral Cu I Complexes of Phosphine and Pyridine Embedded 1,2,3-Triazole. Inorg Chem 2024; 63:16981-16990. [PMID: 39236159 DOI: 10.1021/acs.inorgchem.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Synthesis of a potentially polydentate, phosphine and pyridine embedded 1,2,3-triazole, o-Ph2P(C6H4)C(CH)-1,2,3-N3(CH2)(Py) (1) (here onward referred to as "P∩N3∩N") and its copper complexes are described. Reactions of 1 with CuX yielded mononuclear [Cu{(P∩N3∩N)2-κ2-P,N}]X (2 - 4; X = I, CuBr2 and CuCl2) and dinuclear [Cu2{(P∩N3∩N)2-κ4-P,N,N,N}]X (5 X = OTf, 6 X = BF4) complexes. Interestingly, the cationic complex [Cu{(P∩N3∩N)2-κ2-P,N}]I (2) in acetonitrile changes into neutral complex [Cu3(μ2-I)2(μ3-I)(NCCH3){(P∩N3∩N)-κ4(μ2-P,N)(μ2-N,N)}](7), which on addition of dichloromethane reverts back to the cationic form. The photoluminescent characteristics of cationic complexes are significantly impacted by the nature of counteranions and hence the corresponding photoluminescence quantum yields. Cationic complex 2 showed an increase in quantum yield and lifetime on changing over to neutral complex 7. TD-DFT calculations also assisted in assessing the photophysical properties.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rani Gourkhede
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Qiu Z, Xiao Y, Zhang L, Miao Y, Zhang B, Zhu X, Ding L, Peng H, Fang Y. Highly sensitive and selective detection of DCP vapors using pyridine-based fluorescent nanofilms. Chem Commun (Camb) 2024; 60:9773-9776. [PMID: 39158035 DOI: 10.1039/d4cc03712j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A novel fluorescent nanofilm DBAP-ETTA has been developed for diethyl chlorophosphate (DCP) vapor detection with high sensitivity and selectivity. Its smooth, homogeneous structure and large Stokes shift enable significant fluorescence quenching upon DCP exposure. The protonation-based sensing mechanism makes it ideal for real-time, portable DCP vapor sensing.
Collapse
Affiliation(s)
- Zebiao Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yue Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yupei Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Bei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
12
|
Pandey D, Samarth T, Kharabe LS, Mishra A, Mishra A, Raghuvanshi A. Manifesting the multi-stimuli-responsive behaviour of triazole-substituted triphenylamine. LUMINESCENCE 2024; 39:e4876. [PMID: 39192808 DOI: 10.1002/bio.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The development of multi-stimuli-responsive (MSR) materials is a tempting yet intriguing challenge due to the absence of a defined design approach. In this study, we designed and synthesised two compounds based on triphenylamine, namely, TPA-Tz1 and TPA-Tz2. The photoluminescent investigations reveal the MSR behaviour of both compounds. TPA-Tz1 shows reversible mechanochromism with a blue-shifted emission due to changes in intermolecular interactions. Furthermore, both compounds exhibit solvatochromism in solvents of varying polarity. Detailed studies suggest that solvatochromism in TPA-Tz1 can be attributed to twisted intramolecular charge transfer (TICT), while in TPA-Tz2, it is due to intramolecular charge transfer (ICT). Additionally, both compounds display acidochromic properties in solution as well as in the solid state due to the protonation of the triazole ring. All changes in emissions are corroborated through theoretical calculations. The results provide insights into the intricate interplay of molecular interactions and structural rearrangements that contribute to the compound's multifaceted responsiveness.
Collapse
Affiliation(s)
- Dilip Pandey
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Trivedi Samarth
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | | | - Anrudh Mishra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Anupam Mishra
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Abhinav Raghuvanshi
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
13
|
Geng Z, Wang Z, Zhu SE, Wang P, Yao K, Cheng Y, Chu B. Tunable circularly polarized luminescence behaviors caused by the structural symmetry of achiral pyrene-based emitters in chiral co-assembled systems. J Colloid Interface Sci 2024; 669:561-568. [PMID: 38729004 DOI: 10.1016/j.jcis.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The regulation of circularly polarized luminescence (CPL) behavior is of great significance for practical applications. Herein, we deliberately designed three achiral pyrene derivatives (Py-1, Py-2, and Py-3) with different butoxy-phenyl substituents and the chiral binaphthyl-based inducer (R/S-B) with anchored dihedral angle to construct chiral co-assemblies, and explored their induced CPL behaviors. Interestingly, the resulting co-assemblies demonstrate tunable CPL emission behaviors caused by the structural symmetry effect of achiral pyrene-based emitters during the chiral co-assembly process. And in spin-coated films, the dissymmetry factor (gem) values were 9.1 × 10-3 for (R/S-B)1-(Py-1)10, 5.6 × 10-2 for (R/S-B)1-(Py-2)7, and 8.6 × 10-4 for (R/S-B)1-(Py-3)1, respectively. The strongest CPL emission (|gem| = 5.6 × 10-2, λem = 423 nm, QY = 34.8 %) was detected on (R/S-B)1-(Py-2)7 due to the formation of regular and ordered helical nanofibers through the strong π-π stacking interaction between the R/S-B and the achiral Py-2 emitter. The strategy presented here provides a creative approach for progressively regulating CPL emission behaviors in the chiral co-assembly process.
