1
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
2
|
Dialynaki D, Stavropoulou A, Laskou M, Alexandraki D. The essential liaison of two copper proteins: the Cu-sensing transcription factor Mac1 and the Cu/Zn superoxide dismutase Sod1 in Saccharomyces cerevisiae. Curr Genet 2023; 69:41-53. [PMID: 36456733 DOI: 10.1007/s00294-022-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Although copper is an essential trace element for cell function and viability, its excess can lead to protein oxidation, DNA cleavage, and ultimate cell damage. Cells have established a variety of regulatory mechanisms to ensure copper ion homeostasis. In Saccharomyces cerevisiae, copper sensing and response to copper deficiency are regulated by the transcription factor Mac1. Our group has previously reported that in addition to copper, several chromatin proteins modulate Mac1 functionality. In this study, based on a synthetic growth deficiency phenotype, we showed that the Cu/Zn superoxide dismutase Sod1 plays an important role in Mac1 transcriptional activity, in unchallenged nutrient-rich growth conditions. Sod1 is a multipotent cytoplasmic and mitochondrial enzyme, whose main known function is to detoxify the cell from superoxide ions. It has been previously reported that Sod1 also enters the nucleus and affects the transcription of several genes, some of which are involved in copper homeostasis under Cu-depleted (Wood and Thiele in J Biol Chem 284:404-413, 2009) or only under specific oxidative stress conditions (Dong et al. Mol Cell Biol 33:4041-4050, 2013; Tsang et al. Nar Commun 8:3446, 2014). We have shown that Sod1 physically interacts with Mac1 transcription factor and is important for the transactivation as well as its DNA-binding activities. On the other hand, a constitutively active mutant of Mac1 is not affected functionally by the Sod1 ablation, pointing out that Sod1 contributes to the maintenance of the copper-unchelated state of Mac1. In conclusion, we showed that Sod1-Mac1 interaction is vital for Mac1 functionality, regardless of copper medium deficiency, in unchallenged growth conditions, and we suggest that Sod1 enzymatic activity may modify the redox state of the cysteine-rich motifs in the Mac1 DNA-binding and transactivation domains.
Collapse
Affiliation(s)
- Dimitra Dialynaki
- Department of Biology, University of Crete, Vasilika Vouton, P. O. Box 2208, 70013, Heraklion, Crete, Greece
| | - Athanasia Stavropoulou
- Department of Biology, University of Crete, Vasilika Vouton, P. O. Box 2208, 70013, Heraklion, Crete, Greece.,Computational Genomics Group, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Maria Laskou
- Department of Biology, University of Crete, Vasilika Vouton, P. O. Box 2208, 70013, Heraklion, Crete, Greece.,NYU Langone Health, NYU Grossman School of Medicine, 435 E 30th Street, Science Building 1305, New York, NY, 10016, USA
| | - Despina Alexandraki
- Department of Biology, University of Crete, Vasilika Vouton, P. O. Box 2208, 70013, Heraklion, Crete, Greece. .,Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Wang X, Teng Y, Ji C, Wu H, Li F. Critical target identification and human health risk ranking of metal ions based on mechanism-driven modeling. CHEMOSPHERE 2022; 301:134724. [PMID: 35487360 DOI: 10.1016/j.chemosphere.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Huge amounts of metals have been released into environment due to various anthropogenic activities, such as smelting and processing of metals and subsequent application in construction, automobiles, batteries, optoelectronic devices, and so on, resulting in widespread detection in environmental media. However, some metal ions are considered as "Environmental health hazards", leading to serious human health concerns through affecting critical targets. Hence, it is necessary to quickly and effectively recognize the key target of metal ions in living organisms. Fortunately, the development of high-throughput analysis and in silico approaches offer a promising tool for target identification. In this study, the key oncogenic target (tumor suppressor protein, p53) was screened by network analysis based on the comparative toxicogenomics database (CTD). Some metal ions could bind to p53 core domain, impair its function and induce the development of cancer risk, but its mechanisms were still unclear. Therefore, a quantitative structure-activity relationship (QSAR) model was constructed to characterize the binding constants (Ka) between DNA binding domain of p53 (p53 DBD) and nine metal ions (Mg2+, Ca2+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Fe3+ and Ba2+). It had good robustness and predictive ability, which could be used to predict the Ka values of other six metal ions (Li+, Ag+, Cs+, Cd2+, Hg2+ and Pb2+) within application domain. The results showed strong binding affinity between Cd2+/Hg2+/Pb2+ and p53 DBD. Subsequent mechanism analyses revealed that first hydrolysis constant (|logKOH|) and polarization force (Z2/r) were key metal ion-characteristic parameters. The metal ions with weak hydrolysis constants and strong polarization forces could readily interact with N-containing histidine and S-containing cysteine of p53 DBD, which resulted in high Ka values. This study identified p53 as potential target for metal ions, revealed the key characteristics affecting the actions and provide a basic understanding of metal ions-p53 DBD interaction.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
