1
|
Zou J, Sun S, De Simone I, ten Cate H, de Groot PG, de Laat B, Roest M, Heemskerk JW, Swieringa F. Platelet Activation Pathways Controlling Reversible Integrin αIIbβ3 Activation. TH OPEN 2024; 8:e232-e242. [PMID: 38911141 PMCID: PMC11193594 DOI: 10.1055/s-0044-1786987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background Agonist-induced platelet activation, with the integrin αIIbβ3 conformational change, is required for fibrinogen binding. This is considered reversible under specific conditions, allowing a second phase of platelet aggregation. The signaling pathways that differentiate between a permanent or transient activation state of platelets are poorly elucidated. Objective To explore platelet signaling mechanisms induced by the collagen receptor glycoprotein VI (GPVI) or by protease-activated receptors (PAR) for thrombin that regulate time-dependent αIIbβ3 activation. Methods Platelets were activated with collagen-related peptide (CRP, stimulating GPVI), thrombin receptor-activating peptides, or thrombin (stimulating PAR1 and/or 4). Integrin αIIbβ3 activation and P-selectin expression was assessed by two-color flow cytometry. Signaling pathway inhibitors were applied before or after agonist addition. Reversibility of platelet spreading was studied by microscopy. Results Platelet pretreatment with pharmacological inhibitors decreased GPVI- and PAR-induced integrin αIIbβ3 activation and P-selectin expression in the target order of protein kinase C (PKC) > glycogen synthase kinase 3 > β-arrestin > phosphatidylinositol-3-kinase. Posttreatment revealed secondary αIIbβ3 inactivation (not P-selectin expression), in the same order, but this reversibility was confined to CRP and PAR1 agonist. Combined inhibition of conventional and novel PKC isoforms was most effective for integrin closure. Pre- and posttreatment with ticagrelor, blocking the P2Y 12 adenosine diphosphate (ADP) receptor, enhanced αIIbβ3 inactivation. Spreading assays showed that PKC or P2Y 12 inhibition provoked a partial conversion from filopodia to a more discoid platelet shape. Conclusion PKC and autocrine ADP signaling contribute to persistent integrin αIIbβ3 activation in the order of PAR1/GPVI > PAR4 stimulation and hence to stabilized platelet aggregation. These findings are relevant for optimization of effective antiplatelet treatment.
Collapse
Affiliation(s)
- Jinmi Zou
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Siyu Sun
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Ilaria De Simone
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo ten Cate
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Philip G. de Groot
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Bas de Laat
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Mark Roest
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Johan W.M. Heemskerk
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Frauke Swieringa
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
2
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Activation of Human Platelets by Staphylococcus aureus Secreted Protease Staphopain A. Pathogens 2022; 11:pathogens11111237. [DOI: 10.3390/pathogens11111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Infection by Staphylococcus aureus is the leading cause of infective endocarditis (IE). Activation of platelets by this pathogen results in their aggregation and thrombus formation which are considered to be important steps in the development and pathogenesis of IE. Here, we show that a secreted cysteine protease, staphopain A, activates human platelets and induces their aggregation. The culture supernatant of a scpA mutant deficient in staphopain A production was reduced in its ability to trigger platelet aggregation. The platelet agonist activity of purified staphopain A was inhibited by staphostatin A, a specific inhibitor, thus implicating its protease activity in the agonism. In whole blood, using concentrations of staphopain A that were otherwise insufficient to induce platelet aggregation, increased binding to collagen and thrombus formation was observed. Using antagonists specific to protease-activated receptors 1 and 4, we demonstrate their role in mediating staphopain A induced platelet activation.