Collapse
Affiliation(s)
- Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, PR China.
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| |
Collapse
|
14
|
Geppert M, Jellinek K, Linseis M, Bodensteiner M, Geppert J, Unterlass MM, Winter RF. Dual Fluorescence and Phosphorescence Emissions from Dye-Modified ( NCN)-Bismuth Pincer Thiolate Complexes. Inorg Chem 2024; 63:14876-14888. [PMID: 39078292 PMCID: PMC11323247 DOI: 10.1021/acs.inorgchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the synthesis, characterization, and photophysical properties of four new dye-modified (NCN)Bi pincer complexes with two mercaptocoumarin or mercaptopyrene ligands. Their photophysical properties were probed by UV/vis spectroscopy, photoluminescence (PL) studies, and time-dependent density functional theory (TD-DFT) calculations. Absorption spectra of the complexes are dominated by mixed pyrene or coumarin π → π*/n(pS) → pyrene or coumarin π* transitions. While unstable toward reductive elimination of the corresponding disulfide under irradiation at room temperature, the complexes provide stable emissions at 77 K. Under these conditions, coumarin complexes 2 and 4 exhibit exclusively green phosphorescence at 508 nm. In contrast, the emissive properties of pyrene complexes 1 and 3 depend on the excitation wavelength and on sample concentration. Irradiation into the lowest-energy absorption band exclusively triggers red phosphorescence from the pyrenyl residues at 640 nm. At concentrations c < 1 μM, excitation into higher excited electronic states results in blue pyrene fluorescence. With increasing c (1-100 μM), the emission profile changes to dual fluorescence and phosphorescence emission, with a steady increase of the phosphorescence intensity, until at c ≥ 1 mM only red phosphorescence ensues. Progressive red-shifts and broadening of steady-state excitation spectra with increasing sample concentration suggest the presence of static excimers, as we observe it for concentrated solutions of pyrene. Crystalline and powdered samples of 1 indeed show intermolecular association through π-stacking. TD-DFT calculations on model dimers and a tetramer of 1 support the idea of aggregation-induced intersystem crossing (AI-ISC) as the underlying reason for this behavior.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Kai Jellinek
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Jessica Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
15
|
Jadhav AB, Cheran A, Dutta C, Marydasan B, Kumar J. Binaphthalene-Assisted Axial Chirality in Porphyrins: Toward Solid-State Circularly Polarized Luminescence from Self-Assembled Nanostructures. J Phys Chem Lett 2024:8125-8132. [PMID: 39087857 DOI: 10.1021/acs.jpclett.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Circularly polarized luminescence (CPL) is emerging as an effective tool to study the excited-state optical activity in molecules and their self-assembled nanostructures. Chiral porphyrins are a class of optically active molecules wherein the ground-state chirality has been extensively studied in recent times using circular dichroism (CD) spectroscopy. However, obtaining CPL from porphyrin nanostructures, which would have vast implications in biological applications, has remained an uphill task. In this work, we design and synthesize a pair of chiral porphyrin enantiomers functionalized by axially chiral binaphthalene units at the four meso-positions. The molecule undergoes self-assembly following an isodesmic polymerization model, leading to the formation of a spherical nanostructure possessing opposite chirality. Favorable thermodynamic parameters achieved through the controlled experimental conditions helped drive the self-assembly in the forward direction. The limitations imposed by a large nonradiative decay constant arising due to the aggregation-induced quenching could be overcome by fabricating self-standing polymeric films of the nanostructures. The films exhibited relatively high radiative decay and, more interestingly, good CPL activity with clear mirror image spectra for the nanostructures with opposite chirality. The work on CPL-active solid-state materials opens avenue for the design and synthesis of a variety of porphyrin-based chromophoric systems and their nanoaggregates that can find potential application in the field of chiral biosensing and bioimaging, security tags, and display devices.
Collapse
Affiliation(s)
- Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Arunima Cheran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Betsy Marydasan
- Department of Chemistry, Government Arts College Thiruvananthapuram, Kerala 695014, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
16
|
Wu P, Li P, Chen M, Rao J, Chen G, Bian J, Lü B, Peng F. 3D Printed Room Temperature Phosphorescence Materials Enabled by Edible Natural Konjac Glucomannan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402666. [PMID: 38632497 DOI: 10.1002/adma.202402666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Shaping room temperature phosphorescence (RTP) materials into 3D bodies is important for stereoscopic optoelectronic displays but remains challenging due to their poor processability and mechanical properties. Here, konjac glucomannan (KGM) is employed to anchor arylboronic acids with various π conjugations via a facile B─O covalent reaction to afford printable inks, using which full-color high-fidelity 3D RTP objects with high mechanical strength can be obtained via direct ink writing-based 3D printing and freeze-drying. The doubly rigid structure supplied by the synergy of hydrogen bonding and B─O covalent bonding can protect the triplet excitons; thus, the prepared 3D RTP object shows a striking lifetime of 2.14 s. The printed counterparts are successfully used for 3D anti-counterfeiting and can be recycled and reprinted nondestructively by dissolving in water. This success expands the scope of printable 3D luminescent materials, providing an eco-friendly platform for the additive manufacturing of sophisticated 3D RTP architectures.