4
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
5
|
Jivan R, Damelin LH, Birkhead M, Rousseau AL, Veale RB, Mavri-Damelin D. Disulfiram/copper-disulfiram Damages Multiple Protein Degradation and Turnover Pathways and Cytotoxicity is Enhanced by Metformin in Oesophageal Squamous Cell Carcinoma Cell Lines. J Cell Biochem 2016; 116:2334-43. [PMID: 25846272 DOI: 10.1002/jcb.25184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/07/2022]
Abstract
Disulfiram (DSF), used since the 1950s in the treatment of alcoholism, is reductively activated to diethyldithiocarbamate and both compounds are thiol-reactive and readily complex copper. More recently DSF and copper-DSF (Cu-DSF) have been found to exhibit potent anticancer activity. We have previously shown that the anti-diabetic drug metformin is anti-proliferative and induces an intracellular reducing environment in oesophageal squamous cell carcinoma (OSCC) cell lines. Based on these observations, we investigated the effects of Cu-DSF and DSF, with and without metformin, in this present study. We found that Cu-DSF and DSF caused considerable cytotoxicity across a panel of OSCC cells, and metformin significantly enhanced the effects of DSF. Elevated copper transport contributes to DSF and metformin-DSF-induced cytotoxicity since the cell-impermeable copper chelator, bathocuproinedisulfonic acid, partially reversed the cytotoxic effects of these drugs, and interestingly, metformin-treated OSCC cells contained higher intracellular copper levels. Furthermore, DSF may target cancer cells preferentially due to their high dependence on protein degradation/turnover pathways, and we found that metformin further enhances the role of DSF as a proteasome inhibitor. We hypothesized that the lysosome could be an additional, novel, target of DSF. Indeed, this acid-labile compound decreased lysosomal acidification, and DSF-metformin co-treatment interfered with the progression of autophagy in these cells. In summary, this is the first such report identifying the lysosome as a target of DSF and based on the considerable cytotoxic effects of DSF either alone or in the presence of metformin, in vitro, and we propose these as novel potential chemotherapeutic approaches for OSCC.
Collapse
Affiliation(s)
- Rupal Jivan
- The School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Leonard Howard Damelin
- The School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.,Cell Biology Group, Centre for HIV and STI's, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
| | - Monica Birkhead
- Electron Microscope Laboratory, Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
| | - Amanda Louise Rousseau
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Robin Bruce Veale
- The School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Demetra Mavri-Damelin
- The School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| |
Collapse
|
6
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
7
|
Tahata S, Yuan B, Kikuchi H, Takagi N, Hirano T, Toyoda H. Cytotoxic effects of pyrrolidine dithiocarbamate in small-cell lung cancer cells, alone and in combination with cisplatin. Int J Oncol 2014; 45:1749-59. [PMID: 25070243 DOI: 10.3892/ijo.2014.2564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
Abstract
The cytocidal effect of pyrrolidine dithiocarbamate (PDTC) was investigated by focusing on cell viability, cell cycle arrest and apoptosis induction in small-cell lung cancer (SCLC) cell lines (NCI-H196 and NCI-H889). PDTC exhibited a much stronger dose-dependent cytotoxic activity against NCI-H196 compared to NCI-H889, while no such activity was observed in normal human embryonal lung fibroblast MRC-5 cells. Cell cycle arrest in S phase paralleled with suppression of c-myc expression without accompanying DNA fragmentation was observed in NCI-H196 cells. A transient increase in the intracellular ROS accompanied with an alteration of expression of oxidative stress-related genes was also confirmed in NCI-H196 cells. Furthermore, the addition of N-acetyl-l-cysteine (NAC), a free radical scavenger, not only abolished PDTC-trigger alterations of expression of these oxidative-related genes, but also almost completely abrogated PDTC-induced reduction in cell viability and morphological changes associated with cell damage. These results thus suggest that PDTC-induced cytotoxicity is attributed to its pro-oxidant activity. PDTC-induced cytotoxicity was further enhanced by CuCl2, however, abolished by bathocuproine disulfonate (BCPS), a non-permeable copper-specific chelator, supporting the plausibility that accumulation of intracellular Cu plays an important role in the cytotoxicity. Importantly, we demonstrated for the first time that PDTC downregulated the expression of ATP7A, known to be responsible for Cu efflux, but did not affect the expression of CTR1, known as a copper uptake transporter. Intriguingly, combination of much lower dose of cisplatin (5 µM) and non-toxic dose of PDTC (0.1 µM) synergistically induced a significant cytotoxicity in NCI-H196 cells. Given that ATP7A plays a critical role in the resistance of platinum-drug (such as cisplatin) representing a first-line treatment for SCLC, PDTC could be a promising candidate of adjunct therapeutic reagent for the patients requiring treatment with platinum-based regimens.