Collapse
|
4
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
5
|
Liao L, Zhou M, Wang J, Xue X, Deng Y, Zhao X, Peng C, Li Y. Identification of the Antithrombotic Mechanism of Leonurine in Adrenalin Hydrochloride-Induced Thrombosis in Zebrafish via Regulating Oxidative Stress and Coagulation Cascade. Front Pharmacol 2021; 12:742954. [PMID: 34803688 PMCID: PMC8600049 DOI: 10.3389/fphar.2021.742954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Thrombosis is a general pathological phenomenon during severe disturbances to homeostasis, which plays an essential role in cardiovascular and cerebrovascular diseases. Leonurine (LEO), isolated from Leonurus japonicus Houtt, showes a crucial role in anticoagulation and vasodilatation. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. Therefore, the antithrombotic effect of LEO was investigated in this study. Hematoxylin-Eosin staining was used to detect the thrombosis of zebrafish tail. Fluorescence probe was used to detect the reactive oxygen species. The biochemical indexes related to oxidative stress (lactate dehydrogenase, malondialdehyde, superoxide dismutase and glutathione) and vasodilator factor (endothelin-1 and nitric oxide) were analyzed by specific commercial assay kits. Besides, we detected the expression of related genes (fga, fgb, fgg, pkcα, pkcβ, vwf, f2) and proteins (PI3K, phospho-PI3K, Akt, phospho-Akt, ERK, phospho-ERK FIB) related to the anticoagulation and fibrinolytic system by quantitative reverse transcription and western blot. Beyond that, metabolomic analyses were carried out to identify the expressions of metabolites associated with the anti-thrombosis mechanism of LEO. Our in vivo experimental results showed that LEO could improve the oxidative stress injury, abnormal platelet aggregation and coagulation dysfunction induced by adrenalin hydrochloride. Moreover, LEO restored the modulation of amino acids and inositol metabolites which are reported to alleviate the thrombus formation. Collectively, LEO attenuates adrenalin hydrochloride-induced thrombosis partly via modulating oxidative stress, coagulation cascade and platelet activation and amino acid and inositol metabolites.
Collapse
Affiliation(s)
- Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
6
|
Ibrahim-Kosta M, Alessi MC, Hezard N. Laboratory Techniques Used to Diagnose Constitutional Platelet Dysfunction. Hamostaseologie 2020; 40:444-459. [PMID: 32932546 DOI: 10.1055/a-1223-3306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Platelets play a major role in primary hemostasis, where activated platelets form plugs to stop hemorrhaging in response to vessel injuries. Defects in any step of the platelet activation process can cause a variety of platelet dysfunction conditions associated with bleeding. To make an accurate diagnosis, constitutional platelet dysfunction (CPDF) should be considered once von Willebrand disease and drug intake are ruled out. CPDF may be associated with thrombocytopenia or a genetic syndrome. CPDF diagnosis is complex, as no single test enables the analysis of all aspects of platelet function. Furthermore, the available tests lack standardization, and repeat tests must be performed in specialized laboratories especially for mild and moderate forms of the disease. In this review, we provide an overview of the laboratory tests used to diagnose CPDF, with a focus on light transmission platelet aggregation (LTA), flow cytometry (FC), and granules assessment. Global tests, mainly represented by LTA, are often initially performed to investigate the consequences of platelet activation on platelet aggregation in a single step. Global test results should be confirmed by additional analytical tests. FC represents an accurate, simple, and reliable test to analyze abnormalities in platelet receptors, and granule content and release. This technique may also be used to investigate platelet function by comparing resting- and activated-state platelet populations. Assessment of granule content and release also requires additional specialized analytical tests. High-throughput sequencing has become increasingly useful to diagnose CPDF. Advanced tests or external research laboratory techniques may also be beneficial in some cases.
Collapse
Affiliation(s)
- Manal Ibrahim-Kosta
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Nathalie Hezard
- Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| |
Collapse
|
7
|
Canault M, Alessi MC. RasGRP2 Structure, Function and Genetic Variants in Platelet Pathophysiology. Int J Mol Sci 2020; 21:E1075. [PMID: 32041177 PMCID: PMC7037602 DOI: 10.3390/ijms21031075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in "inside-out" αIIbβ3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as platelet-type bleeding disorder-18 (BDPLT18). We review here the structure of RasGRP2 and its functions in the pathophysiology of platelets and of the other cellular types that express it. We will also examine the different pathogenic variants reported so far as well as strategies for the diagnosis and management of patients with BDPLT18.