Collapse
Affiliation(s)
- Ping Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pengyu Li
- Division of Analysis, SINOPEC (Beijing) Research Institute of Chemical Industry, Co. Ltd., Beijing, 100013, China
| | - Mingxing Chen
- Analytical Instrumentation Center of Peking, Peking University, Beijing, 100871, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
17
|
Wang X, Xie Z, Wang R, Xiao Y, Yan K, Zhao Y, Lin R, Redshaw C, Min Y, Ouyang X, Feng X. In Situ Photogenerated Radicals of Hydroxyl Substituted Pyrene-Based Triphenylamines with Enhanced Transport and Free Doping/Post-Oxidation for Efficient Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311914. [PMID: 38566542 DOI: 10.1002/smll.202311914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The high-performance hole transporting material (HTM) is one of the most important components for the perovskite solar cells (PSCs) in promoting power conversion efficiency (PCE). However, the low conductivity of HTMs and their additional requirements for doping and post-oxidation greatly limits the device performance. In this work, three novel pyrene-based derivatives containing methoxy-substituted triphenylamines units (PyTPA, PyTPA-OH and PyTPA-2OH) are designed and synthesized, where different numbers of hydroxyl groups are connected at the 2- or 2,7-positions of the pyrene core. These hydroxyl groups at the 2- or 2,7-positions of pyrene play a significantly role to enhance the intermolecular interactions that are able to generate in situ radicals with the assistance of visible light irradiation, resulting in enhanced hole transferring ability, as well as an enhanced conductivity and suppressed recombination. These pyrene-core based HTMs exhibit excellent performance in PSCs, which possess a higher PCE than those control devices using the traditional spiro-OMeTAD as the HTM. The best performance can be found in the devices with PyTPA-2OH. It has an average PCE of 23.44% (PCEmax = 23.50%), which is the highest PCE among the reported PSCs with the pyrene-core based HTMs up to date. This research offers a novel avenue to design a dopant-free HTM by the combination of the pyrene core, methoxy triphenylamines, and hydroxy groups.
Collapse
Affiliation(s)
- Xiaohui Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhixin Xie
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Rongxin Wang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Kai Yan
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Rui Lin
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Carl Redshaw
- Chemistry School of Natural Sciences, University of Hull, Hull, Yorkshire, HU6 7RX, UK
| | - Yonggang Min
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xinhua Ouyang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Wang RJ, Zheng F, Liu XL, Wu YL, Jin JM, Li ZY, Chen WC, Huo Y. A through-space charge transfer pyrene-based fluorophore with anti-quenching behavior for deep-blue organic light-emitting devices. Chem Commun (Camb) 2024; 60:7946-7949. [PMID: 38984894 DOI: 10.1039/d4cc02880e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A through-space charge transfer pyrene-based fluorophore has been developed for organic light-emitting devices (OLEDs). This material exhibits deep-blue fluorescence, bipolar characteristics, and anti-quenching behavior in the solid state. It proves to be an effective emitter for both doped and nondoped deep-blue OLEDs.
Collapse
Affiliation(s)
- Ru-Jia Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Fan Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Xiao-Long Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Yu-Lan Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Ze-Yan Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou, P. R. China
| |
Collapse
|
19
|
Krebs J, Brändler L, Krummenacher I, Friedrich A, Braunschweig H, Finze M, Curchod BFE, Marder TB. Synthesis, Photophysical and Electronic Properties of a D-π-A Julolidine-Like Pyrenyl-o-Carborane. Chemistry 2024; 30:e202401704. [PMID: 38758081 DOI: 10.1002/chem.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4), a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(Mes)2 (Mes=2,4,6-Me3C6H2) as acceptor groups. Whereas the π-acceptor strength of B(Mes)2 is sufficient to drop the pyrene LUMO+1 below the LUMO, the carborane does not do this. We confirm the π-donor strength of the julolidine-like moiety, however, which raises the pyrene HOMO-1 above the HOMO. In contrast to the analogous pyrene-2-yl-o-carborane, 2-(1-1,2-dicarbadodecaboranyl(12))-pyrene VI, which exhibits dual fluorescence, because the rate of internal conversion between locally-excited (LE) and charge transfer (CT) (from the pyrene to the carborane) states is faster than the radiative decay rate, leading to a thermodynamic equilibrium between the 2 states, 4 shows only single fluorescence, as the CT state involving the carborane as the acceptor moiety in not kinetically accessible, so a more localized CT emission involving the julolidine-like pyrene moiety is observed.