Collapse
Affiliation(s)
- Shinichi Tahata
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
8
|
Pyrrolidine dithiocarbamate inhibits herpes simplex virus 1 and 2 replication, and its activity may be mediated through dysregulation of the ubiquitin-proteasome system. J Virol 2013; 87:8675-86. [PMID: 23740985 DOI: 10.1128/jvi.00869-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn(2+). Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus's propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS).
Collapse
|
9
|
D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 2013; 337:8-21. [PMID: 23727371 DOI: 10.1016/j.canlet.2013.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
Low molecular weight thiols (LMWTs) like N-acetyl cysteine, D-penicillamine, captopril, Disulfiram and Amifostine, etc. have been used as chemo-preventive agents. Recent studies have reported cell growth inhibition and cytotoxicity in several different types of cancer cells following treatment with several LMWTs. Cytotoxic and cytostatic effects of LMWTs may involve interaction of the thiol group with cellular lipids, proteins, intermediates or enzymes. Some of the mechanisms that have been proposed include a p53 mediated apoptosis, thiyl radical induced DNA damage, membrane damage through lipid peroxidation, anti-angiogenic effects induced by inhibition of matrix metalloproteinase enzymes and angiostatin generation. LMWTs are strong chelators of transition metals like copper, nickel, zinc, iron and cobalt and may cause metal co-factor depletion resulting in cytotoxicity. Oxidation of thiol group can also generate cytotoxic reactive oxygen species (ROS).
Collapse
|
10
|
Radwan AA, Al-Dhfyan A, Abdel-Hamid MK, Al-Badr AA, Aboul-Fadl T. 3,5-Disubstituted thiadiazine-2-thiones: New cell-cycle inhibitors. Arch Pharm Res 2012; 35:35-49. [DOI: 10.1007/s12272-012-0104-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 11/29/2022]
|
11
|
Involvement of oxidative stress-induced ERK/JNK activation in the Cu2+/pyrrolidine dithiocarbamate complex-triggered mitochondria-regulated apoptosis in pancreatic β-cells. Toxicol Lett 2012; 208:275-85. [DOI: 10.1016/j.toxlet.2011.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 12/26/2022]
|
12
|
Palladium(II) complexes of dithiocarbamic acids: synthesis, characterization, crystal structure and DNA binding study. TRANSIT METAL CHEM 2011. [DOI: 10.1007/s11243-011-9569-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Chandrasekar G, Arner A, Kitambi SS, Dahlman-Wright K, Lendahl MA. Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicol Teratol 2011; 33:752-64. [PMID: 22002180 DOI: 10.1016/j.ntt.2011.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
4-Nonylphenol (4-NP), an estrogen mimicking compound is produced by biodegradation of alkylethoxylates. It is well established that 4-NP can affect the development of aquatic animals by disrupting the endocrine signals. Here we show for the first time in zebrafish that 4-NP does not only target the neuroendocrine system but also the notochord and the muscle. The notochord malformation was first evident as distortions at 24hourspostfertilization (hpf) which within 24h appeared as kinks and herniations. The notochord phenotype was accompanied by reduced motility and impaired swimming behavior. Whole-mount in situ hybridization using chordamesoderm markers and electron microscopic analysis showed failure in the notochord differentiation and disruption of the perinotochordal basement membrane. Late larval stages of 4-NP treated embryos displayed abnormal mineralization, vertebral curvature, fusion of vertebral bodies and abnormal extension of haemal arches. The muscle structure and the maximal active force in isolated muscle preparations were similar between 4-NP exposed and of control embryos, suggesting that 4-NP did not induce major changes in striated muscle function. However, repeated electrical stimulation (>40Hz) of the 4-NP exposed larvae revealed an impaired relaxation between stimuli, possibly reflecting an alteration in the relaxant mechanisms (e.g. in cellular Ca(2+) removal) which could explain the abnormal swimming pattern exhibited by 4-NP exposed larvae. Additionally, we demonstrate that the expression levels of the stress hormone, corticotropin releasing hormonewere elevated in the brain following 4-NP treatment. We also observed a significant decrease in the transcript levels of luteinizing hormone b at early larval stages. Collectively, our results show that 4-NP is able to disrupt the notochord morphogenesis, muscle function and the neuroendocrine system. These data suggest that 4-NP enduringly affects the embryonic development in zebrafish and that this compound might exert these deleterious effects through diverse signaling pathways.