Collapse
Affiliation(s)
- Matthias Canault
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
- Hematology laboratory, APHM, CHU Timone, 13005 Marseille, France
| |
Collapse
|
8
|
Abstract
Platelets are small, anucleate circulating cells that possess a dynamic repertoire of functions spanning the hemostatic, inflammatory, and immune continuum. Once thought to be merely cell fragments with responses limited primarily to acute hemostasis and vascular wall repair, platelets are now increasingly recognized as key sentinels and effector cells regulating host responses to many inflammatory and infectious cues. Platelet granules, including α-granules and dense-granules, store hundreds of factors and secrete these mediators in response to activating signals. The cargo packaged and stored within platelet granules orchestrates communication between platelets and other circulating cells, augments host defense mechanisms to invading pathogens and tumor cells, and - in some settings - drives dysregulated and injurious responses. This focused review will highlight several of the established and emerging mechanisms and roles of platelet secretion in inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Bhanu K Manne
- a The University of Utah Molecular Medicine Program , Salt Lake City , Utah , USA
| | | | - Matthew T Rondina
- a The University of Utah Molecular Medicine Program , Salt Lake City , Utah , USA.,c Department of Internal Medicine , Salt Lake City , Utah , USA.,d The GRECC, George E. Wahlen Salt Lake City VAMC , Salt Lake City , Utah , USA
| |
Collapse
|
9
|
Distinctive roles of PKC delta isozyme in platelet function. Curr Res Transl Med 2016; 64:135-139. [PMID: 27765273 DOI: 10.1016/j.retram.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022]
Abstract
Platelet activation is a complex balance of positive and negative signaling pathways. Several protein kinase C (PKC) isoforms are expressed in human platelets. They are a major regulator of platelet granule secretion, activation and aggregation activity. One of those isoforms is the PKCδ isozyme, it has a central yet complex role in platelets such as opposite signaling functions depending on the nature of the agonist, it concentration and pathway. In fact, it has been shown that PKCδ has an overall negative influence on platelet function in response to collagen, while, following PAR stimulation, PKCδ has a positive effect on platelet function. Understanding the crucial role of PKCδ in platelet functions is recently emerging in the literature, therefore, further investigations should shed light into its specific role in hemostasis. In this review, we focus on the different roles of PKCδ in platelet activation, aggregation and thrombus formation.
Collapse
|
10
|
Vemana HP, Karim ZA, Conlon C, Khasawneh FT. A critical role for the transient receptor potential channel type 6 in human platelet activation. PLoS One 2015; 10:e0125764. [PMID: 25928636 PMCID: PMC4416038 DOI: 10.1371/journal.pone.0125764] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Zubair A. Karim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Christine Conlon
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.
Collapse
Affiliation(s)
- Fumikazu Matsuhisa
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | | | | |
Collapse
|
12
|
Bhavanasi D, Kostyak JC, Swindle J, Kilpatrick LE, Kunapuli SP. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets. Platelets 2014; 26:2-9. [PMID: 24433221 DOI: 10.3109/09537104.2013.868877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions. Novel PKC isoform δ has been shown to play an important role in some pathological processes. Lack of specific inhibitors for PKCδ has restricted analysis of its role in various cells. The current study was carried out to evaluate a novel small molecule PKCδ inhibitor, CGX1037 in platelets. Platelet aggregation, dense granule secretion and western blotting experiments were performed to evaluate CGX1037. In human platelets, CGX1037 inhibited PAR4-mediated phosphorylation on PKD2, a PKCδ-specific substrate. Pre-treatment of human or murine platelets with CGX1037 inhibited PAR4-mediated dense granule secretion whereas it potentiated GPVI-mediated dense granule secretion similar to the responses observed in murine platelets lacking PKCδ· Furthermore, pre-treatment of platelets from PKCδ(-/-) mice with CGX1037 had no significant additive effect on platelet responses suggesting the specificity of CGX1037. Hence, we show that CGX1037 is a selective small molecule inhibitor of PKCδ in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine , Philadelphia, PA , USA
