1
|
Allio R, Teullet S, Lutgen D, Magdeleine A, Koual R, Tilak MK, de Thoisy B, Emerling CA, Lefébure T, Delsuc F. Transcriptomic Data Reveal Divergent Paths of Chitinase Evolution Underlying Dietary Convergence in Anteaters and Pangolins. Genome Biol Evol 2025; 17:evaf002. [PMID: 39780438 PMCID: PMC11789784 DOI: 10.1093/gbe/evaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Ant-eating mammals represent a textbook example of convergent evolution. Among them, anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth loss, elongated skulls, protruding tongues, and hypertrophied salivary glands producing large amounts of saliva. However, comparative genomic analyses have shown that anteaters and pangolins differ in their chitinase acidic gene (CHIA) repertoires, which potentially degrade the chitinous exoskeletons of ingested ants and termites. While the southern tamandua (Tamandua tetradactyla) harbors four functional CHIA paralogs (CHIA1-4), Asian pangolins (Manis spp.) have only one functional paralog (CHIA5). Here, we performed a comparative transcriptomic analysis of salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating species and close relatives. Our results suggest that salivary glands play an important role in adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in insectivorous species. Furthermore, convergently evolved pangolins and anteaters express different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed in all major digestive organs, whereas in the southern tamandua, all four functional paralogs are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas and for CHIA3 and CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate that divergent molecular mechanisms within the chitinase acidic gene family underlie convergent adaptation to the ant-eating diet in pangolins and anteaters. This study highlights the role of historical contingency and molecular tinkering of the chitin digestive enzyme toolkit in this classic example of convergent evolution.
Collapse
Affiliation(s)
- Rémi Allio
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Dave Lutgen
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Rachid Koual
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Christopher A Emerling
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, USA
| | - Tristan Lefébure
- LEHNA UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | | |
Collapse
|
2
|
Kuo CC, Huang WH, Yang SY, Chang YC, Chang HW, Jeng CR, Lee JJ, Liao AT. Prognostic significance of YKL-40 expression in canine cutaneous mast cell tumors. BMC Vet Res 2024; 20:537. [PMID: 39614259 DOI: 10.1186/s12917-024-04385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND YKL-40, a secretory glycoprotein, is involved in tumor cell proliferation, metastasis, and angiogenesis in human cancers. Its overexpression has been correlated with unfavorable prognosis in many human cancers. In veterinary medicine, elevated YKL-40 levels in the serum of canine cutaneous mast cell tumors (cMCTs) were observed in our previous study. However, the expression pattern of YKL-40 in canine cMCT tissues, along with its association with clinical and pathological features, is still unknown. This study aims to retrospectively investigate the expression level of YKL-40 in the tissues of canine cMCTs and its correlation with clinical features, pathological characteristics, and clinical outcomes. Forty formalin-fixed paraffin-embedded cMCT tissues collected from forty dogs were diagnosed as low-grade (n = 20) or high-grade s(n = 20) MCT according to the Kiupel grading system. The expression level of YKL-40 in cMCT tissues was investigated using immunohistochemical staining and immunoreactivity score (IRS). RESULTS YKL-40 was expressed in all cMCTs at different levels, with significantly stronger expression in low-grade cMCTs compared to high-grade cMCTs. The expression level was also associated with tumor diameter, histological grade, mitotic counts, vessel density, and survival of cMCTs. The overall survival of cMCT dogs showed significant differences (p < 0.01) among mild (n = 15, MST 219 days), moderate (n = 19, MST not reached), and high (n = 6, MST not reached) YKL-40 expression groups. Among low-grade cMCTs, overall survival was significantly different between mild YKL-40 expression (MST 319 days) and moderate to high YKL-40 (MST not reached) expression (p < 0.01). In high-grade cMCTs, overall survival was not correlated with YKL-40 expression (p = 0.6589). CONCLUSIONS This study found that the YKL-40 expression level was significantly stronger in low-grade than in high-grade canine cutaneous mast cell tumors and was associated with various clinical and pathological features. Stronger YKL-40 expression level correlated with longer survival time, especially in low-grade cMCTs. Therefore, YKL-40 could serve as a prognostic marker for cMCTs.
Collapse
Affiliation(s)
- Chien-Chun Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
- Animal Cancer Treatment Center, National Taiwan University Veterinary Hospital, National Taiwan University, No. 153, Sec. 3, Keelung Road, Taipei, 106328, Taiwan (ROC)
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Su-Ya Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Jih-Jong Lee
- Animal Cancer Treatment Center, National Taiwan University Veterinary Hospital, National Taiwan University, No. 153, Sec. 3, Keelung Road, Taipei, 106328, Taiwan (ROC)
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Albert Taiching Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC).
| |
Collapse
|
3
|
Qu Z, Lu Y, Ran Y, Xu D, Guo Z, Cheng M. Chitinase‑3 like‑protein‑1: A potential predictor of cardiovascular disease (Review). Mol Med Rep 2024; 30:176. [PMID: 39129301 PMCID: PMC11332322 DOI: 10.3892/mmr.2024.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Chitinase‑3 like‑protein‑1 (CHI3L1), a glycoprotein belonging to the glycoside hydrolase family 18, binds to chitin; however, this protein lacks chitinase activity. Although CHI3L1 is not an enzyme capable of degrading chitin, it plays significant roles in abnormal glucose and lipid metabolism, indicating its involvement in metabolic disorders. In addition, CHI3L1 is considered a key player in inflammatory diseases, with clinical data suggesting its potential as a predictor of cardiovascular disease. CHI3L1 regulates the inflammatory response of various cell types, including macrophages, vascular smooth muscle cells and fibroblasts. In addition, CHI3L1 participates in vascular remodeling and fibrosis, contributing to the pathogenesis of cardiovascular disease. At present, research is focused on elucidating the role of CHI3L1 in cardiovascular disease. The present systematic review was conducted to comprehensively evaluate the effects of CHI3L1 on cardiovascular cells, and determine the potential implications in the occurrence and progression of cardiovascular disease. The present study may further the understanding of the involvement of CHI3L1 in cardiovascular pathology, demonstrating its potential as a therapeutic target or biomarker in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Zhuojian Qu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yirui Lu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yutong Ran
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Donghua Xu
- Central Laboratory of The First Affiliated Hospital, Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
4
|
Jiang P, Hu S, Zheng C, Liu Y, Zhang Q, Dou L. Cryopreservation of human teeth using vitrification method with cryoprotectant cocktails and N-acetylcysteine for banking and clinical applications. Cryobiology 2024; 117:104959. [PMID: 39182712 DOI: 10.1016/j.cryobiol.2024.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Preserving freshly-extracted healthy human teeth offers an optional resource for potential tooth transplantation and cell therapy. This study aimed to assess the impact of vitrification, utilizing a blend of cryoprotectant agents and N-acetylcysteine (NAC), on the cryopreservation of periodontal ligament tissues, and investigate the underlying mechanisms of NAC on the tooth cryopreservation. Periodontal ligament cells were isolated from freshly-extracted healthy human permanent teeth, and cell sheets of PDLCs were fabricated. The samples including cell sheets, freshly-extracted human and rat teeth were cryopreserved with or without NAC for three months. The viability, ROS level, gene expressions and microstructure of PDLCs within cell sheets were assessed. The expression of SOD-2, Caspase3, LC3A/B and Catalase were evaluated through western blotting. Histological assessments of cryopreserved cell sheets and teeth were conducted. PDLCs were isolated from cryopreserved teeth, and their immunophenotype and differentiation ability were evaluated. The data was analyzed using one-way analysis of variance. The vitrification method showed good performance in preserving the viability and differentiation potential of PDLCs. Cryopreservation supplemented with NAC improved the survival rate of PDLCs, enhanced osteogenic differentiation ability, upregulated the expression of SOD-2 and Catalase, and inhibited cell apoptosis. Additionally, mRNA sequencing analysis revealed a significant activation of the PI3K-AKT pathway following cryopreservation via vitrification. Adding a PI3K-AKT activator improved the survival rates of PDLCs post-cryopreservation. The vitrification strategy combining various CPAs and NAC proved to be feasible for tooth cryopreservation. Targeting the PI3K-AKT pathway may improve the efficacy of tooth cryopreservation.
Collapse
Affiliation(s)
- Peiru Jiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shan Hu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chengxiang Zheng
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yinzhuo Liu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qixuan Zhang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lei Dou
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
5
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Hu X, Liu W, Liu J, Wang B, Qin X. Research advances in serum chitinase-3-like protein 1 in liver fibrosis. Front Med (Lausanne) 2024; 11:1372434. [PMID: 38962736 PMCID: PMC11219575 DOI: 10.3389/fmed.2024.1372434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
While liver fibrosis remains a serious, progressive, chronic liver disease, and factors causing damage persist, liver fibrosis may develop into cirrhosis and liver cancer. However, short-term liver fibrosis is reversible. Therefore, an early diagnosis of liver fibrosis in the reversible transition phase is important for effective treatment of liver diseases. Chitinase-3-like protein 1 (CHI3L1), an inflammatory response factor that participates in various biological processes and is abundant in liver tissue, holds promise as a potential biomarker for liver diseases. Here, we aimed to review research developments regarding serum CHI3L1 in relation to the pathophysiology and diagnosis of liver fibrosis of various etiologies, providing a reference for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Xingwei Hu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Wenhan Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Bojian Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Kazakova M, Ivanova T, Dikov D, Molander D, Simitchiev K, Sbirkov Y, Dzhambov AM, Sarafian V. Strong YKL-40 expression in the invasive tumor front of colorectal cancer-A pilot study. Heliyon 2024; 10:e27570. [PMID: 38495157 PMCID: PMC10940939 DOI: 10.1016/j.heliyon.2024.e27570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Тhe poor prognosis of patients initially diagnosed at an advanced stage of colorectal cancer (CRC) and the heterogeneity within the same tumor stage define the need for additional predictive biomarkers. Tumor buds are proposed as a poor prognostic factor for CRC, however, they are still not implemented into routine pathology reporting. In turn, the chitinase-3-like protein 1 (CHI3L1) also known as YKL-40, is regarded as a candidate circulating biomarker and therapeutic target in CRC. The aim of our study was to investigate tissue YKL-40 localization and tumor budding in CRC. Thirty-one CRC patients and normal colonic tissues were examined. The correlation between YKL-40 levels, tumor budding and clinocopathological parameters was evaluated by polychoric correlation analysis. The immunohistochemical assessment revealed high YKL-40 expression in CRC in contrast to normal mucosa. Specifically, intense YKL-40 staining was detected in the front of tumor invasion compared with tumor parenchyma and noncancerous tissue. We present novel data for increased YKL-40 expression in tumor buds within the front of tumor invasion. We assume that the combination of this morphological parameter with the tissue level of the pleotropic YKL-40 glycoprotein could serve as a future prognostic biomarker for CRC stratification and treatment.