Collapse
Affiliation(s)
- Johannes Krebs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lisa Brändler
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
20
|
Yang M, Chen D, Zhang L, Ye M, Song Y, Xu J, Cao Y, Liu Z. Porphyrin-Based Organic Nanoparticles with NIR-IIa Fluorescence for Orthotopic Glioblastoma Theranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35925-35935. [PMID: 38950334 DOI: 10.1021/acsami.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The development of efficient theranostic nanoagents for the precise diagnosis and targeted therapy of glioblastoma (GBM) remains a big challenge. Herein, we designed and developed porphyrin-based organic nanoparticles (PNP NPs) with strong emission in the near-infrared IIa window (NIR-IIa) for orthotopic GBM theranostics. PNP NPs possess favorable photoacoustic and photothermal properties, high photostability, and low toxicity. After modification with the RGD peptide, the obtained PNPD NPs exhibited enhanced blood-brain barrier (BBB) penetration capability and GBM targeting ability. NIR-IIa imaging was employed to monitor the in vivo biodistribution and accumulation of the nanoparticles, revealing a significant enhancement in penetration depth and signal-to-noise ratio. Both in vitro and in vivo results demonstrated that PNPD NPs effectively inhibited the proliferation of tumor cells and induced negligible side effects in normal brain tissues. In general, the work presented a kind of brain-targeted porphyrin-based NPs with NIR-IIa fluorescence for orthotopic glioblastoma theranostics, showing promising prospects for clinical translation.
Collapse
Affiliation(s)
- Mengqian Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Chen
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miantai Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuchen Song
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jiaqing Xu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Yu Cao
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
21
|
Xu WW, Chen Y, Xu X, Liu Y. Light and Heat-Driven Flexible Solid Supramolecular Polymer Displaying Phosphorescence and Reversible Photochromism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311087. [PMID: 38335310 DOI: 10.1002/smll.202311087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Herein, a type of light- and heat-driven flexible supramolecular polymer with reversibly long-lived phosphorescence and photochromism is constructed from acrylamide copolymers with 4-phenylpyridinium derivatives containing a cyano group (P-CN, P-oM, P-mM), sulfobutylether-β-cyclodextrin (SBCD), and polyvinyl alcohol (PVA). Compared to their parent solid polymers, these flexible supramolecules based on the non-covalent cross-linking of copolymers, SBCD, and PVA efficiently boost the phosphorescence lifetimes (723.0 ms for P-CN, 623.0 ms for P-oM, 945.8 ms for P-mM) through electrostatic interaction and hydrogen bonds. The phosphorescence intensity/lifetime, showing excellent responsiveness to light and heat, sharply decreased after irradiation with a 275 nm flashlight or sunlight and gradually recovered through heating. This is accompanied by the occurrence and fading of visible photochromism, manifesting as dark green for P-CN and pink for P-oM and P-mM. These reversible photochromism and phosphorescence behaviors are mainly attributed to the generation and disappearance of organic radicals in the 4-phenylpyridinium derivatives with a cyano group, which can guide tunable luminescence and photochromism.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Tang J, Zhang J, Zhang J, Liang Y, Wei J, Ren T, Han X, Ma X. Construction of an Artificial Sequential Light-Harvesting System and White-Light Material Utilizing Supramolecular Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13183-13189. [PMID: 38874200 DOI: 10.1021/acs.langmuir.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The molecular (pyren-1-yloxy)-acetic acid (Py) with excellent fluorescence properties was synthesized from 1-hydroxypyrene (Hp) and formed a supramolecular gel with an acid-base stimulus response in dimethylformamide and water. On the basis of gel, the fluorescent dye perylene 3, 9-dicarbxylic acid, and rhodamine 6g were added successively to construct a step-by-step artificial light-harvesting system, so that the fluorescence color changed from blue-purple to green to red, and white light emission was realized by adjusting the ratio of donors and acceptors.
Collapse
Affiliation(s)
- Jiahong Tang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Jiali Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Juan Zhang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Yuehua Liang
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Jiuzhi Wei
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Tianqi Ren
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Xinning Han
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| | - Xinxian Ma
- Key Laboratory of Green Catalytic Materials and Technology of Ningxia, Ningxia Normal University, Guyuan 756000, China
| |
Collapse
|
23
|
Peng S, Song J, Wu S, Wang Q, Shen L, Li D, Peng J, Zhang Q, Yang X, Xu H, Redshaw C, Li Y. Aggregation-Induced Emission Photosensitizer with Ag(I)-π Interaction-Enhanced Reactive Oxygen Species for Eliminating Multidrug Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30915-30928. [PMID: 38847621 DOI: 10.1021/acsami.4c05202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multidrug-resistant (MDR) bacteria pose serious threats to public health due to the lack of effective and biocompatible drugs to kill MDR bacteria. Photodynamic antibacterial therapy has been widely studied due to its low induction of resistance. However, photosensitizers that can efficiently generate reactive oxygen species (ROS) through both type I and type II mechanisms and that have the capability of multiple modes of action are rarely reported. Addressing this issue, we developed a near-infrared-emitting triphenylamine indole iodoethane (TTII) and its silver(I) self-assembled (TTIIS) aggregation-induced emission (AIE) photosensitizer for multimode bacterial infection therapy. TTII can efficiently produce both Type I ROS •OH and Type II ROS 1O2. Interestingly, the Ag(I)-π interaction contributed in TTIIS efficiency promotion of the generation of 1O2. Moreover, by releasing Ag+, TTIIS enabled photodynamic-Ag(I) dual-mode sterilization. As a result, TTIIS achieved an effective enhancement of antibacterial activity, with a 1-2-fold boost against multidrug-resistant Escherichia coli (MDR E. coli). Both TTII and TTIIS at a concentration as low as 0.55 μg mL-1 can kill more than 98% of methicillin resistant Staphylococcus aureus (MRSA) on MRSA-infected full-thickness defect wounds of a mouse, and both TTII and TTIIS were effective in eliminating the bacteria and promoting wound healing.