| | | | | | | | | |
Collapse
|
13
|
Sustained impairment of α2A-adrenergic autoreceptor signaling mediates neurochemical and behavioral sensitization to amphetamine. Biol Psychiatry 2013; 74:90-8. [PMID: 23332355 DOI: 10.1016/j.biopsych.2012.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/09/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND In rodents, drugs of abuse induce locomotor hyperactivity, and repeating injections enhance this response. This effect, called behavioral sensitization, persists months after the last administration. It has been shown that behavioral sensitization to amphetamine develops parallel to an increased release of norepinephrine (NE) in the prefrontal cortex (PFC). METHODS Rats and mice were repeatedly treated with amphetamine (1 or 2 mg/kg intraperitoneally, respectively) to obtain sensitized animals. The NE release in the PFC was measured by microdialysis in freely moving mice (n = 55). Activity of locus coeruleus (LC) noradrenergic neurons was determined in anaesthetized rats (n = 15) by in vivo extracellular electrophysiology. The α2A-adrenergic autoreceptor (α2A-AR) expression was assessed by autoradiography on brain slices, and Gαi proteins expression was measured by western blot analysis of LC punches. RESULTS In sensitized rats LC neurons had a higher spontaneous firing rate, and clonidine-an α2A-adrenergic agonist-inhibited LC neuronal firing less efficiently than in control animals. Clonidine also induced lower levels of NE release in the PFC of sensitized mice. This desensitization was maintained by a lower density of Gαi1 and Gαi2 proteins in the LC of sensitized mice rather than weaker α2A-AR expression. Behavioral sensitization was facilitated by α2A-AR antagonist, efaroxan, during amphetamine injections and abolished by clonidine treatment. CONCLUSIONS Our data indicate that noradrenergic inhibitory feedback is impaired for at least 1 month in rats and mice repeatedly treated with amphetamine. This work highlights the key role of noradrenergic autoreceptor signaling in the persistent modifications induced by repeated amphetamine administration.
Collapse
|
14
|
Kim K, Bae ON, Lim KM, Noh JY, Kang S, Chung KY, Chung JH. Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation. J Pharmacol Exp Ther 2012; 343:704-11. [PMID: 22984226 DOI: 10.1124/jpet.112.198242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bleeding is the most common and serious adverse effect of currently available antiplatelet drugs. Many efforts are being made to develop novel antithrombotic agents without bleeding risks. Shear stress-induced platelet aggregation (SIPA), which occurs under abnormally high shear stress, plays a crucial role in the development of arterial thrombotic diseases. Here, we demonstrate that protocatechuic acid (PCA), a bioactive phytochemical from Lonicera (honeysuckle) flowers, selectively and potently inhibits high shear (>10,000 s(-1))-induced platelet aggregation. In isolated human platelets, PCA decreased SIPA and attenuated accompanying platelet activation, including intracellular calcium mobilization, granule secretion, and adhesion receptor expression. The anti-SIPA effect of PCA was mediated through blockade of von Willebrand factor binding to activated glycoprotein Ib, a primary and initial event for the accomplishment of SIPA. Conspicuously, PCA did not inhibit platelet aggregation induced by other endogenous agonists like collagen, thrombin, or ADP that are important in both pathological thrombosis and normal hemostasis. Antithrombotic effects of PCA were confirmed in vivo in a rat arterial thrombosis model, where PCA significantly delayed the arterial occlusion induced by FeCl(3). Of particular note, PCA did not increase bleeding times in a rat tail transection model, whereas conventional antiplatelet drugs, aspirin, and clopidogrel substantially prolonged it. Collectively, these results suggest that PCA may be a novel antiplatelet agent that can prevent thrombosis without increasing bleeding risks.