Collapse
Affiliation(s)
- Maria Kazakova
- Department of Medical Biology, Medical University- Plovdiv, Plovdiv, 4000, Bulgaria
| | - Tsvetomira Ivanova
- Department of Medical Biology, Medical University- Plovdiv, Plovdiv, 4000, Bulgaria
| | - Dorian Dikov
- Department of General and Clinical Pathology, Grand Hospital de l'Este Francilien, Medical Faculty, Jossigny, 77600, France
| | - Diana Molander
- Department of Medical Biology, Medical University- Plovdiv, Plovdiv, 4000, Bulgaria
| | - Kiril Simitchiev
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, Plovdiv, 4000, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University- Plovdiv, Plovdiv, 4000, Bulgaria
| | - Angel M. Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University- Plovdiv, Plovdiv, 4000, Bulgaria
| |
Collapse
|
8
|
Tan AW, Tong X, Alvarez-Cubela S, Chen P, Santana AG, Morales AA, Tian R, Infante R, Nunes de Paiva V, Kulandavelu S, Benny M, Dominguez-Bendala J, Wu S, Young KC, Rodrigues CO, Schmidt AF. c-Myc Drives inflammation of the maternal-fetal interface, and neonatal lung remodeling induced by intra-amniotic inflammation. Front Cell Dev Biol 2024; 11:1245747. [PMID: 38481391 PMCID: PMC10933046 DOI: 10.3389/fcell.2023.1245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.
Collapse
Affiliation(s)
- April W. Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Silvia Alvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pingping Chen
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Aline Guimarães Santana
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Runxia Tian
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Rae Infante
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Vanessa Nunes de Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Merline Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Karen C. Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Claudia O. Rodrigues
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Augusto F. Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| |
Collapse
|
9
|
Blazevic N, Rogic D, Pelajic S, Miler M, Glavcic G, Ratkajec V, Vrkljan N, Bakula D, Hrabar D, Pavic T. YKL-40 as a biomarker in various inflammatory diseases: A review. Biochem Med (Zagreb) 2024; 34:010502. [PMID: 38125621 PMCID: PMC10731731 DOI: 10.11613/bm.2024.010502] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/04/2023] [Indexed: 12/23/2023] Open
Abstract
YKL-40 or Chitinase-3-Like Protein 1 (CHI3L1) is a highly conserved glycoprotein that binds heparin and chitin in a non-enzymatic manner. It is a member of the chitinase protein family 18, subfamily A, and unlike true chitinases, YKL-40 is a chitinase-like protein without enzymatic activity for chitin. Although its accurate function is yet unknown, the pattern of its expression in the normal and disease states suggests its possible engagement in apoptosis, inflammation and remodeling or degradation of the extracellular matrix. During an inflammatory response, YKL-40 is involved in a complicated interaction between host and bacteria, both promoting and attenuating immune response and potentially being served as an autoantigen in a vicious circle of autoimmunity. Based on its pathophysiology and mechanism of action, the aim of this review was to summarize research on the growing role of YKL-40 as a persuasive biomarker for inflammatory diseases' early diagnosis, prediction and follow-up (e.g., cardiovascular, gastrointestinal, endocrinological, immunological, musculoskeletal, neurological, respiratory, urinary, infectious) with detailed structural and functional background of YKL-40.
Collapse
Affiliation(s)
- Nina Blazevic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Stipe Pelajic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marijana Miler
- Department of Clinical Chemistry, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Glavcic
- Department of Surgery, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Valentina Ratkajec
- Department of Gastroenterology, General Hospital Virovitica, Virovitica, Croatia
| | - Nikolina Vrkljan
- Department of Internal Medicine, Intensive Care Unit, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dejan Bakula
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Davor Hrabar
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Tajana Pavic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| |
Collapse
|
10
|
Takada K, Suzukawa M, Tashimo H, Ohshima N, Fukutomi Y, Kobayashi N, Taniguchi M, Ishii M, Akishita M, Ohta K. Serum MMP3 and IL1-RA levels may be useful biomarkers for detecting asthma and chronic obstructive pulmonary disease overlap in patients with asthma. World Allergy Organ J 2023; 16:100840. [PMID: 38020287 PMCID: PMC10663683 DOI: 10.1016/j.waojou.2023.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Asthma and chronic obstructive pulmonary disease (COPD) overlap (ACO) is characterized by concurrent features of asthma and COPD. Since disease pathogenesis, severities, and treatments differ between asthma and ACO, it is important to differentiate them. Objective To clarify and compare the characteristics of ACO and asthma and identify the serum biomarkers for differentiating them, especially in older patients. Methods This study used the data of 639 participants from the nationwide cohort study, the NHOM-Asthma study, an asthma registry in Japan, with complete information on smoking history, respiratory function, and serum biomarkers. ACO was defined as the self-reported comorbidity of COPD or emphysema, or with obstructive pulmonary function and smoking history (pack-years≥10). The clinical characteristics of patients with ACO and asthma without COPD were compared. The serum biomarkers for differentiation were examined using receiver operating characteristic curves and multivariable analysis. The associations between the biomarkers and age were also analyzed. Results Of the 639 asthma patients, 125 (19.6%) were diagnosed with ACO; these patients were older and male-dominant and had a higher prevalence of comorbidities such as hypertension, diabetes, and stroke. Among the serum biomarkers that were significantly different between ACO and asthma without COPD, the YKL-40/CHI3L1, MMP3, and IL-1RA levels showed a high area under the curve for discriminating ACO. Only the MMP3 and IL-1RA levels were significantly higher among ACO patients, regardless of age and sex; the YKL-40/CHI3L1 levels were not different due to the effect of age. Conclusion MMP3 and IL-1RA may be useful serum biomarkers for distinguishing ACO from asthma.
Collapse
Affiliation(s)
- Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Hiroyuki Tashimo
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Nobuharu Ohshima
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yuma Fukutomi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | | | - Masami Taniguchi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, 252-0392, Japan
- Shonan Kamakura General Hospital, Kanagawa, 247-8533, Japan
| | - Masaki Ishii
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
- Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, 204-8522, Japan
| |
Collapse
|
11
|
Yu R, Liu X, Deng X, Li S, Wang Y, Zhang Y, Ke D, Yan R, Wang Q, Tian X, Li M, Zeng X, Hu C. Serum CHI3L1 as a biomarker of interstitial lung disease in rheumatoid arthritis. Front Immunol 2023; 14:1211790. [PMID: 37662936 PMCID: PMC10469784 DOI: 10.3389/fimmu.2023.1211790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Interstitial lung disease (ILD) is a relatively prevalent extra-articular manifestation of rheumatoid arthritis (RA) and contributes to significant morbidity and mortality. This study aimed to analyze the association between chitinase-3 like-protein-1(CHI3L1) and the presence of RA-ILD. Methods A total of 239 RA patients fulfilling the American Rheumatism Association (ACR) 1987 revised criteria were enrolled and subclassified as RA-ILD and RA-nILD based on the results of high-resolution computed tomography scans (HRCT) of the chest. The disease activity of RA was assessed by Disease Activity Score for 28 joints (DAS28) and categorized as high, moderate, low, and remission. Chemiluminescence immunoassays were applied to determine the serum levels of CHI3L1. Univariate analysis was performed and the receiver operating characteristics (ROC) curves were plotted to evaluate the correlation between RA-ILD and CHI3L1. Results Among the eligible RA patients studied, 60 (25.1%) patients were diagnosed with RA-ILD. Compared with RA-nILD, RA patients with ILD had significantly higher median age (median [IQR], 68.00 [62.00-71.75] vs 53.00 [40.00-63.00], p<0.001) and a higher proportion of males (21 (35.0%) vs 30 (16.8%), p=0.003). Notably, differences in DAS28 scores between the two groups were not observed. The serum level of CHI3L1 was significantly higher in RA-ILD patients (median [IQR], 69.69 [44.51-128.66] ng/ml vs 32.19 [21.63-56.99] ng/ml, p<0.001). Furthermore, the areas under the curve (AUC) of CHI3L1 attained 0.74 (95% confidence interval [CI], 0.68-0.81, p<0.001) in terms of identifying patients with RA-ILD from those without ILD. Similar trends were seen across the spectrum of disease activity based on DAS28-ESR. Conclusion Our findings of elevated serum CHI3L1 levels in RA-ILD patients suggest its possible role as a biomarker to detect RA-ILD noninvasively.
