1
|
Foyer CH, Kranner I. Plant adaptation to climate change. Biochem J 2023; 480:1865-1869. [PMID: 37994913 PMCID: PMC10754325 DOI: 10.1042/bcj20220580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.
Collapse
Affiliation(s)
- Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Mirza Z, Jonwal S, Saini H, Sinha AK, Gupta M. Unraveling the molecular aspects of iron-mediated OsWRKY76 signaling under arsenic stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108136. [PMID: 37897891 DOI: 10.1016/j.plaphy.2023.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Arsenic (As) is a significant environmental element that restricts the growth and production of rice plants. Although the role of iron (Fe) to sequester As in rice is widely known, the molecular mechanism regarding As-Fe interaction remains opaque. Here, we show the differential response of two rice varieties (Ratna and Lalat) in terms of their morphological and biochemical changes in the presence of As and Fe. These results together with in-silico screening, gene expression analysis, and protein-protein interaction studies suggest the role of OsWRKY76 in Fe-mediated As stress alleviation. When OsWRKY76 is activated by MAPK signaling, it inhibits the gene expression of Fe transporters OsIRT1 and OsYSL2, which reduces the amount of Fe accumulated. However, MAPK signaling and OsWRKY76 remain down-regulated during Fe supplementation with As, which subsequently encourages the up-regulation of OsIRT1 and OsYSL2. This results in greater Fe content and decreased As accumulation and toxicity. The lower H2O2 and SOD, CAT, and APX activities were likewise seen under the As + Fe condition. Overall, results revealed the molecular aspects of Fe-mediated control of OsWRKY76 signaling and showed that Ratna is a more As tolerant variety than Lalat. Lalat, however, performs better in As stress due to the presence of Fe.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
3
|
Elakhdar A, El-Naggar AA, Kubo T, Kumamaru T. Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14089. [PMID: 38148212 DOI: 10.1111/ppl.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Drought is a major abiotic stress that impairs the physiology and development of plants, ultimately leading to crop yield losses. Drought tolerance is a complex quantitative trait influenced by multiple genes and metabolic pathways. However, molecular intricacies and subsequent morphological and physiological changes in response to drought stress remain elusive. Herein, we combined morpho-physiological and comparative RNA-sequencing analyses to identify core drought-induced marker genes and regulatory networks in the barley cultivar 'Giza134'. Based on field trials, drought-induced declines occurred in crop growth rate, relative water content, leaf area duration, flag leaf area, concentration of chlorophyll (Chl) a, b and a + b, net photosynthesis, and yield components. In contrast, the Chl a/b ratio, stoma resistance, and proline concentration increased significantly. RNA-sequence analysis identified a total of 2462 differentially expressed genes (DEGs), of which 1555 were up-regulated and 907 were down-regulated in response to water-deficit stress (WD). Comparative transcriptomics analysis highlighted three unique metabolic pathways (carbohydrate metabolism, iron ion binding, and oxidoreductase activity) as containing genes differentially expressed that could mitigate water stress. Our results identified several drought-induced marker genes belonging to diverse physiochemical functions like chlorophyll concentration, photosynthesis, light harvesting, gibberellin biosynthetic, iron homeostasis as well as Cis-regulatory elements. These candidate genes can be utilized to identify gene-associated markers to develop drought-resilient barley cultivars over a short period of time. Our results provide new insights into the understanding of water stress response mechanisms in barley.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed A El-Naggar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
5
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
6
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
7
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
8
|
Assunção AGL, Cakmak I, Clemens S, González-Guerrero M, Nawrocki A, Thomine S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1789-1799. [PMID: 35134869 PMCID: PMC8921004 DOI: 10.1093/jxb/erac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440 Bayreuth, Germany
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | | | | |
Collapse
|
9
|
Ding J, Liu Q, Liu Z, Guo H, Liang J, Zhang Y. Associations of the Dietary Iron, Copper, and Selenium Level With Metabolic Syndrome: A Meta-Analysis of Observational Studies. Front Nutr 2022; 8:810494. [PMID: 35178418 PMCID: PMC8845519 DOI: 10.3389/fnut.2021.810494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
BackgroundEpidemiological studies have investigated the associations of dietary iron, copper, and selenium level with metabolic syndrome (MetS). However, their results are conflicting. This meta-analysis of observational study was, therefore, employed to investigate the associations above.MethodsA comprehensive literature search was employed using PubMed, Web of Science, Embase, and Scopus database up to October 2021 (no restriction was set for the initiate time). The pooled relative risk (RR) of MetS for the highest vs. lowest dietary iron, copper, and selenium level was estimated, respectively.ResultsA total of 14 observational studies (55,131 participants) were identified as meeting the inclusion criteria. Specifically, 7 studies were related to the dietary iron level. The overall multivariable adjusted RR demonstrated that the dietary iron level was positively associated with MetS (RR = 1.27, 95% CI: 1.12–1.44; p < 0.001). With regard to the dietary copper level, 7 studies were included for meta-analysis. The overall multivariable adjusted RR showed that the dietary copper level was inversely associated with MetS (RR = 0.85, 95% CI: 0.78–0.93; p < 0.001). In addition, 4 studies were specified for the dietary selenium level. The overall multivariable adjusted RR indicated that the dietary selenium level was inversely associated with MetS (RR = 0.77, 95% CI: 0.63–0.95; p = 0.01) as well.ConclusionOur results suggest that the dietary iron level is positively associated with MetS, whereas a negative association between the dietary copper and selenium level and MetS is obtained. Further large well-designed prospective cohort studies are warranted to elaborate on the issues examined in this study.