Collapse
Affiliation(s)
- Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Carubbi C, Mirandola P, Mattioli M, Galli D, Marziliano N, Merlini PA, Lina D, Notarangelo F, Cozzi MR, Gesi M, Ardissino D, De Marco L, Vitale M, Gobbi G. Protein kinase C ε expression in platelets from patients with acute myocardial infarction. PLoS One 2012; 7:e46409. [PMID: 23071564 PMCID: PMC3465320 DOI: 10.1371/journal.pone.0046409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 01/16/2023] Open
Abstract
Objective Platelets play crucial roles in the pathophysiology of thrombosis and myocardial infarction. Protein kinase C ε (PKCε) is virtually absent in human platelets and its expression is precisely regulated during human megakaryocytic differentiation. On the basis of what is known on the role of platelet PKCε in other species, we hypothesized that platelets from myocardial infarction patients might ectopically express PKCε with a pathophysiological role in the disease. Methods and Results We therefore studied platelet PKCε expression from 24 patients with myocardial infarction, 24 patients with stable coronary artery disease and 24 healthy subjects. Indeed, platelets from myocardial infarction patients expressed PKCε with a significant frequency as compared to both stable coronary artery disease and healthy subjects. PKCε returned negative during patient follow-up. The forced expression of PKCε in normal donor platelets significantly increased their response to adenosine diphosphate-induced activation and adhesion to subendothelial collagen. Conclusions Our data suggest that platelet generations produced before the acute event retain PKCε-mRNA that is not down-regulated during terminal megakaryocyte differentiation. Results are discussed in the perspective of peri-infarctual megakaryocytopoiesis as a critical component of myocardial infarction pathophysiology.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Maria Mattioli
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Daniela Galli
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | | | - Daniela Lina
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Maria Rita Cozzi
- Department of Laboratory Medicine, CRO National Cancer Institute, Aviano, Italy
| | - Marco Gesi
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Luigi De Marco
- Department of Laboratory Medicine, CRO National Cancer Institute, Aviano, Italy
| | - Marco Vitale
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
- * E-mail:
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| |
Collapse
|
16
|
UNSWORTH AJ, FINNEY BA, NAVARRO-NUNEZ L, SEVERIN S, WATSON SP, PEARS CJ. Protein kinase Cε and protein kinase Cθ double-deficient mice have a bleeding diathesis. J Thromb Haemost 2012; 10:1887-94. [PMID: 22812584 PMCID: PMC3532618 DOI: 10.1111/j.1538-7836.2012.04857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND In comparison to the classical isoforms of protein kinase C (PKC), the novel isoforms are thought to play minor or inhibitory roles in the regulation of platelet activation and thrombosis. OBJECTIVES To measure the levels of PKCθ and PKCε and to investigate the phenotype of mice deficient in both novel PKC isoforms. METHODS Tail bleeding and platelet activation assays were monitored in mice and platelets from mice deficient in both PKCθ and PKCε. RESULTS PKCε plays a minor role in supporting aggregation and secretion following stimulation of the collagen receptor GPVI in mouse platelets but has no apparent role in spreading on fibrinogen. PKCθ, in contrast, plays a minor role in supporting adhesion and filopodial generation on fibrinogen but has no apparent role in aggregation and secretion induced by GPVI despite being expressed at over 10 times the level of PKCε. Platelets deficient in both novel isoforms have a similar pattern of aggregation downstream of GPVI and spreading on fibrinogen as the single null mutants. Strikingly, a marked reduction in aggregation on collagen under arteriolar shear conditions is observed in blood from the double but not single-deficient mice along with a significant increase in tail bleeding. CONCLUSIONS These results reveal a greater than additive role for PKCθ and PKCε in supporting platelet activation under shear conditions and demonstrate that, in combination, the two novel PKCs support platelet activation.
Collapse
Affiliation(s)
- A J UNSWORTH
- Department of Biochemistry, University of OxfordOxford
| | - B A FINNEY
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - L NAVARRO-NUNEZ
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S SEVERIN
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S P WATSON
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - C J PEARS
- Department of Biochemistry, University of OxfordOxford
| |
Collapse
|
17
|
Zhi L, Chi X, Gelderman MP, Vostal JG. Activation of platelet protein kinase C by ultraviolet light B mediates platelet transfusion-related acute lung injury in a two-event animal model. Transfusion 2012; 53:722-31. [DOI: 10.1111/j.1537-2995.2012.03811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Bynagari-Settipalli YS, Lakhani P, Jin J, Bhavaraju K, Rico MC, Kim S, Woulfe D, Kunapuli SP. Protein kinase C isoform ε negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets. Arterioscler Thromb Vasc Biol 2012; 32:1211-9. [PMID: 22362759 DOI: 10.1161/atvbaha.111.242388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Members of the protein kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. We investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. METHODS AND RESULTS A pan-PKC inhibitor, GF109203X, potentiated ADP-induced cPLA(2) phosphorylation and thromboxane generation as well as ERK activation and intracellular calcium (Ca(2+)(i)) mobilization, 2 signaling molecules, upstream of cPLA(2) activation. Thus, PKCs inhibit cPLA(2) activation by inhibiting ERK and Ca(2+)(i) mobilization. Because the inhibitor of classic PKC isoforms, GO-6976, did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP-induced thromboxane generation, calcium mobilization, and ERK phosphorylation were potentiated in PKCε null murine platelets compared with platelets from wild-type littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε knockout and wild-type was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in an FeCl(3)-induced arterial injury model and shorter bleeding times in tail-bleeding experiments. CONCLUSIONS We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis.