Collapse
Affiliation(s)
- Gayathri Chandrasekar
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
14
|
Kim DH, Kundu JK, Surh YJ. Redox modulation of p53: mechanisms and functional significance. Mol Carcinog 2011; 50:222-34. [PMID: 21465572 DOI: 10.1002/mc.20709] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor suppressor protein p53 functions as a stress-responsive transcription factor. In response to oxidative, nitrosative, and electrophilic insults, p53 undergoes post-translational modifications, such as oxidation and covalent modification of cysteines, nitration of tyrosines, acetylation of lysines, phosphorylation of serine/threonine residues, etc. Because p53 plays a vital role in the transcriptional regulation of genes encoding proteins involved in a wide spectrum of biochemical processes including DNA repair, cell-cycle regulation, and programmed cell death, the redox-modification of p53 appears to be an important determinant of cell fate. This review highlights the redox regulation of p53 and its consequences on cellular function.
Collapse
Affiliation(s)
- Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
15
|
Altaf M, Stoeckli-Evans H, Batool SS, Isab AA, Ahmad S, Saleem M, Awan SA, Shaheen MA. Mercury(II) complexes of pyrrolidinedithiocarbamate, crystal structure of bis{[μ2-(pyrrolidinedithiocarbamato-S,S ′)(pyrrolidinedithiocarbamato-S,S ′)mercury(II)]}. J COORD CHEM 2010. [DOI: 10.1080/00958971003759085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Altaf
- a Institute of Physics, University of Neuchâtel , CH-2009 Neuchâtel, Switzerland
| | - Helen Stoeckli-Evans
- a Institute of Physics, University of Neuchâtel , CH-2009 Neuchâtel, Switzerland
| | - Syeda Shahzadi Batool
- b Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | - Anvarhusein A. Isab
- c Department of Chemistry , King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia
| | - Saeed Ahmad
- b Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | | | | | | |
Collapse
|
16
|
van Boxtel AL, Kamstra JH, Fluitsma DM, Legler J. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicol Appl Pharmacol 2010; 244:156-61. [DOI: 10.1016/j.taap.2009.12.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/08/2009] [Accepted: 12/17/2009] [Indexed: 01/14/2023]
|
17
|
Cheng WH. Impact of inorganic nutrients on maintenance of genomic stability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:349-360. [PMID: 19326466 DOI: 10.1002/em.20489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Maintenance of genome stability is of fundamental importance for counteracting carcinogenesis. Many human genome instability syndromes exhibit a predisposition to cancer. An increasing body of epidemiological evidence has suggested a link between nutrient status and risk of cancer. Like other chemicals, nutrients can be toxic when consumed in excess. It has become clear that both nutritional deficiency and toxicity can compromise the integrity of the genome. This article focuses on roles of inorganic trace nutrients, including selenium, copper, zinc, and iron, in the redox regulation of genome stability and how they relate to the pathologies of genomic instability syndromes and cancer.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
18
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
19
|
Tilton F, La Du JK, Tanguay RL. Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamate sodium metam (NaM). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:121-127. [PMID: 18823668 PMCID: PMC3270488 DOI: 10.1016/j.aquatox.2008.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Dithiocarbamates (DTCs) are sulfhydryls (thiol)-containing compounds, often associated with metals, and have both antioxidant and pro-oxidant abilities depending on the compound, experimental system and condition. In this study we investigated whether cell death plays a role in the manifestation of DTC-induced notochord distortions in the developing zebrafish and if thiol-containing compounds or antioxidants could modify this developmental toxicity. Sodium metam (NaM) induced notochord distortions could not be protected with the antioxidants ascorbic acid, trolox (synthetic vitamin E) or lipoic acid. However, NaM-induced distortions could be protected with co-exposure to glutathione or N-Acetyl Cysteine. Staggering the NaM and glutathione exposures in consecutive 10h developmental windows also resulted in protection. There were no discernable changes in TUNEL positive cells, a marker of apoptotic cells, at 24h post-fertilization (hpf) in NaM, dimethyl-dithiocarbamate, carbon disulfide, or neocuproine exposed embryos. Live NaM-exposed embryos incubated with acridine orange, a general stain for cell death, for 1h beginning at 11, 18 and 24hpf showed clusters of stained nuclei near the somitogenic front but not in the cells making up the notochord. Overall, induction of apoptotic pathways and widespread cell death are not involved in the manifestation of the adverse developmental outcomes following NaM exposure. However, cellular thiol status or critical sulfhydryl moieties are important considerations in the mechanisms of DTC developmental toxicity.