Collapse
Affiliation(s)
- Senlin Peng
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouting Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Qian Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Dongmei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Qilong Zhang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xianjiong Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Hong Xu
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, United Kingdom
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
24
|
Chu B, Song F, Wang P, Cheng Y, Geng Z. Amplified Circularly Polarized Luminescence Behavior in Chiral Co-assembled Liquid Crystal Polymer Films via the Strategic Manipulation of Chiral Inducers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26604-26612. [PMID: 38723622 DOI: 10.1021/acsami.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
One of the most important factors for the future application of circularly polarized luminescence (CPL) materials is their high dissymmetry factors (gem), and more and more studies are working tirelessly to focus on increasing the gem value. Herein, we chose an achiral liquid crystal polymer (LC-P) and two chiral binaphthyl-based inducers (R/S-3 and R/S-6) with different substitution positions (3,3' positions for R/S-3 and 6,6' positions for R/S-6) to construct chiral co-assemblies and explored their induced amplification CPL behaviors. Interestingly, after the thermal annealing treatment, this kind of chiral co-assembly (R/S-3)0.05-(LC-P)0.95 can emit a superior CPL signal (|gem| = 0.31 and λem = 424 nm), which achieves about 13-fold signal amplification in the spin-coated film, compared to (R/S-6)0.1-(LC-P)0.9 (|gem| = 0.023 and λem = 424 nm). This is because (R/S-3)0.05-(LC-P)0.95 could further co-assemble to form a more ordered arrangement LC state and generate regular helix nanofibers than that of (R/S-6)0.1-(LC-P)0.9. This work provides an efficient method for synthesizing high-quality CPL-active materials through the strategic manipulation of the structure of chiral binaphthyl-based inducers in chiral co-assembled LCP systems.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
25
|
Wang Y, Zhong H, Zhao B, Deng J. High Internal Phase Emulsion for Constructing Chiral Helical Polymer-Based Circularly Polarized Luminescent Porous Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17918-17926. [PMID: 38535995 DOI: 10.1021/acsami.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Polymerized high internal phase emulsions (polyHIPEs) with circularly polarized luminescence (CPL), as an interesting class of porous materials, are of great significance for the development of CPL porous materials but have not been reported so far. Herein, we report the construction of polyHIPE-based CPL porous materials, taking advantage of an adsorption strategy. The pristine polyHIPEs constructed by chiral helical polymers, which acted as a chiral microenvironment, were fabricated by coordination polymerization of chiral acetylene monomers (R/S-SA) using HIPEs as templates. Achiral fluorescent small molecules were dispersed in the pores of the 3D porous organic chiral polymer matrix provided by polyHIPEs through the adsorption strategy, and CPL-active porous materials with blue, cyan, and green emissions were constructed using a fluorescence-selective absorption mechanism that does not rely on chirality transfer at the molecular level. The maximum luminescence dissymmetry factor (glum) value was -2.6 × 10-2. This work establishes a new and simple way for developing CPL porous materials.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Yang G, Zhao WX, Cao JY, Xue ZM, Lin HT, Chen SH, Yamato T, Redshaw C, Wang CZ. Regulable high-contrast mechanofluorochromic enhancement behaviour based on substituent effects. Chem Commun (Camb) 2024; 60:3966-3969. [PMID: 38501379 DOI: 10.1039/d4cc00476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, a facile strategy was established to build mechanoresponsive luminogens with high sensitivity to substituents and positional effects. Even in slightly different structures, distinct optical phenomena, including fluorescence efficiency and mechano-responsive properties, were clearly present. Outstanding mechanical-induced emission enhancement (5-100 times) properties and reversibility makes for promising applications in pressure sensors and OLEDs.