Collapse
Affiliation(s)
- Rui Yu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaomin Liu
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Xiaoyue Deng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Yifei Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Dan Ke
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Rui Yan
- Department of Rheumatology, Shunyi District Hospital, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
12
|
Zhang X, Peng W, Fan J, Luo R, Liu S, Du W, Luo C, Zheng J, Pan X, Ge H. Regulatory role of Chitinase 3-like 1 gene in papillary thyroid carcinoma proved by integration analyses of single-cell sequencing with cohort and experimental validations. Cancer Cell Int 2023; 23:145. [PMID: 37480002 PMCID: PMC10362555 DOI: 10.1186/s12935-023-02987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common thyroid carcinomas. The gross extrathyroidal extension and extensive metastases of PTC lead to high rates of recurrence and poor clinical outcomes. However, the mechanisms underlying PTC development are poorly understood. In this study, using single-cell RNA sequencing, the transcriptome profiles of two PTC patients were addressed, including PTC1 with low malignancy and good prognosis and PTC2 with high malignancy and poor prognosis. We found that epithelial subcluster Epi02 was the most associated with the malignant development of PTC cells, with which the fold change of Chitinase 3-like 1 (CHI3L1) is on the top of the differentially expressed genes between PTC1 and PTC2 (P < 0.001). However CHI3L1 is rarely investigated in PTC as far. We then studied its role in PTC with a series of experiments. Firstly, qRT-PCR analysis of 14 PTC patients showed that the expression of CHI3L1 was positively correlated with malignancy. In addition, overexpression or silencing of CHI3L1 in TPC-1 cells, a PTC cell line, cultured in vitro showed that the proliferation, invasion, and metastasis of the cells were promoted or alleviated by CHI3L1. Further, immunohistochemistry analysis of 110 PTC cases revealed a significant relationship between CHI3L1 protein expression and PTC progression, especially the T (P < 0.001), N (P < 0.001), M stages (P = 0.007) and gross ETE (P < 0.001). Together, our results prove that CHI3L1 is a positive regulator of malignant development of PTC, and it promotes proliferation, invasion, and metastasis of PTC cells. Our study improves understanding of the molecular mechanisms underlying the progression of PTC and provides new insights for the clinical diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jie Fan
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Ruihua Luo
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Shanting Liu
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wei Du
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jiawen Zheng
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China.
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China.
| |
Collapse
|
13
|
Baeza-Kallee N, Bergès R, Hein V, Cabaret S, Garcia J, Gros A, Tabouret E, Tchoghandjian A, Colin C, Figarella-Branger D. Deciphering the Action of Neuraminidase in Glioblastoma Models. Int J Mol Sci 2023; 24:11645. [PMID: 37511403 PMCID: PMC10380381 DOI: 10.3390/ijms241411645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) contains cancer stem cells (CSC) that are resistant to treatment. GBM CSC expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity and tumorigenesis of GBM CSC. Our aim was to characterize the resulting effects of neuraminidase that removes A2B5 in order to target GBM CSC. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3 and GBM CSC lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM CSC lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM CSC lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Victoria Hein
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Stéphanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, InstitutAgro, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jeremy Garcia
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Abigaëlle Gros
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Emeline Tabouret
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service de Neurooncologie, 13005 Marseille, France
| | | | - Carole Colin
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | |
Collapse
|
14
|
Kim AD, Kui L, Kaufmann B, Kim SE, Leszczynska A, Feldstein AE. Myeloid-specific deletion of chitinase-3-like 1 protein ameliorates murine diet-induced steatohepatitis progression. J Mol Med (Berl) 2023; 101:813-828. [PMID: 37166517 PMCID: PMC10300183 DOI: 10.1007/s00109-023-02325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Chitinase-3-like 1 protein (CHI3L1) is a secreted glycoprotein, strongly correlated with fibrosis severity in chronic liver diseases including non-alcoholic steatohepatitis (NASH). However, the mechanisms by which CHI3L1 contributes to fibrogenesis remain undefined. Here, we showed that infiltrating monocyte-derived liver macrophages represent the main source of CHI3L1 in murine NASH. We developed a floxed CHI3L1 knock-out (KO) mouse to further study the cell-specific role of CHI3L1 ablation. Wildtype (WT) and myeloid cell-specific CHI3L1 KO mice (CreLyz) were challenged with a highly inflammatory and fibrotic dietary model of NASH by administering choline-deficient high-fat diet for 10 weeks. Macrophage accumulation and inflammatory cell recruitment were significantly ameliorated in the CreLyz group compared to WT (F4/80 IHC p < 0.0001, CD11b IHC p < 0.0001). Additionally, hepatic stellate cell (HSC) activation and fibrosis were strongly decreased in this group (α-SMA IHC p < 0.0001, picrosirius red staining p < 0.0001). In vitro studies were performed stimulating bone marrow derived macrophages, THP-1 (human monocytes) and LX2 (human HSCs) cells with recombinant CHI3L1 to dissect its relationship with fibrosis development. Results showed an important role of CHI3L1 regulating fibrosis-promoting factors by macrophages (TGFB1 p < 0.05, CTGF p < 0.01) while directly activating HSCs (ACTA2 p < 0.01, COL1A1 p < 0.01), involving IL13Rα2 as the potential mediator. Our findings uncovered a novel role of CHI3L1 derived from liver macrophages in NASH progression and identifies this protein as a potential anti-fibrotic therapeutic target. KEY MESSAGES: We showed that CHI3L1 expression is increased in murine CDAA-HFAT diet NASH model, and that infiltrating macrophages are a key source of CHI3L1 production. Myeloid cell-specific CreLyz CHI3L1 knock-out in mice fed with CDAA-HFAT diet improved the NASH phenotype, with significantly reduced accumulation of pro-inflammatory macrophages and neutrophils compared with WT group. DEG and qPCR analysis of genes in CreLyz CHI3L1 knock-out mouse liver showed the mechanistic role of CHI3L1 in cellular chemotaxis. HSC is directly activated by CHI3L1 via receptor IL13Rα2, leading to upregulation of collagen deposition and pro-fibrotic gene, TIMP-1 and TIMP-2 release in whole liver. Direct stimulation of macrophages with CHI3L1 leads to upregulated expression of HSC-activation factors, suggesting its role in modulating macrophage-HSC crosstalk.
Collapse
Affiliation(s)
- Andrea D Kim
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Lin Kui
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Benedikt Kaufmann
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sung Eun Kim
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Aleksandra Leszczynska
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA.
| |
Collapse
|
15
|
Zhang W, Zhou X, Yin J, Zhao W, Huang C, Zhang C, Wan K, Li M, Zhu X, Sun Z. YKL-40 as a novel biomarker related to white matter damage and cognitive impairment in patients with cerebral small vessel disease. Brain Res 2023; 1807:148318. [PMID: 36898474 DOI: 10.1016/j.brainres.2023.148318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
YKL-40 is a novel neuroinflammatory marker associated with white matter damage and cognitive dysfunction. 110 CSVD patients, including 54 with mild cognitive impairment (CSVD-MCI), 56 with no cognitive impairment (CSVD-NCI), and 40 healthy controls (HCs) underwent multimodal magnetic resonance examination, serum YKL-40 level detection and cognitive function assessment to investigate the association between YKL-40 and white matter damage and cognitive impairment in cerebral small vessel disease (CSVD) patients. White matter hyperintensities volume was calculated using the Wisconsin White Matter Hyperintensity Segmentation Toolbox (W2MHS) for white matter macrostructural damage evaluation. For white matter microstructural damage evaluation, fractional anisotropy (FA) and mean diffusivity (MD) indices of the region of interest were analyzed based on diffusion tensor imaging (DTI) images using the Tract-Based Spatial Statistics (TBSS) pipeline. The serum YKL-40 level of CSVD was significantly higher than those of HCs, and the CSVD-MCI was higher than in HCs and CSVD-NCI. Furthermore, serum YKL-40 provided high diagnostic accuracy for CSVD and CSVD-MCI. The macroscopic and microstructure of white matter in CSVD-NCI and CSVD-MCI patients indicated different degrees of damage. Disruption of white matter macroscopic and microstructure was significantly associated with YKL-40 levels and cognition deficits. Moreover, the white matter damage mediated the associations between the increased serum YKL-40 levels and cognitive impairment. Our findings demonstrated that YKL-40 might be a potential biomarker of white matter damage in CSVD, whereas white matter damage was associated with cognitive impairment. Serum YKL-40 measurement provides complementary information regarding the neural mechanism of CSVD and its associated cognitive impairment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jiabin Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
| | - Chaojuan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Ozisik H, Yurekli BS, Suner A, Copur O, Sozmen EY, Ozbek SS, Karabulut AK, Simsir IY, Erdogan M, Cetinkalp S, Saygili F. High chitotriosidase and AGE levels in acromegaly: a case-control study. Hormones (Athens) 2023; 22:61-69. [PMID: 36241955 DOI: 10.1007/s42000-022-00409-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Acromegaly is associated with oxidative stress and inflammation parameters. Chitotriosidase (CHITO) is a marker of macrophage activation and plays a pivotal role in the activation of inflammatory and immunological responses. Our study aimed to determine CHITO,YKL-40, advanced glycation end product (AGE), and high-sensitivity C-reactive protein (hsCRP) levels to investigate malondialdehyde (MDA), catalase, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities and to evaluate any association of these parameters with carotid intima media thickness (cIMT) in patients with controlled acromegaly. METHODS Thirty controlled acromegaly patients and 41 age- and sex-matched control cases were studied. We obtained demographic data, hormonal and metabolic parameters, and cIMT. CHITO activity was measured with the fluorometric method of Chamoles et al. YKL-40 and hsCRP levels were measured using ELISA. AGEs were measured based on spectrofluorimetric detection. GSH-Px activity was determined by a colorimetric assay. MDA, SOD, and catalase activities were determined in hemolysis. RESULTS Higher CHITO, AGE, and hsCRP concentrations were observed in patients with acromegaly compared to controls. SOD levels were non-significantly higher in the acromegaly group, while catalase activities were lower in patients with acromegaly. Correlation analyses of CHITO, AGEs, YKL-40, hsCRP, MDA, catalase, GSH-Px, and SOD with metabolic, anthropometric, and laboratory parameters did not demonstrate any significant correlation (p > 0.05). There was no significant difference between groups with regard to cIMT levels. CONCLUSION This is the first study investigating CHITO and AGE levels in patients with acromegaly. Serum CHITO, AGE, and hsCRP levels in acromegalic patients were significantly increased. It may be important to evaluate CHITO, AGE, and hsCRP levels in acromegalic patients who are already under cardiometabolic surveillance due to risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Hatice Ozisik
- Department of Endocrinology and Metabolism, Ege University, Izmir, Turkey.
| | - Banu Sarer Yurekli
- Department of Endocrinology and Metabolism, Ege University, Izmir, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Ege University, Izmir, Turkey
| | - Oznur Copur
- Department of Medical Biochemistry, Ege University, Izmir, Turkey
| | | | | | | | | | - Mehmet Erdogan
- Department of Endocrinology and Metabolism, Ege University, Izmir, Turkey
| | - Sevki Cetinkalp
- Department of Endocrinology and Metabolism, Ege University, Izmir, Turkey
| | - Fusun Saygili
- Department of Endocrinology and Metabolism, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Inhibition of Chitinase-3-like-1 expression by K284 ameliorates lipopolysaccharide-induced acute liver injury through down regulation of CXCL3. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
18
|
Sustar AE, Strand LG, Zimmerman SG, Berg CA. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023; 223:iyac185. [PMID: 36576887 PMCID: PMC9910413 DOI: 10.1093/genetics/iyac185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.