Collapse
Affiliation(s)
- Fred Tilton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
- Environmental Health Sciences Center and Marine & Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| | - Jane K. La Du
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Robert L. Tanguay
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, United States
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
- Environmental Health Sciences Center and Marine & Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
20
|
Induction of cellular stress overcomes the requirement of herpes simplex virus type 1 for immediate-early protein ICP0 and reactivates expression from quiescent viral genomes. J Virol 2008; 82:11775-83. [PMID: 18799580 DOI: 10.1128/jvi.01273-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants impaired in the activities of the structural protein VP16 and the immediate-early (IE) proteins ICP0 and ICP4 establish a quiescent infection in human fibroblasts, with most cells retaining an inactive, repressed viral genome for sustained periods in culture. To date, the quiescent state has been considered stable, since it has been reversed only by provision of herpesviral proteins, such as ICP0, not by alteration of the cell physiological state. We report that the interaction of HSV-1 with human fibroblasts can be altered significantly by transient treatment of cultures with sodium arsenite, an inducer of heat shock and oxidative stress, or gramicidin D, a toxin that selectively permeabilizes cell membranes, prior to infection. These regimens stimulated gene expression from IE-deficient HSV-1 mutants in a promoter sequence-independent manner and also overcame the replication defect of ICP0-null mutants. Reactivation of gene expression from quiescent HSV-1 genomes and the resumption of virus replication were observed following addition of arsenite or gramicidin D to cultures. Both agents induced reorganization of nuclear domain 10 structures, the sites of quiescent genomes, but appeared to do so through different mechanisms. The results demonstrate that the physiological state of the cell is important in determining the outcome of infection with IE-deficient HSV-1 and show novel methods for reactivating quiescent HSV-1 in fibroblasts with a high efficiency.
Collapse
|
21
|
Giovagnini L, Sitran S, Montopoli M, Caparrotta L, Corsini M, Rosani C, Zanello P, Dou QP, Fregona D. Chemical and Biological Profiles of Novel Copper(II) Complexes Containing S-Donor Ligands for the Treatment of Cancer. Inorg Chem 2008; 47:6336-43. [DOI: 10.1021/ic800404e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Sanchez R, Riddle M, Woo J, Momand J. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci 2008; 17:473-81. [PMID: 18287280 DOI: 10.1110/ps.073252408] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein cysteine thiols can be divided into four groups based on their reactivities: those that form permanent structural disulfide bonds, those that coordinate with metals, those that remain in the reduced state, and those that are susceptible to reversible oxidation. Physicochemical parameters of oxidation-susceptible protein thiols were organized into a database named the Balanced Oxidation Susceptible Cysteine Thiol Database (BALOSCTdb). BALOSCTdb contains 161 cysteine thiols that undergo reversible oxidation and 161 cysteine thiols that are not susceptible to oxidation. Each cysteine was represented by a set of 12 parameters, one of which was a label (1/0) to indicate whether its thiol moiety is susceptible to oxidation. A computer program (the C4.5 decision tree classifier re-implemented as the J48 classifier) segregated cysteines into oxidation-susceptible and oxidation-non-susceptible classes. The classifier selected three parameters critical for prediction of thiol oxidation susceptibility: (1) distance to the nearest cysteine sulfur atom, (2) solvent accessibility, and (3) pKa. The classifier was optimized to correctly predict 136 of the 161 cysteine thiols susceptible to oxidation. Leave-one-out cross-validation analysis showed that the percent of correctly classified cysteines was 80.1% and that 16.1% of the oxidation-susceptible cysteine thiols were incorrectly classified. The algorithm developed from these parameters, named the Cysteine Oxidation Prediction Algorithm (COPA), is presented here. COPA prediction of oxidation-susceptible sites can be utilized to locate protein cysteines susceptible to redox-mediated regulation and identify possible enzyme catalytic sites with reactive cysteine thiols.