Collapse
Affiliation(s)
- Guang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Wen-Xuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Jing-Yi Cao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Zeng-Min Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Shu-Hai Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Takehiko Yamato
- Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, The University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, UK
| | - Chuan-Zeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| |
Collapse
|
27
|
Feng Y, Lei D, Zu B, Li J, Li Y, Dou X. A Self-Accelerating Naphthalimide-Based Probe Coupled with Upconversion Nanoparticles for Ultra-Accurate Tri-Mode Visualization of Hydrogen Peroxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309182. [PMID: 38240462 PMCID: PMC10987149 DOI: 10.1002/advs.202309182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Indexed: 04/04/2024]
Abstract
The design and development of ultra-accurate probe is of great significance to chemical sensing in complex practical scenarios. Here, a self-accelerating naphthalimide-based probe with fast response and high sensitivity toward hydrogen peroxide (H2O2) is designed. By coupling with the specially selected upconversion nanoparticles (UCNPs), an ultra-accurate colorimetric-fluorescent-upconversion luminescence (UCL) tri-mode platform is constructed. Owing to the promoted reaction process, this platform demonstrates rapid response (< 1 s), an ultra-low detection limit (4.34 nM), and superb anti-interferent ability even in presence of > 21 types of oxidants, explosives, metallic salts, daily compounds, colorful or fluorescent substances. In addition, the effectiveness of this design is further verified by a sponge-based sensing chip loaded with the UCNPs/probe in recognizing trace H2O2 vapor from interferents with the three characteristic colors existing simultaneously. The proposed design of probe and tri-mode visualization detection platform is expected to open up a brand-new methodology for ultra-accurate sensing.
Collapse
Affiliation(s)
- Yanan Feng
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and InterfaceCollege of ScienceHebei University of Science and TechnologyShijiazhuang050018China
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
- Key Laboratory of Improvised Explosive Chemicals for State Market RegulationUrumqi830011China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and InterfaceCollege of ScienceHebei University of Science and TechnologyShijiazhuang050018China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
- Key Laboratory of Improvised Explosive Chemicals for State Market RegulationUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
28
|
Li M, Zhu W, Song D, Liang Z, Ye C. An AIEE-active Triphenylethylene Derivative with Photoresponsive Character for Latent Fingerprints Detection via a Simple Soaking Method. J Fluoresc 2024:10.1007/s10895-024-03664-2. [PMID: 38514485 DOI: 10.1007/s10895-024-03664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Latent fingerprints (LFPs) is one of the most important physical evidence in the criminal scene, playing an important role in forensic investigations. Therefore, developing highly sensitive and convenient materials for the visualization of LFPs is of great significance. We designed and synthesized an organic fluorescent molecule TP-PH with aggregation-induced enhanced emission (AIEE) activity. By simply soaking, blue fluorescent images with high contrast and resolution are readily developed on various surfaces including tinfoil, steel, glass and plastic. Remarkably, LFPs can be visualized within 5 min including the first-, second- and tertiary-level details. In addition, TP-PH exhibits interesting photoactivated fluorescence enhancement properties. Under irradiation of 365 nm UV light with a power density of 382 mW/cm2, the fluorescence quantum yield displays approximately 21.5-fold enhancement. Mechanism studies reveals that the photoactivated fluorescence is attributed to the irreversible cyclodehydrogenation reactions under UV irradiation. This work provides a guideline for the design of multifunctional AIEE fluorescent materials.
Collapse
Affiliation(s)
- Maomao Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjie Zhu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongdong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zuoqin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
29
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
30
|
Liu Y, Zhang J, Wang X, Xie Z, Zheng H, Zhang S, Cai X, Zhao Y, Redshaw C, Min Y, Feng X. Pyrene-Based Deep-Blue Fluorophores with Narrow-Band Emission. J Org Chem 2024; 89:3319-3330. [PMID: 38362859 DOI: 10.1021/acs.joc.3c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
High-efficiency narrow-band luminescent materials have attracted intense interest, resulting in their great colorimetric purity. This has led to a variety of high-tech applications in high-definition displays, spectral analysis, and biomedicine. In this study, a rigid pyrene core was employed as the molecular backbone, and four narrow-band pyrene-based blue emitters were synthesized using various synthetic methods (such as Lewis-acid catalyzed cyclization domino reactions, Pd-catalyzed coupling reactions like Suzuki-Miyaura and Sonogashira). Due to the steric effect of the hydroxy group at the 2-position, the target compounds exhibit deep blue emission (<429 nm, CIEy < 0.08) with full width at half-maximum (FWHM) less than 33 nm both in solution and when solidified. The experimental and theoretical results indicated that the substituents at the 1- and 3-positions afford a large dihedral angle with the pyrene core, and the molecular motion is almost fixed by multiple intra- and intermolecular hydrogen bonding interactions in the crystallized state, leading to a suppression of the vibrational relaxation of the molecular structure. Moreover, we observed that the suppression of the vibrational relaxation in the molecular structures and the construction of rigid conjugated structures can help develop narrow-band organic light-emitting materials.