Collapse
Affiliation(s)
- Anne E Sustar
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Liesl G Strand
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Sandra G Zimmerman
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| |
Collapse
|
19
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
20
|
Ahmad I, Wergeland S, Oveland E, Bø L. An Association of Chitinase-3 Like-Protein-1 With Neuronal Deterioration in Multiple Sclerosis. ASN Neuro 2023; 15:17590914231198980. [PMID: 38062768 PMCID: PMC10710113 DOI: 10.1177/17590914231198980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 12/18/2023] Open
Abstract
Elevated levels of Chitinase-3-like protein-1 (CHI3L1) in cerebrospinal fluid have previously been linked to inflammatory activity and disease progression in multiple sclerosis (MS) patients. This study aimed to investigate the presence of CHI3L1 in the brains of MS patients and in the cuprizone model in mice (CPZ), a model of toxic/metabolic demyelination and remyelination in different brain areas. In MS gray matter (GM), CHI3L1 was detected primarily in astrocytes and in a subset of pyramidal neurons. In neurons, CHI3L1 immunopositivity was associated with lipofuscin-like substance accumulation, a sign of cellular aging that can lead to cell death. The density of CHI3L1-positive neurons was found to be significantly higher in normal-appearing MS GM tissue compared to that of control subjects (p = .014). In MS white matter (WM), CHI3L1 was detected in astrocytes located within lesion areas, as well as in perivascular normal-appearing areas and in phagocytic cells from the initial phases of lesion development. In the CPZ model, the density of CHI3L1-positive cells was strongly associated with microglial activation in the WM and choroid plexus inflammation. Compared to controls, CHI3L1 immunopositivity in WM was increased from an early phase of CPZ exposure. In the GM, CHI3L1 immunopositivity increased later in the CPZ exposure phase, particularly in the deep GM region. These results indicate that CHI3L1 is associated with neuronal deterioration, pre-lesion pathology, along with inflammation in MS.
Collapse
Affiliation(s)
- Intakhar Ahmad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian MS-registry and biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute of Marine Research, IMR, Bergen, Norway
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
De Robertis M, Greco MR, Cardone RA, Mazza T, Marzano F, Mehterov N, Kazakova M, Belev N, Tullo A, Pesole G, Sarafian V, Signori E. Upregulation of YKL-40 Promotes Metastatic Phenotype and Correlates with Poor Prognosis and Therapy Response in Patients with Colorectal Cancer. Cells 2022; 11:cells11223568. [PMID: 36428997 PMCID: PMC9688424 DOI: 10.3390/cells11223568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nikolay Belev
- University Hospital Eurohospital, 4000 Plovdiv, Bulgaria
- Department of Propedeutics of Surgical Diseases, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| |
Collapse
|
22
|
Laurikka A, Vuolteenaho K, Toikkanen V, Rinne T, Leppänen T, Hämäläinen M, Tarkka M, Laurikka J, Moilanen E. Inflammatory Glycoprotein YKL-40 Is Elevated after Coronary Artery Bypass Surgery and Correlates with Leukocyte Chemotaxis and Myocardial Injury, a Pilot Study. Cells 2022; 11:3378. [PMID: 36359773 PMCID: PMC9653903 DOI: 10.3390/cells11213378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 01/06/2024] Open
Abstract
The aim of the present study was to investigate the levels of YKL-40 during and after coronary artery bypass grafting surgery (CABG) and to establish possible connections between YKL-40 and markers of oxidative stress, inflammation, and myocardial injury. Patients undergoing elective CABG utilizing cardiopulmonary bypass (CPB) were recruited into the study. Blood samples were collected at the onset of anesthesia, during surgery and post-operatively. Levels of YKL-40, 8-isoprostane, interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and troponin T (TnT) were measured by immunoassay. YKL-40 levels increased significantly 24 h after CPB. Positive correlation was seen between post-operative TnT and YKL-40 levels (r = 0.457, p = 0.016) and, interestingly, baseline YKL-40 predicted post-operative TnT increase (r = 0.374, p = 0.050). There was also a clear association between YKL-40 and the chemotactic factors MCP-1 (r = 0.440, p = 0.028) and IL-8 (r = 0.484, p = 0.011) linking YKL-40 to cardiac inflammation and fibrosis following CABG. The present results show, for the first time, that YKL-40 is associated with myocardial injury and leukocyte-activating factors following coronary artery bypass surgery. YKL-40 may be a factor and/or biomarker of myocardial inflammation and injury and subsequent fibrosis following heart surgery.
Collapse
Affiliation(s)
- Antti Laurikka
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Vesa Toikkanen
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
| | - Timo Rinne
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
- Department of Anaesthesia, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Matti Tarkka
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
| | - Jari Laurikka
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Tampere University, 33014 Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
23
|
Murase T, Shinba Y, Mitsuma M, Abe Y, Yamashita H, Ikematsu K. Wound age estimation based on chronological changes in chitinase 3-like protein 1 expression. Leg Med (Tokyo) 2022; 59:102128. [DOI: 10.1016/j.legalmed.2022.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
|
24
|
Kimura H, Shimizu K, Tanabe N, Makita H, Taniguchi N, Kimura H, Suzuki M, Abe Y, Matsumoto-Sasaki M, Oguma A, Takimoto-Sato M, Takei N, Matsumoto M, Goudarzi H, Sato S, Ono J, Izuhara K, Hirai T, Nishimura M, Konno S. Further evidence for association of YKL-40 with severe asthma airway remodeling. Ann Allergy Asthma Immunol 2022; 128:682-688.e5. [PMID: 35342020 DOI: 10.1016/j.anai.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The chitinase-like protein YKL-40 is associated with airflow limitation on spirometry and airway remodeling in patients with asthma. It remains unclear whether YKL-40 is associated with morphologic changes in the airways and parenchyma or with future progression of airflow limitation in severe asthma. OBJECTIVE To evaluate the association of circulating YKL-40 levels with morphologic changes in the airways and parenchyma and with longitudinal progression of airflow limitation. METHODS The patients were participants in the Hokkaido Severe Asthma Cohort Study (n = 127), including smokers. This study consisted of 2 parts. In analysis 1, we analyzed associations between circulating YKL-40 levels and several asthma-related indices, including computed tomography-derived indices of proximal wall area percentage, the complexity of the airways (airway fractal dimension), and the parenchyma (exponent D) cross-sectionally (n = 97). In analysis 2, we evaluated the impact of circulating YKL-40 levels on forced expiratory volume in 1 second (FEV1) decline longitudinally for a 5-year follow-up (n = 103). RESULTS Circulating YKL-40 levels were significantly associated with proximal wall area percentage and airway fractal dimension (r = 0.25, P = .01; r = -0.22, P = .04, respectively), but not with exponent D. The mean annual change in FEV1 was -33.7 (± 23.3) mL/y, and the circulating YKL-40 level was a significant independent factor associated with annual FEV1 decline (β = -0.24, P = .02), even after controlling for exponent D (β = -0.26, P = .01). CONCLUSION These results provide further evidence for the association of YKL-40 with the pathogenesis of airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan.
| | - Kaoruko Shimizu
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Tanabe
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Hironi Makita
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Natsuko Taniguchi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Abe
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | | | - Akira Oguma
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Michiko Takimoto-Sato
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Takei
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Munehiro Matsumoto
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Sato
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Junya Ono
- R&D Center, Shino-Test Corporation, Kanagawa, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Toyohiro Hirai
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Cao Y, Rudrakshala J, Williams R, Rodriguez S, Sorkhdini P, Yang AX, Mundy M, Yang D, Palmisciano A, Walsh T, Delcompare C, Caine T, Tomasi L, Shea BS, Zhou Y. CRTH2 Mediates Pro-fibrotic Macrophage Differentiation and Promotes Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:201-214. [PMID: 35585756 DOI: 10.1165/rcmb.2021-0504oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a particularly deadly form of pulmonary fibrosis with unknown reason. In patients with IPF, high serum and lung levels of CHI3L1 can be detected and are associated with poor survival. However, the roles of CHI3L1 in these diseases have not been fully elucidated. We hypothesize that CHI3L1 interacts with CRTH2 to stimulate pro-fibrotic macrophage differentiation and the development of pulmonary fibrosis and that circulating blood monocytes from patients with IPF are hyperresponsive to CHI3L1-CRTH2 signaling. We used murine pulmonary fibrosis models to investigate the role of CRTH2 on pro-fibrotic macrophage differentiation and fibrosis development, and primary human PBMC cell culture to detect the difference of monocytes in the responses to CHI3L1 stimulation and CRTH2 inhibition between IPF patients and normal controls. Our results showed that null mutation or small molecule inhibition of CRTH2 prevents the development of pulmonary fibrosis in murine models. Furthermore, CHI3L1 stimulation induces a greater increase in CD206 expression in IPF monocytes than control monocytes. These results demonstrated that monocytes from IPF patients appear to be hyperresponsive to CHI3L1 stimulation. These studies support targeting CHI3L1-CRTH2 pathway as a promising therapeutic approach in IPF and that the sensitivity of blood monocytes to CHI3L1-induced pro-fibrotic differentiation may serve as a biomarker that predicts responsiveness to CHI3L1 or CRTH2 based interventions.