Collapse
Affiliation(s)
- Jun Ding
- Changsha Social Work College, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi Zhang
| |
Collapse
|
10
|
Höller S, Küpper H, Brückner D, Garrevoet J, Spiers K, Falkenberg G, Andresen E, Peiter E. Overexpression of METAL TOLERANCE PROTEIN8 reveals new aspects of metal transport in Arabidopsis thaliana seeds. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:23-29. [PMID: 34546650 DOI: 10.1111/plb.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
METAL TOLERANCE PROTEIN8 (MTP8) of Arabidopsis thaliana is a member of the CATION DIFFUSION FACILITATOR (CDF) family of proteins that transports primarily manganese (Mn), but also iron (Fe). MTP8 mediates Mn allocation to specific cell types in the developing embryo, and Fe re-allocation as well as Mn tolerance during imbibition. We analysed if an overexpression of MTP8 driven by the CaMV 35S promoter has an effect on Mn tolerance during imbibition and on Mn and Fe storage in seeds, which would render it a biofortification target. Fe, Mn and Zn concentrations in MTP8-overexpressing lines in wild type and vit1-1 backgrounds were analysed by ICP-MS. Distribution of metals in intact seeds was determined by synchrotron µXRF tomography. MTP8 overexpression led to a strongly increased Mn tolerance of seeds during imbibition, supporting its effectiveness in loading excess Mn into the vacuole. In mature seeds, MTP8 overexpression did not cause a consistent increase in Mn and Fe accumulation, and it did not change the allocation pattern of these metals. Zn concentrations were consistently increased in bulk samples. The results demonstrate that Mn and Fe allocation is not determined primarily by the MTP8 expression pattern, suggesting either a cell type-specific provision of metals for vacuolar sequestration by upstream transport processes, or the determination of MTP8 activity by post-translational regulation.
Collapse
Affiliation(s)
- S Höller
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - H Küpper
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - D Brückner
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - J Garrevoet
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - K Spiers
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - E Andresen
- Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - E Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
11
|
Sheraz S, Wan Y, Venter E, Verma SK, Xiong Q, Waites J, Connorton JM, Shewry PR, Moore KL, Balk J. Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains. THE NEW PHYTOLOGIST 2021; 231:1644-1657. [PMID: 33914919 DOI: 10.1111/nph.17440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.
Collapse
Affiliation(s)
- Sadia Sheraz
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Yongfang Wan
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Eudri Venter
- Bioimaging facility, Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Shailender K Verma
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Qing Xiong
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Joshua Waites
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Peter R Shewry
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Katie L Moore
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
12
|
Afzal S, Sharma D, Singh NK. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40275-40287. [PMID: 33447981 DOI: 10.1007/s11356-020-12056-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Recently the applications of engineered nanoparticles in the agricultural sector is increased as nano-pesticides, nano-fertilizers, nanocarrier for macro- or micronutrients, nano-sensors, etc. In this study, biocompatible iron oxide nanoparticles (FeO NPs) have been synthesized through an environment-friendly route using Cassia occidentalis L. flower extract to act as nano-priming agent for promoting germination of Pusa basmati rice seeds. Different characterization methods, viz. X-ray diffraction, particle size analyser, zeta potential and scanning electron microscopy, were used to show efficacious synthesis of FeO NPs capped with phytochemicals. Rice seeds primed with FeO NPs at 20 and 40 mg/L efficiently enhanced germination and seedling vigour compared to ferrous sulphate (FeSO4) priming and hydro-primed control. The seeds primed with 20 mg/L FeO NPs showed up to 50% stimulation in biophysical parameters such as root length and dry weight. Substantial stimulation of sugar and amylase content was also reported at the same concentration. The antioxidant enzyme activity was significantly increased as compared to FeSO4 priming and control. Inductively coupled plasma mass spectroscopy (ICP-MS) study was also done for analysis of Fe, Zn, K, Ca, and Mn concentration in seeds. The seed priming technique signifies a comprehensible and innovative approach that could enhance α-amylase activity, iron acquisition, and ROS production, ensuing elevated soluble sugar levels for supporting seedling growth and enhancing seed germination rate, respectively. In this report, phytochemical-capped FeO NPs are presented as a capable nano-priming agent for stimulating the germination of naturally aged rice seeds.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Deepa Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
13
|
He Y, Yang Q, Yang J, Wang YF, Sun X, Wang S, Qi W, Ma Z, Song R. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize. Genetics 2021; 218:6261937. [PMID: 34009311 DOI: 10.1093/genetics/iyab070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qing Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoliang Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|