Collapse
Affiliation(s)
- Ricardo Sanchez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032, USA
| | | | | | | |
Collapse
|
23
|
Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer Drugs 2008; 19:125-32. [PMID: 18176108 DOI: 10.1097/cad.0b013e3282f2bdff] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Effective drugs are urgently needed for the treatment of advanced neuroblastoma refractory to conventional chemotherapy. Pyrrolidine dithiocarbamate (PDTC) is a copper-binding ligand, which showed cytotoxicity on many human tumor cells after binding with copper ions. In this study, we synthesized a copper-PDTC complex, which was characterized as a Cu(PDTC)2 complex, with elemental analyses (Fourier transform infrared, electrospray ionization mass spectra, and ultraviolet-visible spectroscopy). The Cu(PDTC)2 complex suppressed the proliferation of BE(2)C cells, a human neuroblastoma cell line, with an IC50 of 8.0 micromol/l, which was more potent than cisplatin (IC50 of 80 micromol/l). Treatment of BE(2)C cells with the Cu(PDTC)2 complex caused the S-phase arrest of cell cycle progression, cellular apoptosis, and necrosis, and increased the expression of p53 protein. The Cu(PDTC)2 complex holds potential as a new drug for the treatment of refractory neuroblastoma in children.
Collapse
|
24
|
Chen J, Du C, Kang J, Wang J. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem Biol Interact 2008; 171:26-36. [DOI: 10.1016/j.cbi.2007.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 01/13/2023]
|
25
|
Du T, Ciccotosto GD, Cranston GA, Kocak G, Masters CL, Crouch PJ, Cappai R, White AR. Neurotoxicity from glutathione depletion is mediated by Cu-dependent p53 activation. Free Radic Biol Med 2008; 44:44-55. [PMID: 18045546 DOI: 10.1016/j.freeradbiomed.2007.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 01/21/2023]
Abstract
Loss of intracellular neuronal glutathione (GSH) is an important feature of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The consequences of GSH depletion include increased oxidative damage to proteins, lipids, and DNA and subsequent cytotoxic effects. GSH is also an important modulator of cellular copper (Cu) homeostasis and altered Cu metabolism is central to the pathology of several neurodegenerative diseases. The cytotoxic effects of Cu in cells depleted of GSH are not well understood. We have previously reported that depletion of neuronal GSH levels results in cell death from trace levels of extracellular Cu due to elevated Cu(I)-mediated free radical production. In this study we further examined the molecular pathway of trace Cu toxicity in neurons and fibroblasts depleted of GSH. Treatment of primary cortical neurons or 3T3 fibroblasts with the glutathione synthetase inhibitor buthionine sulfoximine resulted in substantial loss of intracellular GSH and increased cytotoxicity. We found that both neurons and fibroblasts revealed increased expression and activation of p53 after depletion of GSH. The increased p53 activity was induced by extracellular trace Cu. Furthermore, we showed that in GSH-depleted cells, Cu induced an increase in oxidative stress resulting in DNA damage and activation of p53-dependent cell death. These findings may have important implications for neurodegenerative disorders that involve GSH depletion and aberrant Cu metabolism.
Collapse
Affiliation(s)
- Tai Du
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Caragounis A, Du T, Filiz G, Laughton K, Volitakis I, Sharples R, Cherny R, Masters C, Drew S, Hill A, Li QX, Crouch P, Barnham K, White A. Differential modulation of Alzheimer's disease amyloid beta-peptide accumulation by diverse classes of metal ligands. Biochem J 2007; 407:435-50. [PMID: 17680773 PMCID: PMC2275059 DOI: 10.1042/bj20070579] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biometals have an important role in AD (Alzheimer's disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the results are consistent with the effects being due to metal transport rather than the chelating ligand interacting directly with a receptor.