Collapse
Affiliation(s)
- Yueming Cao
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - River Williams
- Brown University, 6752, Providence, Rhode Island, United States
| | - Shade Rodriguez
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - Alina X Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Miles Mundy
- Brown University, 6752, Providence, Rhode Island, United States
| | - Dongqin Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Amy Palmisciano
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Thomas Walsh
- Rhode Island Hospital, 23325, Providence, Rhode Island, United States
| | - Cesar Delcompare
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Tanis Caine
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Luca Tomasi
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Barry S Shea
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Yang Zhou
- Brown University, Molecular Microbiology and Immunology, Providence, Rhode Island, United States;
| |
Collapse
|
26
|
Majewski S, Szewczyk K, Jerczyńska H, Miłkowska-Dymanowska J, Białas AJ, Gwadera Ł, Piotrowski WJ. Longitudinal and Comparative Measures of Serum Chitotriosidase and YKL-40 in Patients With Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:760776. [PMID: 35222369 PMCID: PMC8866556 DOI: 10.3389/fimmu.2022.760776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Although chitin is absent in humans, chitinases are present in healthy subjects and show dysregulated expression in a variety of diseases resulting from abnormal tissue injury and repair responses. It was shown that chitotriosidase (chitinase 1/CHIT1) and structurally-related chitinase 3-like 1 protein (CHI3L1/YKL-40) play important roles in the pathobiology of idiopathic pulmonary fibrosis (IPF), however little is known about their longitudinal serum levels and relationship to clinical measures in IPF. Methods The present study is the first to evaluate serial measurements of serum CHIT1 activity and YKL-40 concentrations in patients with IPF starting antifibrotic treatment and followed up for 24 months. In addition, baseline serum CHIT1 and YKL-40 were compared between patients with IPF and control subjects, and possible CHIT1 and YKL-40 relationships to longitudinal clinical assessments in IPF were explored. Results Baseline serum CHIT1 activity and YKL-40 concentrations were significantly elevated in patients with IPF compared to control subjects and showed similar discriminatory ability in distinguishing IPF from controls. No significant differences between the median serum CHIT1 activity and YKL-40 concentration measured over a study follow-up were noted. We found significantly elevated baseline serum CHIT1 activity in the progressors compared with the stables in the first year, while significantly increased baseline serum CHIT1 activity was noted in the stables compared to the progressors in the second year. Additionally, we observed a significant negative correlation between a change in serum YKL-40 concentration and a change in forced vital capacity (FVC) % predicted (% pred.) in the stables subgroup, whereas, a change in serum CHIT1 activity correlated negatively with a change in FVC% pred. in the progressors subgroup. Conclusions This explorative study findings add further evidence that CHIT1 and YKL-40 are upregulated in patients with IPF, and suggest that longitudinally stable serum CHIT1 activity and YKL-40 concentration levels may potentially be associated with the antifibrotic treatment response. In addition, our findings are supporting the possible role of CHIT1 and YKL-40 as candidate diagnostic and prognostic biomarkers in IPF. Further research is needed to validate present study findings.
Collapse
Affiliation(s)
| | - Karolina Szewczyk
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Hanna Jerczyńska
- Central Scientific Laboratory (CoreLab), Medical University of Lodz, Lodz, Poland
| | | | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, Medical University of Lodz, Lodz, Poland
| | - Łukasz Gwadera
- Department of Pneumology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
27
|
Diagnostic Value of Serum Chitinase-3-Like Protein 1 for Liver Fibrosis: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3227957. [PMID: 35360517 PMCID: PMC8961437 DOI: 10.1155/2022/3227957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Background Serum chitinase-3-like protein 1 (CHI3L1) is a promising marker for diagnosing liver fibrosis. This meta-analysis was carried out to assess the diagnostic performance of serum CHI3L1 for the estimation of liver fibrosis. Methods Systematic searches were performed on PubMed, Embase, Web of Science, Scopus, the Cochrane Library, Google Scholar, Sinomed, the China National Knowledge Infrastructure (CNKI), the Chinese Medical Journal Database, and the Wanfang databases for available studies. The primary studies were screened strictly according to inclusion and exclusion criteria, and sensitivity, specificity, and other measures of accuracy of serum CHI3L1 for evaluating liver fibrosis were pooled with 95% confidence intervals. I2 was calculated to assess heterogeneity, and sources of heterogeneity were explored by subgroup analysis. Deeks' test was used to assess for publication bias, and likelihood ratio was used to determine posttest probability. Results Our research integrated 11 articles, accounting for 1897 patients older than 18 years old. The pooled sensitivity and specificity for significant fibrosis, advanced fibrosis, and cirrhosis were 0.79 and 0.82 with an area under the receiver operating characteristic curve (AUC) of 0.85, 0.81 and 0.83 with an AUC of 0.91, and 0.72 and 0.74 with an AUC of 0.85, respectively. Random-effects models were used to assess for significant heterogeneity, and subgroup analysis showed that age and aetiology of included patients were likely sources of heterogeneity. No potential publication bias was found for serum CHI3L1 in the diagnosis of significant fibrosis, advanced fibrosis, or cirrhosis, and posttest probability was moderate. Conclusion Measurement of serum CHI3L1 is a feasible diagnostic tool for liver fibrosis.
Collapse
|
28
|
Lee SY, Lee CM, Ma B, Kamle S, Elias JA, Zhou Y, Lee CG. Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Front Pharmacol 2022; 13:826471. [PMID: 35370755 PMCID: PMC8969576 DOI: 10.3389/fphar.2022.826471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-β signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Suh-Young Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
- Devision of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| |
Collapse
|
29
|
Integrative transcriptomic and proteomic analysis reveals mechanisms of silica-induced pulmonary fibrosis in rats. BMC Pulm Med 2022; 22:13. [PMID: 34991559 PMCID: PMC8740005 DOI: 10.1186/s12890-021-01807-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. Methods Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). Results In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. Conclusion Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01807-w.
Collapse
|
30
|
Yu JE, Yeo IJ, Son DJ, Yun J, Han SB, Hong JT. Anti-Chi3L1 antibody suppresses lung tumor growth and metastasis through inhibition of M2 polarization. Mol Oncol 2021; 16:2214-2234. [PMID: 34861103 PMCID: PMC9168758 DOI: 10.1002/1878-0261.13152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Chitinase 3-like 1 (Chi3L1) is associated with various biological processes, such as inflammation, tissue repair, proliferation, cell survival, invasion, and extracellular matrix remodeling. Recent studies indicated that Chi3L1 is critical for cancer development and metastasis. In this study, we demonstrate that Chi3L1 serum and tissue levels were significantly increased in lung cancer patients compared with controls. We previously developed an anti-Chi3L1-humanized antibody, and here, we investigate its antitumor and antimetastatic effect. The anti-Chi3L1 antibody attenuated tumor growth and metastasis both in vitro and in vivo in a lung cancer mouse model. These inhibitory effects are associated with signal transducer and activator of transcription 6 (STAT6)-dependent M2 polarization inhibition. Proteomics analysis revealed that plasminogen (PLG) interacts with Chi3L1 and affects M2 polarization. Chi3L1 plays a critical role in lung cancer progression, and the anti-Chi3L1 antibody could be a new anticancer therapy.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| |
Collapse
|
31
|
Darwich A, Silvestri A, Benmebarek MR, Mouriès J, Cadilha B, Melacarne A, Morelli L, Supino D, Taleb A, Obeck H, Sustmann C, Losurdo A, Masci G, Curigliano G, Kobold S, Penna G, Rescigno M. Paralysis of the cytotoxic granule machinery is a new cancer immune evasion mechanism mediated by chitinase 3-like-1. J Immunother Cancer 2021; 9:jitc-2021-003224. [PMID: 34824159 PMCID: PMC8627417 DOI: 10.1136/jitc-2021-003224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. Methods NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. Results We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. Conclusion Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.
Collapse
Affiliation(s)
- Abbass Darwich
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Juliette Mouriès
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Bruno Cadilha
- Division for Clinical Pharmacology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | | | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Hannah Obeck
- Department of Medicine IV, Ludwig-Maximilians-Universitat Munchen, Munchen, Bayern, Germany
| | | | | | | | | | - Sebastian Kobold
- Division of Clinical Pharmacology, Ludwig-Maximilians-Universitat Munchen, Munich, UK
| | | | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Milan, Italy .,Humanitas Mirasole SpA, Rozzano, Lombardia, Italy
| |
Collapse
|
32
|
Böckelmann LC, Felix T, Calabrò S, Schumacher U. YKL-40 protein expression in human tumor samples and human tumor cell line xenografts: implications for its use in tumor models. Cell Oncol (Dordr) 2021; 44:1183-1195. [PMID: 34432260 PMCID: PMC8516773 DOI: 10.1007/s13402-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YKL-40, also known as non-enzymatic chitinase-3 like-protein-1 (CHI3L1), is a glycoprotein expressed and secreted mainly by inflammatory cells and tumor cells. Accordingly, several studies demonstrated elevated YKL-40 serum levels in cancer patients and found YKL-40 to be correlated with a poor prognosis and disease severity in some tumor entities. YKL-40 was suggested to be involved in angiogenesis and extracellular matrix remodeling. As yet, however, its precise biological function remains elusive. METHODS As YKL-40 protein expression has only been investigated in few malignancies, we employed immunohistochemical detection in a large multi-tumor tissue microarray consisting of 2,310 samples from 72 different tumor entities. In addition, YKL-40 protein expression was determined in primary mouse xenograft tumors derived from human cancer cell lines. RESULTS YKL-40 could be detected in almost all cancer entities and was differently expressed depending on tumor stage and subtype (e.g., thyroid cancer, colorectal cancer, gastric cancer and ovarian cancer). While YKL-40 was absent in in vitro grown human cancer cell lines, YKL-40 expression was upregulated in xenograft tumor tissues in vivo. CONCLUSIONS These data provide new insights into YKL-40 expression at the protein level in various tumor entities and its regulation in tumor models. Our data suggest that upregulation of YKL-40 expression is a common feature in vivo and is finely regulated by tumor cell-microenvironment interactions.