Collapse
Affiliation(s)
- Yiwei Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong/Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhixin Xie
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xumin Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, U.K
| | - Yonggang Min
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
31
|
Saha S, Paul S, Debnath R, Dey N, Biswas B. AIE active fluorescent organic nanoparticles based optical detection of Cu 2+ ions in pure water: a case of aggregation-disaggregation reversibility. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1058-1068. [PMID: 38270504 DOI: 10.1039/d3ay02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An AIE-active pyrene-terpyridine derivative, (4'-(pyren-1-yl)-2,2':6',2''-terpyridine) (1) was found to form nanoaggregate in an aqueous medium. The probe involved hydrogen bonding with solvent molecules that modulated the charge transfer behavior and consequently resulted in different spectroscopic behavior due to the formation of fluorescent organic nanoparticles (FONs). In the presence of Cu2+ ions, FONs displayed a ratiometric red shift of the absorption band (360 to 420 nm) accompanied by a prominent naked-eye color change from colorless to light yellow. With a gradual increase in water content, 1 displayed a huge red shift of the emission band (430 to 475 nm) denoting its switching from monomer to FONs. In the presence of Cu2+, the 475 nm emission band of FONs gradually diminished, facilitating the micromolar scale detection of Cu2+ (LOD = 8.57 μM) in a 100% aqueous medium with a fluorogenic color change from cyan to dark. The SEM and DLS data indicated the cation-induced disaggregation of FONs, which was further confirmed by mass spectral analysis and electron paramagnetic resonance measurement. In addition, the high selectivity of FONs towards Cu2+ ions over other potential cations and the 2 : 1 (1-Cu2+) binding stoichiometry were also determined. Moreover, the spectroscopic behavior of the monomeric amphiphilic probe was well supported by extensive DFT study. Such detection of Cu2+ ions in pure aqueous medium denoting an aggregation-disaggregation event is very rare in the literature.
Collapse
Affiliation(s)
- Subhajit Saha
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Suvendu Paul
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad-500078, Telangana, India.
| | - Rakesh Debnath
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad-500078, Telangana, India.
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
32
|
Mohan B, Shanmughan A, Krishna AV, Noushija MK, Umadevi D, Shanmugaraju S. Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores. Front Chem 2024; 12:1361796. [PMID: 38425658 PMCID: PMC10901996 DOI: 10.3389/fchem.2024.1361796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.
Collapse
Affiliation(s)
| | | | | | | | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | | |
Collapse
|
33
|
Kumar A, Chae PS. A Naphthoquinoline-Dione-Based Cu 2+ Sensing Probe with Visible Color Change and Fluorescence Quenching in an Aqueous Organic Solution. Molecules 2024; 29:808. [PMID: 38398561 PMCID: PMC10891706 DOI: 10.3390/molecules29040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Copper metal ions (Cu2+) are widely used in various industries, and their salts are used as supplementary components in agriculture and medicine. As this metal ion is associated with various health issues, it is necessary to detect and monitor it in environmental and biological samples. In the present report, we synthesized a naphthoquinoline-dione-based probe 1 containing three ester groups to investigate its ability to detect metal ions in an aqueous solution. Among various metal ions, probe 1 showed a vivid color change from yellow to colorless in the presence of Cu2+, as observed by the naked eye. The ratiometric method using the absorbance ratio (A413/A476) resulted in a limit of detection (LOD) of 1 µM for Cu2+. In addition, the intense yellow-green fluorescence was quenched upon the addition of Cu2+, resulting in a calculated LOD of 5 nM. Thus, probe 1 has the potential for dual response toward Cu2+ detection through color change and fluorescence quenching. 1H-NMR investigation and density functional theory (DFT) calculations indicate 1:1 binding of the metal ion to the small cavity of the probe comprising four functional groups: the carbonyl group of the amide (O), the amino group (N), and two t-butyl ester groups (O). When adsorbed onto various solid surfaces, such as cotton, silica, and filter paper, the probe showed effective detection of Cu2+ via fluorescence quenching. Probe 1 was also useful for Cu2+ sensing in environmental samples (sea and drain water) and biological samples (live HeLa cells).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
34
|
Xie Z, Liu W, Liu Y, Song X, Zheng H, Su X, Redshaw C, Feng X. Influence of Steric Effects on the Emission Behavior of Pyrene-Based Blue Luminogens. J Org Chem 2024; 89:1681-1691. [PMID: 38207100 DOI: 10.1021/acs.joc.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Pyrene-based derivatives have been widely deployed in organic luminescent materials because of their bright fluorescence, high charge carrier mobility, and facile modification. Nevertheless, the fluorescence output of conventional pyrenes is prone to quenching upon aggregation due to extensive intermolecular π-π stacking interactions. To address this issue, a set of new Y-shaped pyrene-containing luminogens are synthesized from a new bromopyrene chemical precursor, 2-hydroxyl-7-tert-butyl-1,3-bromopyrene, where the bromo and hydroxyl groups at the pyrene core can be readily modified to obtain the target products and provide great flexibility in tuning the photophysical performances. When the hydroxy group at the 2-position of pyrene was replaced by a benzyl group, the steric hindrance of the benzyl group not only efficiently inhibits the detrimental intermolecular π-π stacking interactions but also rigidifies the molecular conformation, resulting in a narrow-band blue emission. Moreover, the TPE-containing compounds 2c and 3c possessed characteristic aggregation-induced emission (AIE) properties with fluorescence quantum yields of up to 66% and 38% in the solid state, respectively. Thus, this article has methodically investigated the factors influencing the optical behavior, such as intermolecular interactions, and the steric effects of the substituent group, thereby opening up the potential to develop narrow-band pyrene-based blue emitters for OLED device applications.