Collapse
|
19
|
Passacquale G, Ferro A. Current concepts of platelet activation: possibilities for therapeutic modulation of heterotypic vs. homotypic aggregation. Br J Clin Pharmacol 2012; 72:604-18. [PMID: 21223359 DOI: 10.1111/j.1365-2125.2011.03906.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thrombogenic and inflammatory activity are two distinct aspects of platelet biology, which are sustained by the ability of activated platelets to interact with each other (homotypic aggregation) and to adhere to circulating leucocytes (heterotypic aggregation). These two events are regulated by distinct biomolecular mechanisms that are selectively activated in different pathophysiological settings. They can occur simultaneously, for example, as part of a pro-thrombotic/pro-inflammatory response induced by vascular damage, or independently, as in certain clinical conditions in which abnormal heterotypic aggregation has been observed in the absence of intravascular thrombosis. Current antiplatelet drugs have been developed to target specific molecular signalling pathways mainly implicated in thrombus formation, and their ever increasing clinical use has resulted in clear benefits in the treatment and prevention of arterial thrombotic events. However, the efficacy of currently available antiplatelet drugs remains suboptimal, most likely because their therapeutic action is limited to only few of the signalling pathways involved in platelet homotypic aggregation. In this context, modulation of heterotypic aggregation, which is believed to contribute importantly to acute thrombotic events, as well to the pathophysiology of atherosclerosis itself, may offer benefits over and above the classical antiplatelet approach. This review will focus on the distinct biomolecular pathways that, following platelet activation, underlie homotypic and heterotypic aggregation, aiming potentially to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Gabriella Passacquale
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London, London, UK
| | | |
Collapse
|
20
|
Harper MT, Poole AW. PKC inhibition markedly enhances Ca2+ signaling and phosphatidylserine exposure downstream of protease-activated receptor-1 but not protease-activated receptor-4 in human platelets. J Thromb Haemost 2011; 9:1599-607. [PMID: 21649850 DOI: 10.1111/j.1538-7836.2011.04393.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cytosolic calcium concentration is a critical regulator of platelet activation, and so platelet Ca(2+) signaling must be tightly controlled. Thrombin-induced Ca(2+) signaling is enhanced by inhibitors of protein kinase C (PKC), suggesting that PKC negatively regulates the Ca(2+) signal, although the mechanisms by which this occurs and its physiological relevance are still unclear. OBJECTIVES To investigate the mechanisms by which PKC inhibitors enhance thrombin-induced Ca(2+) signaling, and to determine the importance of this pathway in platelet activation. METHODS Cytosolic Ca(2+) signaling was monitored in fura-2-loaded human platelets. Phosphatidylserine (PS) exposure, a marker of platelet procoagulant activity, was measured by annexin V binding and flow cytometry. RESULTS PKC inhibition by bisindolylmaleimide-I (BIM-I) enhanced α-thrombin-induced Ca(2+) signaling in a concentration-dependent manner. PAR1 signaling, activated by SFLLRN, was enhanced much more strongly than PAR4, activated by AYPGKF or γ-thrombin, which is a potent PAR4 agonist but a poor activator of PAR1. BIM-I had little effect on α-thrombin-induced signaling following treatment with the PAR1 antagonist, SCH-79797. BIM-I enhanced Ca(2+) release from intracellular stores and Ca(2+) entry, as assessed by Mn(2+) quench. However, the plasma membrane Ca(2+) ATPase inhibitor, 5(6)-carboxyeosin, did not prevent the effect of BIM-I. PKC inhibition strongly enhanced α-thrombin-induced PS exposure, which was reversed by blockade of PAR1. CONCLUSIONS Together, these data show that when PAR1 is stimulated, PKC negatively regulates Ca(2+) release and Ca(2+) entry, which leads to reduced platelet PS exposure.