Collapse
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Theresa Felix
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simona Calabrò
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Xue Q, Chen L, Yu J, Sun K, Ye L, Zheng J. Downregulation of Interleukin-13 Receptor α2 Inhibits Angiogenic Formation Mediated by Chitinase 3-Like 1 in Late Atherosclerotic Lesions of apoE -/- Mice. Front Physiol 2021; 12:690109. [PMID: 34349665 PMCID: PMC8327173 DOI: 10.3389/fphys.2021.690109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Chitinase 3-like 1 (CHI3L1) has the potential to prompt proliferation and angiogenic formation. Interleukin-13 receptor α2 (IL-13Rα2) was regarded as a receptor of CHI3L1; however, it is unknown whether CHI3L1 adjusts the neovascularization in late atherosclerotic lesions of apoE -/- mice via IL-13Rα2. Methods: Silicone collars were placed around one of the common carotid arteries of apoE -/- mice fed with a high-fat diet. The mice were further injected with Ad.CHI3L1 alone or Ad.CHI3L1 + Ad.IL-13Rα2 shRNA through the caudal vein. The plaque areas in the whole aorta and aortic root were evaluated by Oil Red O staining and H&E staining. The contents of CD31, CD42b, and collagen in carotid plaques were investigated by immunohistochemistry and Masson trichrome staining. The role of CHI3L1 in migration and tube formation of human umbilical vein endothelial cells (HUVECs) was determined by transwell and Matrigel tests. The effect of CHI3L1 on the expression of AKT and extracellular signal-regulated kinase (ERK) was evaluated with the Western blot. Results: The plaque loads in the aorta were significantly more extensive in apoE -/- mice injected with Ad.CHI3L1 than those with Ad.CHI3L1 + Ad.IL-13Rα2 shRNA. CHI3L1 significantly increased the contents of CD31 and CD42b and decreased the element of collagen in late-stage atherosclerotic lesions of the carotid arteries. The effects of CHI3L1 on migration, tube formation, and upregulation of phospho-AKT and phospho-ERK of HUVECs were prohibited by inhibitors of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) as well as IL-13Rα2 shRNA. Conclusion: To some extent, CHI3L1 promotes migration and tube formation of HUVECs and neovascularization in atherosclerotic plaques possibly mediated by IL-13Rα2 through AKT and ERK signal pathways.
Collapse
Affiliation(s)
- Qi Xue
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lei Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianwu Yu
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kewang Sun
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lifang Ye
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianlei Zheng
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
34
|
Rivas-Alarcón AA, Gómez-Gómez Y, Organista-Nava J, Jiménez-López MA, Rivera-Ramírez AB, Ibarra-Sierra E, Saavedra-Herrera MV, Illades-Aguiar B, Leyva-Vázquez MA. Plasma levels of YKL-40 as a prognostic factor in childhood acute lymphoblastic leukemia. Mol Clin Oncol 2021; 15:168. [PMID: 34194746 PMCID: PMC8237154 DOI: 10.3892/mco.2021.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/27/2021] [Indexed: 11/05/2022] Open
Abstract
YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is an inflammatory glycoprotein secreted by different types of cells, such as inflammatory cells. The levels of this protein are elevated in the serum or plasma of patients with different types of cancer, and high concentrations are associated with poor prognosis and short survival in patients with liver, breast, lung, bladder and endometrial cancers. In Mexico, acute lymphoblastic leukemia (ALL) is the most common type of cancer affecting the pediatric population. The prognosis of patients with ALL is difficult to establish. Hence, the objective of the present study was to analyze the plasma levels of YKL-40 in Mexican children with ALL and investigate its role as a prognostic factor. A case-control study was performed in a population of 90 children aged 1-18 years, among whom 45 had ALL and 45 were hematologically healthy. The levels of YKL-40 in plasma samples were measured using ELISA and were found to be significantly higher in children with ALL compared with those in controls (P<0.0001). Children with ALL who had high plasma levels of YKL-40 (≥36.34 ng/ml) had shorter survival compared with those with low levels (<36.34 ng/ml; P<0.05). The findings of the present study revealed that the YKL-40 plasma level, age/initial leukocyte count and central nervous system invasion were associated with the prognosis of children with ALL [odds ratio (OR)=6.06, 95% confidence interval (CI): 1.1-31.6, P=0.03; OR=8.53, 95% CI: 1.2-58.2, P=0.03; and OR=6.45, 95% CI: 1.01-41.2, P=0.04, respectively]. Therefore, YKL-40 plasma levels may serve as a prognostic biomarker in pediatric patients with ALL.
Collapse
Affiliation(s)
- Alinne Ayulieth Rivas-Alarcón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Yazmin Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Marco Antonio Jiménez-López
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | - Ana Berta Rivera-Ramírez
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | | | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
35
|
Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126441. [PMID: 34208590 PMCID: PMC8235106 DOI: 10.3390/ijms22126441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.
Collapse
|
36
|
Bin Y, Liu Y, Jiang S, Peng H. Elevated YKL-40 serum levels may contribute to wet age-related macular degeneration via the ERK1/2 pathway. FEBS Open Bio 2021; 11:2933-2942. [PMID: 34110111 PMCID: PMC8564338 DOI: 10.1002/2211-5463.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Choroidal neovascularization (CNV) is a key characteristic of wet age-related macular degeneration (AMD) that can lead to severe vision loss in the elderly. Anti-VEGF therapy is currently the premier strategy for wet AMD, but it has limited efficacy. Previous studies have shown that chitinase-3-like-1 (YKL-40) can promote microangiogenesis and inflammation, but its effect on CNV formation has not yet been studied. Here, we investigated the potential role of YKL-40 in wet AMD and the underlying mechanism(s). We report that the serum expression of YKL-40 in wet AMD patients was significantly higher than that in control patients and was positively correlated with VEGF expression, indicating that YKL-40 may participate in the development of wet AMD. In addition, YKL-40 and VEGF expression levels were observed to be increased and the ERK1/2 pathway activated in the neuroretinal (NR) and RPE/choroid tissues of mice with laser-induced CNV. The YKL-40 and phosphorylated protein levels of the ERK1/2 pathway were decreased after intravitreal injection with an anti-YKL-40 antibody, suggesting that anti-YKL-40 could inhibit the activation of the ERK1/2 pathway. These results indicate that YKL-40 may serve as a novel target for the diagnosis and treatment of wet AMD.
Collapse
Affiliation(s)
- Yue Bin
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| | - Yanyao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| | - Shaoqiu Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Peng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, 400016, China
| |
Collapse
|
37
|
van der Ploeg EA, Melgert BN, Burgess JK, Gan CT. The potential of biomarkers of fibrosis in chronic lung allograft dysfunction. Transplant Rev (Orlando) 2021; 35:100626. [PMID: 33992914 DOI: 10.1016/j.trre.2021.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the major long-term cause of morbidity and mortality after lung transplantation. Both bronchiolitis obliterans syndrome and restrictive lung allograft syndrome, two main types of CLAD, lead to fibrosis in either the small airways or alveoli and pleura. Pathological pathways in CLAD and other types of fibrosis, for example idiopathic pulmonary fibrosis, are assumed to overlap and therefore fibrosis biomarkers could aid in the early detection of CLAD. These biomarkers could help to differentiate between different phenotypes of CLAD and could, in comparison to biomarkers of inflammation, possibly distinguish an infectious event from CLAD when a decline in lung function is present. This review gives an overview of known CLAD specific biomarkers, describes new promising fibrosis biomarkers currently investigated in other types of fibrosis, and discusses the possible use of these fibrosis biomarkers for CLAD.
Collapse
Affiliation(s)
- Eline A van der Ploeg
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| | - Barbro N Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, PO box 196, 9700, AD, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - C Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| |
Collapse
|
38
|
Kang MJ, Kim JE, Park JW, Choi HJ, Bae SJ, Choi SI, Hong JT, Hwang DY. Effects of Gallotannin-Enriched Extract of Galla Rhois on the Activation of Apoptosis, Cell Cycle Arrest, and Inhibition of Migration Ability in LLC1 Cells and LLC1 Tumors. Pathol Oncol Res 2021; 27:588084. [PMID: 34257536 PMCID: PMC8262247 DOI: 10.3389/pore.2021.588084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Gallotannin (GT) and GT-enriched extracts derived from various sources are reported to have anti-tumor activity in esophageal, colon and prostate tumors, although their anti-tumor effects have not been determined in lung carcinomas. To investigate the anti-tumor activity of GT-enriched extract of galla rhois (GEGR) against lung carcinomas, alterations in the cytotoxicity, apoptosis activation, cell cycle progression, migration ability, tumor growth, histopathological structure, and the regulation of signaling pathways were analyzed in Lewis lung carcinoma (LLC1) cells and LLC1 tumor bearing C57BL/6NKorl mice, after exposure to GEGR. A high concentration of GT (69%) and DPPH scavenging activity (IC50=7.922 µg/ml) was obtained in GEGR. GEGR treatment exerted strong cytotoxicity, cell cycle arrest at the G2/M phase and subsequent activation of apoptosis, as well as inhibitory effects on the MAPK pathway and PI3K/AKT mediated cell migration in LLC1 cells. In the in vivo syngeneic model, exposure to GEGR resulted in suppressed growth of the LLC1 tumors, as well as inhibition of NF-κB signaling and their inflammatory cytokines. Taken together, our results provide novel evidence that exposure to GEGR induces activation of apoptosis, cell cycle arrest, and inhibition of cell migration via suppression of the MAPK, NF-κB and PI3K/AKT signaling pathways in LLC1 cells and the LLC1 syngeneic model.