Collapse
Affiliation(s)
- Zhixin Xie
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiwei Liu
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinyi Song
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zheng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiang Su
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, Yorkshire, U.K
| | - Xing Feng
- Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Zhao W, Ding Z, Yang Z, Lu T, Yang B, Jiang S. Remarkable Off-On Tunable Solid-State Luminescence by the Regulation of Pyrene Dimer. Chemistry 2024; 30:e202303202. [PMID: 38030581 DOI: 10.1002/chem.202303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
It is always a challenge to achieve "off-on" luminescent switch by regulating non-covalent interactions. Herein, we report a unique strategy for constructing high performance "off-on" tunable luminescent materials utilizing a novel molecule (TFPA) consist of pyrene and cyanostilbene. The pristine crystal of TFPA is almost non-emissive. Upon grinding/UV irradiation, an obvious luminescence enhancement is observed. Theoretical and experimental results revealed the underlying mechanism of this intriguing "off-on" switching behavior. The non-emissive crystal consists of ordered H-aggregates, with adjacent two molecules stacked in an anti-parallel manner and no overlapped area in pyrene moieties. When external force is applied by grinding or internal force is introduced through the photoisomerization, the dimer structures are facilitated with shorter intermolecular distances and better overlapping of pyrene moieties. In addition, the "on" state can recover to "off" state under thermal annealing, showing good reversibility and applicability in intelligence material. The present results promote an in-depth insight between packing structure and photophysical property, and offer an effective strategy for the construction of luminescence "off-on" switching materials, toward the development of stimuli-responsive luminescent materials for anti-counterfeiting.
Collapse
Affiliation(s)
- Wenyang Zhao
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Zeyang Ding
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Shimei Jiang
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| |
Collapse
|
36
|
Varghese EV, Yao CY, Chen CH. Investigation of Mechanochromic Luminescence of Pyrene-based Aggregation-Induced Emission Luminogens: Correlation between Molecular Packing and Luminescence Behavior. Chem Asian J 2024; 19:e202300910. [PMID: 37932879 DOI: 10.1002/asia.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
To better understand the correlation between molecular structure and optical properties such as aggregation-induced emission (AIE) and mechanochromic luminescence (MCL) emission, two new pyrene-based derivatives with substitutions at the 4- and 5-positions (1HH) and at the 4-, 5-, 9-, and 10-positions (2HH) were designed and synthesized. Cyano groups were introduced at the periphery of the synthesized compounds (1HCN, 1OCN, 1BCN, 2HCN, 2OCN, and 2BCN) to investigate the influence of these groups on the emission properties of the pyrene derivatives both in solution and in the solid state. The fluorescence emission performance of these compounds in water/acetone mixtures was simultaneously studied, revealing outstanding aggregation-induced emission properties. The typical shift in emission maxima to higher values was attributed to J-aggregate formation in the aggregate state. Careful investigation of the crystal structures demonstrated abundant and intense intermolecular interactions, such as C-H…π and C-H…N hydrogen bonds, contributing to the remarkable mechanochromic luminescence performance of these compounds. The MCL properties of all the compounds were investigated using powder X-ray diffraction, and the remarkable mechanochromic properties were attributed to J-aggregate phenomena in the solid state. These results provide valuable insights into the structure-property relationship of organic MCL materials, guiding the design of efficient organic MCL materials.
Collapse
Affiliation(s)
- Eldhose V Varghese
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chia-Yu Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chia-Hsiang Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| |
Collapse
|
37
|
Yu S, Li S, Xie Z, Liu W, Islam MM, Redshaw C, Cao MJ, Chen Q, Feng X. New pyrrolo[3,2-b]pyrroles with AIE characteristics for detection of dichloromethane and chloroform. LUMINESCENCE 2023. [PMID: 38053240 DOI: 10.1002/bio.4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Three new pyrrolo[3,2-b]pyrrole derivatives containing methoxyphenyl, pyrene or tetraphenylethylene (TPE) units (compounds 1-3) have been designed, synthesized and fully characterized. The aggregation-induced emission (AIE) properties of compounds 1-3 were tested in different water fraction (fw ) of tetrahydrofuran (THF). The pyrrolo[3,2-b]pyrrole derivative 3 containing TPE units exhibited typical AIE features with an enhanced emission (∼32-fold) in the solid state versus in solution; compounds 1 and 2 exhibited an aggregation-caused quenching effect. In addition, the steric and electronic effects of the peripheral moieties on the emission behavior, both in solution and in the solid state, have been investigated. Moreover, pyrrolo[3,2-b]pyrrole 1 exhibits high sensitivity and selectivity for dichloromethane and chloroform solvents, with the system displaying a new emission peak and fast response time under ultraviolet irradiation.
Collapse
Affiliation(s)
- Shuning Yu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Shaoling Li
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhixin Xie
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| | - Md Monarul Islam
- Synthesis Laboratory, Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi, Dhaka, Bangladesh
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, UK
| | - Mei Juan Cao
- College of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, P. R. China
| | - Qing Chen
- Science and Technology Innovation Center, Eco-Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou, P. R. China
| |
Collapse
|