Collapse
Affiliation(s)
- M T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| | | |
Collapse
|
21
|
Differential dephosphorylation of the protein kinase C-zeta (PKCζ) in an integrin αIIbβ3-dependent manner in platelets. Biochem Pharmacol 2011; 82:505-13. [PMID: 21645497 DOI: 10.1016/j.bcp.2011.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/19/2022]
Abstract
Protein kinase C-zeta (PKCζ), an atypical isoform of the PKC family of protein serine/threonine kinases, is expressed in human platelets. However, the mechanisms of its activation and the regulation of its activity in platelets are not known. We have found that under basal resting conditions, PKCζ has a high phosphorylation status at the activation loop threonine 410 (T410) and the turn motif (autophosphorylation site) threonine 560 (T560), both of which have been shown to be important for its catalytic activity. After stimulation with agonist under stirring conditions, the T410 residue was dephosphorylated in a time- and concentration-dependent manner, while the T560 phosphorylation remained unaffected. The T410 dephosphorylation could be significantly prevented by blocking the binding of fibrinogen to integrin αIIbβ3 with an antagonist, SC-57101; or by okadaic acid used at concentrations that inhibits protein serine/threonine phosphatases PP1 and PP2A in vitro. The dephosphorylation of T410 residue on PKCζ was also observed in PP1cγ null murine platelets after agonist stimulation, suggesting that other isoforms of PP1c or another phosphatase could be responsible for this dephosphorylation event. We conclude that human platelets express PKCζ, and it may be constitutively phosphorylated at the activation loop threonine 410 and the turn motif threonine 560 under basal resting conditions, which are differentially dephosphorylated by outside-in signaling. This differential dephosphorylation of PKCζ might be an important regulatory mechanism for platelet functional responses.
Collapse
|
22
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Getz TM, Mayanglambam A, Daniel JL, Kunapuli SP. Go6976 abrogates GPVI-mediated platelet functional responses in human platelets through inhibition of Syk. J Thromb Haemost 2011; 9:608-10. [PMID: 21251194 PMCID: PMC3057064 DOI: 10.1111/j.1538-7836.2011.04192.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Todd M. Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Azad Mayanglambam
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - James L. Daniel
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| | - Satya P. Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, U.S.A
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
24
|
The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood 2010; 117:1005-13. [PMID: 20971951 DOI: 10.1182/blood-2010-07-297713] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two major pathways contribute to Ras-proximate-1-mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbβ3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI(-/-) blood, even in the presence of exogenous adenosine diphosphate and thromboxane A(2). In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI(-/-) mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.
Collapse
|
25
|
Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 2010; 429:369-77. [PMID: 20441566 DOI: 10.1042/bj20100166] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PI3Ks (phosphoinositide 3-kinases) play a critical role in platelet functional responses. PI3Ks are activated upon P2Y12 receptor stimulation and generate pro-aggregatory signals. P2Y12 receptor has been shown to play a key role in the platelet aggregation and thromboxane A2 generation caused by co-stimulation with Gq or Gz, or super-stimulation of Gi pathways. In the present study, we evaluated the role of specific PI3K isoforms alpha, beta, gamma and delta in platelet aggregation, thromboxane A2 generation and ERK (extracellular-signal-regulated kinase) activation. Our results show that loss of the PI3K signal impaired the ability of ADP to induce platelet aggregation, ERK phosphorylation and thromboxane A2 generation. We also show that Gq plus Gi- or Gi plus Gz-mediated platelet aggregation, ERK phosphorylation and thromboxane A2 generation in human platelets was inhibited by TGX-221, a PI3Kbeta-selective inhibitor, but not by PIK75 (a PI3Kalpha inhibitor), AS252424 (a PI3Kgamma inhibitor) or IC87114 (a PI3Kdelta inhibitor). TGX-221 also showed a similar inhibitory effect on the Gi plus Gz-mediated platelet responses in platelets from P2Y1-/- mice. Finally, 2MeSADP (2-methyl-thio-ADP)-induced Akt phosphorylation was significantly inhibited in the presence of TGX-221, suggesting a critical role for PI3Kbeta in Gi-mediated signalling. Taken together, our results demonstrate that PI3Kbeta plays an important role in ADP-induced platelet aggregation. Moreover, PI3Kbeta mediates ADP-induced thromboxane A2 generation by regulating ERK phosphorylation.