Collapse
Affiliation(s)
- Mi Ju Kang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyun Jun Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Sun Il Choi
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
39
|
Efficacy of chitinase-3-like protein 1 as an in vivo bone formation predictable marker of maxillary/mandibular bone marrow stromal cells. Regen Ther 2021; 18:38-50. [PMID: 33869686 PMCID: PMC8027134 DOI: 10.1016/j.reth.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Maxillary/mandibular bone marrow stromal cells (MBMSCs) are a useful cell source for bone regeneration in the oral and maxillofacial region. To further ensure the clinical application of MBMSCs in bone regenerative therapy, it is important to determine the bone formation capacity of MBMSCs before transplantation. The aim of this study is to identify the molecular marker that determines the in vivo bone formation capacity of MBMSCs. Methods The cell growth, cell surface antigens, in vitro and in vivo bone formation capacity of MBMSCs were examined. The amount of chitinase-3-like protein 1 (CHI3L1) secreted into the conditioned medium was quantified. The effects of CHI3L1 on the cell growth and osteogenic differentiation potential of MBMSCs and on the cell growth and migration of vascular endothelial cells and fibroblasts were examined. Results The cell growth, and in vitro and in vivo bone formation capacity of the cells treated with different conditions were observed. MBMSCs that secreted a large amount of CHI3L1 into the conditioned medium tended to have low in vivo bone formation capacity, whereas MBMSCs that secreted a small amount of CHI3L1 had greater in vivo bone formation capacity. CHI3L1 promoted the migration of vascular endothelial cells, and the cell growth and migration of fibroblasts. Conclusion Our study indicates that the in vitro osteogenic differentiation capacity of MBMSCs and the in vivo bone formation capacities of MBMSCs were not necessarily correlated. The transplantation of high CHI3L1 secretory MBMSCs may suppress bone formation by inducing fibrosis at the site. These results suggest that the CHI3L1 secretion levels from MBMSCs may be used as a predictable marker of bone formation capacity in vivo. In vitro and in vivo bone formation capacities of MBMSCs were not correlated. MBMSCs with high CHI3L1 secretion tended to have low in vivo bone formation. MBMSCs with low CHI3L1 secretion tended to have high in vivo bone formation. CHI3L1 can be in vivo bone formation capacity predictable marker of MBMSCs.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, bone marrow-derived stem cell
- Bone formation capacity
- CHI3L1, chitinase-3-like protein 1
- Chitinase-3-like protein 1
- FBS, fetal bovine serum
- HUVEC, human umbilical vein endothelial cells
- Jaw bone marrow stromal cells
- MBMSC, maxillary/mandibular bone marrow stromal cells
- MSCs, mesenchymal stem cells
- Migration
- NHDF, normal human dermal fibroblasts
- α-MEM, alpha modified Eagle's minimum essential medium
- β-TCP, beta-tricalcium phosphate
Collapse
|
40
|
Dis3L2 regulates cell proliferation and tissue growth through a conserved mechanism. PLoS Genet 2020; 16:e1009297. [PMID: 33370287 PMCID: PMC7793271 DOI: 10.1371/journal.pgen.1009297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/08/2021] [Accepted: 12/05/2020] [Indexed: 01/04/2023] Open
Abstract
Dis3L2 is a highly conserved 3’-5’ exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms’ tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth. Regulation of cell proliferation is not only important during development but also required for repair of damaged tissues and during wound healing. Using human kidney cells as well as the fruit fly Drosophila we have recently discovered that cell proliferation can be regulated by a protein named Dis3L2. Depletion or removal of this protein results in excess proliferation. These results are relevant to human disease as DIS3L2 has been shown to be mutated in an overgrowth syndrome (Perlman syndrome) where affected children have abnormal enlargement of organs (e.g. kidneys) and susceptibility to Wilms’ tumour (a kidney cancer). Dis3L2 is an enzyme known to "chew up" mRNA molecules which instruct the cell to make particular proteins. Using state-of-the-art molecular methods in Drosophila, we have discovered that Dis3L2 targets a small subset of mRNAs, including an mRNA encoding a growth factor named 'imaginal disc growth factor 2' (idgf2). For human kidney cells in culture, we have found that depletion of DIS3L2 results in enhanced proliferation, and that this involves a well-known cellular pathway. Our results mean that we have discovered a new way of controlling cell proliferation, which could, in the future, be used in human therapies.
Collapse
|
41
|
Steinke J, Samietz S, Friedrich N, Weiss S, Michalik S, Biffar R, Nauck M, Völker U, Wallaschofski H, Pietzner M, Hannemann A. Associations of plasma YKL-40 concentrations with heel ultrasound parameters and bone turnover markers in the general adult population. Bone 2020; 141:115675. [PMID: 33031973 DOI: 10.1016/j.bone.2020.115675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE YKL-40, also known as chitinase-3-like protein 1, is a new proinflammatory biomarker, that might play a role in tissue remodeling and bone resorption. Here we evaluated the associations of the YKL-40 plasma concentration with heel ultrasound parameters and bone turnover markers (BTMs) in adult men and women from the general population. We tested for a causal role of YKL-40 on bone metabolism using published single nucleotide polymorphisms (SNPs) with consequences for YKL-40 expression and function. METHODS Data were obtained from two population-based cohorts: the Study of Health in Pomerania (SHIP) and SHIP-Trend. Quantitative ultrasound (QUS) measurements at the heel were performed and bone turnover was assessed by measurement of intact amino-terminal propeptide of type I procollagen (PINP) and carboxy-terminal telopeptide of type I collagen (CTX). Associations between the YKL-40 plasma concentration and the QUS-based parameters, bone turnover marker (BTM) concentrations and 44 SNPs, including the lead SNP rs4950928, were evaluated in 382 subjects. Furthermore, we assessed the associations between the same SNPs and the QUS-based parameters (n = 5777) or the BTM concentrations (n = 7190). RESULTS Sex-specific linear regression models adjusted for a comprehensive panel of interfering covariantes revealed statistically significant inverse associations between YKL-40 and all QUS-based parameters as well as positive associations with CTX in women. The rs4950928 polymorphism was associated with YKL-40 in men and women but none of the tested SNPs was associated with the QUS-based parameters or the BTMs after correction for multiple testing. CONCLUSIONS Plasma YKL-40 concentrations are associated with QUS-based parameters as well as CTX concentrations in women but these associations are probably not causal.
Collapse
Affiliation(s)
- Jörn Steinke
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefanie Samietz
- Policlinic of Prosthetic Dentistry, Gerodontology and Biomaterials, Center of Oral Health, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
| | - Reiner Biffar
- Policlinic of Prosthetic Dentistry, Gerodontology and Biomaterials, Center of Oral Health, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany.
| |
Collapse
|
42
|
Karwelat D, Schmeck B, Ringel M, Benedikter BJ, Hübner K, Beinborn I, Maisner A, Schulte LN, Vollmeister E. Influenza virus-mediated suppression of bronchial Chitinase-3-like 1 secretion promotes secondary pneumococcal infection. FASEB J 2020; 34:16432-16448. [PMID: 33095949 DOI: 10.1096/fj.201902988rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.
Collapse
Affiliation(s)
- Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Hesse, Germany
| | - Marc Ringel
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| |
Collapse
|
43
|
Wang L, Bao A, Zheng Y, Ma A, Wu Y, Shang H, Fang D, Ben S. Adenovirus vector-mediated YKL-40 shRNA attenuates eosinophil airway inflammation in a murine asthmatic model. Gene Ther 2020; 28:177-185. [PMID: 33046836 DOI: 10.1038/s41434-020-00202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed that YKL-40 is involved in the pathogenesis of asthma. However, its specific mechanism remains unclear. The present study aims to investigate the effect of adenovirus vector-mediated YKL-40 short hairpin RNA (shRNA) on regulation of airway inflammation in a murine asthmatic model. Mice were assessed for airway hyperresponsiveness (AHR), total leukocytes and the percentage of eosinophil cells in bronchoalveolar lavage fluid (BALF). YKL-40 mRNA and protein expression levels were detected using quantitative real-time PCR and western blot assays. Enzyme-linked immunosorbent assay (ELISA) was used to detect YKL-40 and eosinophil-related chemokine expression levels in BALF and serum. Lung histology analyses were performed to evaluate the degree of inflammatory cell infiltration around the airway and airway mucus secretion.YKL-40 shRNA significantly inhibited the YKL-40 gene expression in asthmatic mice. In addition, YKL-40 shRNA alleviated eosinophilic airway inflammation, AHR, airway mucus secretion and decreased the levels of YKL-40 in BALF and serum in a murine asthmatic model. The levels and mRNA expression of IL-5, IL-13 in asthmatic mice lung tissues, eotaxin, and GM-CSF in BALF and serum significantly decreased. Bone marrow signaling molecules including IL-5, eotaxin, and GM-CSF were correlated with decreased levels of YKL-40. The study reveals that YKL-40 could be involved in asthma inflammation by altering bone marrow signaling molecules. YKL-40 gene RNA interference could provide new therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Ling Wang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aying Ma
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Nantong University, Nantong, China
| | - Huanxia Shang
- Department of Respiratory Medicine, Chest Hospital of Hebei Province, Shijiazhuang, China
| | - Danruo Fang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqin Ben
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther 2020; 5:201. [PMID: 32929074 PMCID: PMC7490424 DOI: 10.1038/s41392-020-00303-7] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Non-enzymatic chitinase-3 like-protein-1 (CHI3L1) belongs to glycoside hydrolase family 18. It binds to chitin, heparin, and hyaluronic acid, and is regulated by extracellular matrix changes, cytokines, growth factors, drugs, and stress. CHI3L1 is synthesized and secreted by a multitude of cells including macrophages, neutrophils, synoviocytes, chondrocytes, fibroblast-like cells, smooth muscle cells, and tumor cells. It plays a major role in tissue injury, inflammation, tissue repair, and remodeling responses. CHI3L1 has been strongly associated with diseases including asthma, arthritis, sepsis, diabetes, liver fibrosis, and coronary artery disease. Moreover, following its initial identification in the culture supernatant of the MG63 osteosarcoma cell line, CHI3L1 has been shown to be overexpressed in a wealth of both human cancers and animal tumor models. To date, interleukin-13 receptor subunit alpha-2, transmembrane protein 219, galectin-3, chemo-attractant receptor-homologous 2, and CD44 have been identified as CHI3L1 receptors. CHI3L1 signaling plays a critical role in cancer cell growth, proliferation, invasion, metastasis, angiogenesis, activation of tumor-associated macrophages, and Th2 polarization of CD4+ T cells. Interestingly, CHI3L1-based targeted therapy has been increasingly applied to the treatment of tumors including glioma and colon cancer as well as rheumatoid arthritis. This review summarizes the potential roles and mechanisms of CHI3L1 in oncogenesis and disease pathogenesis, then posits investigational strategies for targeted therapies.