Collapse
Affiliation(s)
- Aphrodite Caragounis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Tai Du
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Gulay Filiz
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Katrina M. Laughton
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Irene Volitakis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Robyn A. Sharples
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Robert A. Cherny
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Colin L. Masters
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Simon C. Drew
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Andrew F. Hill
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Qiao-Xin Li
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Peter J. Crouch
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Kevin J. Barnham
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Anthony R. White
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Sarwar M, Ahmad S, Ahmad S, Ali S, Awan SA. Copper(II) complexes of pyrrolidine dithiocarbamate. TRANSIT METAL CHEM 2006. [DOI: 10.1007/s11243-006-0148-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Dou QP. Lessons learned from Art Pardee in cell cycle, science, and life. J Cell Physiol 2006; 209:663-9. [PMID: 17001679 DOI: 10.1002/jcp.20800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This essay is written to honor Dr Art Pardee's 85th birthday (July 13, 2006). In this essay, I have summarized the lessons I learned from Art and the cell-cycle research I performed in Art's laboratory during my postdoctoral training period. I have also summarized some research from my own laboratory that has been inspired by the lessons I learned from Art, including the interactions between cell cycle and cell death regulators and discovery of novel polyphenol- and copper-based proteasome inhibitors. Finally, I have discussed the potential use of these proteasome inhibitors in cancer prevention and treatment.
Collapse
Affiliation(s)
- Q Ping Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, 4100 John R. Road, Detroit, MI 48201, USA.
| |
Collapse
|
29
|
Gaspari P, Banerjee T, Malachowski WP, Muller AJ, Prendergast GC, DuHadaway J, Bennett S, Donovan AM. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2006; 49:684-92. [PMID: 16420054 PMCID: PMC2527235 DOI: 10.1021/jm0508888] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A screen of indole-based structures revealed the natural product brassinin to be a moderate inhibitor of indoleamine 2,3-dioxygenase (IDO), a new cancer immunosuppression target. A structure-activity study was undertaken to determine which elements of the brassinin structure could be modified to enhance potency. Three important discoveries have been made, which will impact future IDO inhibitor development: (i) The dithiocarbamate portion of the brassinin lead is a crucial moiety, which may be binding to the heme iron of IDO; (ii) an indole ring is not necessary for IDO inhibition; and (iii) substitution of the S-methyl group of brassinin with large aromatic groups provides inhibitors that are three times more potent in vitro than the most commonly used IDO inhibitor, 1-methyl-tryptophan.
Collapse
Affiliation(s)
- Paul Gaspari
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010-2899
| | - Tinku Banerjee
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096 USA
| | - William P. Malachowski
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010-2899
- Address correspondence regarding the chemistry to William P. Malachowski at the Department of Chemistry, Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, PA 19010-2899; phone: 610-526-5016; fax: 610-526-5086; e-mail: . Address correspondence regarding the biology to Alexander J. Muller or George C. Prendergast at Lankenau Institute for Medical Research, Wynnewood, PA 19010; phone: 610-645-8034; fax: 610-645-2095; e-mail:
| | - Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096 USA
- Address correspondence regarding the chemistry to William P. Malachowski at the Department of Chemistry, Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, PA 19010-2899; phone: 610-526-5016; fax: 610-526-5086; e-mail: . Address correspondence regarding the biology to Alexander J. Muller or George C. Prendergast at Lankenau Institute for Medical Research, Wynnewood, PA 19010; phone: 610-645-8034; fax: 610-645-2095; e-mail:
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096 USA
- Address correspondence regarding the chemistry to William P. Malachowski at the Department of Chemistry, Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, PA 19010-2899; phone: 610-526-5016; fax: 610-526-5086; e-mail: . Address correspondence regarding the biology to Alexander J. Muller or George C. Prendergast at Lankenau Institute for Medical Research, Wynnewood, PA 19010; phone: 610-645-8034; fax: 610-645-2095; e-mail:
| | - James DuHadaway
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096 USA
| | - Shauna Bennett
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010-2899
| | - Ashley M. Donovan
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010-2899
| |
Collapse
|
30
|
Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 2005; 7:R897-908. [PMID: 16280039 PMCID: PMC1410741 DOI: 10.1186/bcr1322] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/28/2005] [Accepted: 08/26/2005] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper.