Collapse
Affiliation(s)
- Ting Zhao
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Su
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Wang S, Hu M, Qian Y, Jiang Z, Shen L, Fu L, Hu Y. CHI3L1 in the pathophysiology and diagnosis of liver diseases. Biomed Pharmacother 2020; 131:110680. [PMID: 32861071 DOI: 10.1016/j.biopha.2020.110680] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Chitinase 3-like protein 1(CHI3L1) participates in physiological and pathophysiological process, such as cell survival, cell proliferation, tissue remodeling, angiogenesis, etc. Some studies demonstrated that CHI3L1 is liver-enriched and has better application value in staging liver fibrosis than platelet ratio index(APRI) and fibrosis-4 index(FIB-4) and that CHI3L1 can be used in monitoring the prognosis of hepatocellular carcinoma (HCC). In this review, we summarized the pathophysiological role and the diagnostic value of CHI3L1 in liver fibrosis in different background and HCC.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Mengyuan Hu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Yunsong Qian
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Zhenluo Jiang
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Lili Shen
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Medical School of Ningbo University, Ningbo 315211, China
| | - Liyun Fu
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China; Ningbo Clinical Research Center for Digestive System Tumors (Grant No.2019A21003), Ningbo 315010, China.
| | - Yaoren Hu
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315010, China; Ningbo Clinical Research Center for Digestive System Tumors (Grant No.2019A21003), Ningbo 315010, China.
| |
Collapse
|
46
|
Cheng SP, Lee JJ, Chang YC, Lin CH, Li YS, Liu CL. Overexpression of chitinase-3-like protein 1 is associated with structural recurrence in patients with differentiated thyroid cancer. J Pathol 2020; 252:114-124. [PMID: 32613636 DOI: 10.1002/path.5503] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
We previously identified that the expression of chitinase-3-like protein 1 (CHI3L1) was upregulated during thyroid cancer progression. Here, we investigated the prognostic significance of CHI3L1 expression in thyroid neoplasms and examined the potential oncogenic roles. CHI3L1 immunochemical staining was performed on tissue microarrays of benign and malignant thyroid tumours. Compared with normal thyroid tissue and benign thyroid lesions that had low or no detectable CHI3L1 expression, CHI3L1 was overexpressed in both differentiated and undifferentiated thyroid cancer. High CHI3L1 expression was associated with extrathyroidal extension, lymph node metastasis, and shorter recurrence-free survival in differentiated thyroid cancer. The biological roles of CHI3L1 were further investigated by gain- and loss-of-function assays. CHI3L1 silencing suppressed clonogenicity, migration, invasion, anoikis resistance, and angiogenesis in thyroid cancer cells, although exogenous CHI3L1 treatment promoted these malignant phenotypes. Cysteine-rich angiogenic inducer 61 (CYR61) was identified as a downstream target of CHI3L1 by RNA-seq analysis. CYR61 silencing or treatment reversed the alterations induced by CHI3L1 modulation. Our results demonstrate that CHI3L1 is overexpressed in thyroid cancer and is associated with an increased risk of disease recurrence. Additionally, CYR61 may participate in CHI3L1-mediated tumour progression. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shih-Ping Cheng
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Ying-Syuan Li
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Serum chitinase-3-like protein 1 is a biomarker of liver fibrosis in patients with chronic hepatitis B in China. Hepatobiliary Pancreat Dis Int 2020; 19:384-389. [PMID: 32540209 DOI: 10.1016/j.hbpd.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Serum chitinase-3-like protein 1 (CHI3L1) is a potential biomarker for fibrosis assessment. We aimed to evaluate serum CHI3L1 as a noninvasive diagnostic marker for chronic hepatitis B virus-related fibrosis. METHODS Serum CHI3L1 levels were measured by ELISA in 134 chronic hepatitis B (CHB) patients. Significant fibrosis was defined as a liver stiffness > 9.7 kPa. The performance of CHI3L1 was assessed and compared to that of other noninvasive tests by receiver operating characteristic (ROC) analysis. RESULTS Serum CHI3L1 levels were significantly higher in CHB patients with significant hepatic fibrosis (≥ F2, 81.9 ng/mL) than in those without significant hepatic fibrosis (< F2, 56.5 ng/mL) (P < 0.001). In CHB patients, the specificity and sensitivity of CHI3L1 for predicting significant fibrosis were 75.6% and 59.1%, respectively, with a cut-off of 76.0 ng/mL and an area under the ROC curve of 0.728 (95% CI: 0.637-0.820). CONCLUSIONS Serum CHI3L1 levels could be an effective new serological biomarker for the diagnosis of liver. Moreover, CHI3L1 is feasible in monitoring disease progression.
Collapse
|
48
|
Rani R, Singh V. Overexpression of YKL-40 (CHI3L1 gene) in patient fluids may be a potential predictive marker for early detection of comorbidity in non-communicable disease. Med Hypotheses 2020; 143:110076. [PMID: 32721792 DOI: 10.1016/j.mehy.2020.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Predictive biomarkers which can diagnose the onset of non-communicable diseases and the associated comorbid conditions are lacking for clinical utility. Highly sensitive and specific biomarkers for early disease detection and risk stratification may provide timely intervention to patients and prevent secondary complications. However, till the time patients are diagnosed, cellular events and biomolecules get active effecting multiple organs at the same time. This series of events lead to disruption in normal functioning of the organs and their coordinative crosstalk, hence, increase in mortality rate of patients. The primary functional molecules of inflammatory pathways are active in NCDs. YKL-40, an anti-apoptotic molecule in inflammatory pathways, is overexpressed in patient fluids in different organs under diseased conditions. We performed a preliminary network analysis to study YKL-40 co-expression with diagnostic markers: TNNT2/I3 (Cardiac Troponin T/I) for cardiovascular diseases, LCN2 (NGAL) and CKM (Creatinine kinase M-type) in acute kidney injury and HbA1c in type-2-diabetes. It is observed that YKL-40 is actively co-expressed and linked with standard diagnostic markers and may be influencing the pathways active in organ crosstalk. The pathways may be regulating the signaling events in patients with non-communicable diseases leading to comorbidities. We, hence, postulate that if YKL-40 and disease specific pathways influenced are clinically utilized, this will provide the foundation of establishing tailored and specific approach in diagnosis and monitoring non-communicable diseases and predict the onset of comorbid conditions due to phenomenon influencing organ cross talks.
Collapse
Affiliation(s)
- Raj Rani
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India.
| |
Collapse
|
49
|
Saleh AA, Alhanafy AM, Elbahr O, El-Hefnawy SM. Chitinase 3-like 1 gene (T/C) polymorphism and serum YKL-40 levels in patients with hepatocellular carcinoma. Meta Gene 2020; 24:100686. [DOI: https:/doi.org/10.1016/j.mgene.2020.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Eldaly MN, Metwally FM, Shousha WG, El-Saiid AS, Ramadan SS. Clinical Potentials of miR-576-3p, miR-613, NDRG2 and YKL40 in Colorectal Cancer Patients. Asian Pac J Cancer Prev 2020; 21:1689-1695. [PMID: 32592365 PMCID: PMC7568881 DOI: 10.31557/apjcp.2020.21.6.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is the most common type of gastrointestinal tract cancers. This investigation aim was to assess the expression of miR-576-3p and miR-613 in CRC patients in addition to NDRG2 and YKL40 serum levels determination to decide their diagnostic and prognostic significance. Methods: Sixty early diagnosed CRC patients prior to any treatment in addition to twelve healthy subjects were enrolled in this study. Blood samples were taken from subjects and allowed for clotting and centrifugation, then the collected sera were stored at -80ºC till it were used for detection of our molecular biomarkers. The mature miRNAs expressions (miR-576-3p and miR-613) were detected in serum by qRT-PCR, while NDRG2 and YKL40 serum levels were determined by ELISA. In addition, the correlation of the measured parameters with the clinicopathological data of the patients was investigated. Results: The study results showed that both miRNA-576-3p and miRNA-613 were down-regulated in CRC patients with fold change 0.33, 0.36; respectively. A significant positive correlation was observed between miR-576-3p and miR-613 (r = 0.75, p < 0.001). NDRG2 serum levels were decreased in patients compared to the control group but the decrease wasn’t statistically significant. On the other hand, it was observed that YKL40 serum level was significantly increased in CRC patients compared to control (p-value < 0.001). Furthermore, YKL40 showed a very high diagnostic value (AUC = 0.97, specificity = 91.7%, sensitivity = 96%, p-value = 0.0001). Conclusion: The observations of this investigation concluded that, the expressions of miR-576-3p and miR-613 in addition to YKL40 serum levels determinations may help in the diagnosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Abeer Salah El-Saiid
- Department of Clinical & Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | |
Collapse
|