Collapse
Affiliation(s)
- Kenyon G Daniel
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Di Chen
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Shirley Orlu
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Qiuzhi Cindy Cui
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Fred R Miller
- The Breast Cancer Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Q Ping Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
31
|
Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 2005; 79:8014-23. [PMID: 15956547 PMCID: PMC1143712 DOI: 10.1128/jvi.79.13.8014-8023.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-L-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xiaoning Si
- Department of Pathology and Laboratory Medicine, The James HoggiCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Ostrakhovitch EA, Cherian MG. Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys 2004; 423:351-61. [PMID: 15001399 DOI: 10.1016/j.abb.2004.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Revised: 01/11/2004] [Indexed: 12/24/2022]
Abstract
Previous studies have suggested that cells may differ in their response to metal stress. This study was undertaken to investigate the role of PI3K/Akt signaling pathway in metal resistance in human breast cancer epithelial cells with different p53 and estrogen receptor status. Exposure to copper and zinc increased Akt phosphorylation with its nuclear localization only in MDA-MB-231 cells with no estrogen receptor and mutated p53. Cyclin D1 expression and cell-cycle progression followed the metal-induced Akt phosphorylation. Treatment with LY294002 abrogated these effects, suggesting the essential role of PI3-kinase. In contrast, in MCF-7 cells with wild type p53 and estrogen receptor, there was no change in Akt activation, while suppression of p53 activity by pifithrin-alpha increased phosphorylation of Akt after the treatment with copper. In MCF-7 cells, the metal treatment increased the phosphorylation of p53 at serine 15, up-regulated p21 expression, and resulted in cell-cycle arrest in G1 phase with apoptosis. These results demonstrate that copper-induced apoptosis in MCF-7 cells is p53 dependent, whereas the metal resistance in MDA-MB-231 cells may be due to activation of Akt in the absence of a functional p53.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, London, Ont., Canada N6A5C1.
| | | |
Collapse
|
34
|
Sun XZ, Vinci C, Makmura L, Han S, Tran D, Nguyen J, Hamann M, Grazziani S, Sheppard S, Gutova M, Zhou F, Thomas J, Momand J. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Antioxid Redox Signal 2003; 5:655-65. [PMID: 14580323 DOI: 10.1089/152308603770310338] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The p53 tumor suppressor protein is susceptible to oxidation, which prevents it from binding to its DNA response element. The goal of the current research was to determine the nature of the cysteine residue thiol oxidation that prevents p53 from binding its DNA target and its effect on p53 structure. Recombinant p53, purified in the presence of the reducing agent dithiothreitol (DTT), contains five free thiol groups on the surface of the protein. In the absence of DTT, p53 contains only four thiol groups, indicating that an average of one surface thiol group is readily susceptible to oxidation. Sulfite-mediated disulfide bond cleavage followed by reaction with 2-nitro-5-thiosulfobenzoate showed that oxidized p53 contains a single disulfide bond per monomer. By atomic force microscopy, we determined that reduced p53 binds to a double-stranded DNA containing the p53 promoter element of the MDM2 gene. The DNA-bound reduced p53 has an average cross-sectional diameter of 8.61 nm and a height of 4.12 nm. The amount of oxidized p53 that bound to the promoter element was ninefold lower, and it has an 18% larger average cross-sectional diameter. Electromobility shift assays showed that binding of oxidized p53 to DNA was enhanced upon addition of DTT, indicating that oxidation is reversible. The possibility that oxidized p53 contained significant amounts of sulfenic (-SOH), sulfinic (-SO2H), or sulfonic acid (-SO3H) was ruled out. Gel filtration chromatography indicated that oxidation increases the percentage of p53 monomers and high-molecular-weight oligomers (>1,000 kDa) relative to tetrameric p53. Protein modeling studies suggest that a mixed disulfide glutathione adduct on Cys182 could account for the observed stoichiometry of oxidized thiols and structural changes. The glutathione adduct may prevent proper helix-helix interaction within the DNA binding domain and contribute to tetramer dissociation.
Collapse
Affiliation(s)
- Xiu Zhu Sun
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Atanasov AG, Tam S, Röcken JM, Baker ME, Odermatt A. Inhibition of 11 beta-hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochem Biophys Res Commun 2003; 308:257-62. [PMID: 12901862 DOI: 10.1016/s0006-291x(03)01359-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Division of Nephrology and Hypertension, Department of Clinical Research, University of Berne, Berne CH-3010, Switzerland
| | | | | | | | | |
Collapse
|