Collapse
|
26
|
Gilio K, Harper MT, Cosemans JMEM, Konopatskaya O, Munnix ICA, Prinzen L, Leitges M, Liu Q, Molkentin JD, Heemskerk JWM, Poole AW. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen. J Biol Chem 2010; 285:23410-9. [PMID: 20479008 PMCID: PMC2906332 DOI: 10.1074/jbc.m110.136176] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
Collapse
Affiliation(s)
- Karen Gilio
- Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roberts W, Michno A, Aburima A, Naseem KM. Nitric oxide inhibits von Willebrand factor-mediated platelet adhesion and spreading through regulation of integrin alpha(IIb)beta(3) and myosin light chain. J Thromb Haemost 2009; 7:2106-15. [PMID: 19765213 DOI: 10.1111/j.1538-7836.2009.03619.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND von Willebrand factor (VWF)-mediated platelet adhesion and spreading at sites of vascular injury is a critical step in hemostasis. This process requires two individual receptors: glycoprotein Ib (GPIb)-V-IX and integrin alpha(IIb)beta(3). However, little is known about the negative regulation of these events. OBJECTIVES To examine if the endogenous platelet inhibitor nitric oxide (NO) has differential effects on adhesion, spreading and aggregation induced by immobilized VWF. RESULTS S-nitrosoglutathione (GSNO) inhibited platelet aggregation on immobilized VWF under static and flow conditions, but had no effect on platelet adhesion. Primary signaling events underpinning the actions of NO required cyclic GMP but not protein kinase A. Dissecting the roles of GPIb and integrin alpha(IIb)beta(3) demonstrated that NO targeted alpha(IIb)beta(3)-mediated aggregation and spreading, but did not significantly influence GPIb-mediated adhesion. To understand the relationship between the effects of NO on adhesion and subsequent aggregation, we evaluated the activation of alpha(IIb)beta(3) on adherent platelets. NO reduced the phosphorylation of extracellular stimuli-responsive kinase (ERK) and p38, required for integrin activation resulting in reduced binding of the activated alpha(IIb)beta(3)-specific antibody PAC-1 on adherent platelets. Detailed analysis of platelet spreading initiated by VWF demonstrated key roles for integrin alpha(IIb)beta(3) and myosin light chain (MLC) phosphorylation. NO targeted both of these pathways by directly modulating integrin affinity and activating MLC phosphatase. CONCLUSION These data demonstrate that initial activation-independent platelet adhesion to VWF via GPIb is resistant to NO, however, NO inhibits GPIb-mediated activation of alpha(IIb)beta(3) and MLC leading to reduced platelet spreading and aggregation.
Collapse
Affiliation(s)
- W Roberts
- Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, UK
| | | | | | | |
Collapse
|
28
|
Navarro-Núñez L, Rivera J, Guerrero JA, Martínez C, Vicente V, Lozano ML. Differential effects of quercetin, apigenin and genistein on signalling pathways of protease-activated receptors PAR(1) and PAR(4) in platelets. Br J Pharmacol 2009; 158:1548-56. [PMID: 19814731 DOI: 10.1111/j.1476-5381.2009.00440.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The modulation by flavonoids of platelet responses induced by thrombin has been little investigated, and the antiplatelet activity, as well as possible inhibitory mechanisms of these compounds on thrombin signalling, has not yet been elucidated. We explored whether flavonoids affect platelet signalling pathways triggered by thrombin and by the selective activation of its protease-activated receptors (PARs) 1 and 4, and analysed the antagonism of these polyphenols at thrombin receptors. EXPERIMENTAL APPROACH We investigated the effect of a range of polyphenolic compounds on platelet aggregation, 5-HT secretion, intracellular calcium mobilization, protein kinase activity and tyrosine phosphorylation, triggered by thrombin and PAR agonist peptides (PAR-APs). The ability of these flavonoids to bind to thrombin receptors was investigated by competitive radioligand binding assays using (125)I-thrombin. KEY RESULTS Quercetin, apigenin and genistein impaired platelet aggregation, as well as 5-HT release and calcium mobilization, induced by thrombin and PAR-APs. Quercetin and apigenin were inhibitors of protein kinases, but genistein exhibited a minimal ability to suppress platelet phosphorylation. Binding assays did not establish any kind of interaction between thrombin receptors and any of the flavonoids tested. CONCLUSIONS AND IMPLICATIONS Quercetin, apigenin and genistein did not inhibit thrombin responses by interacting with thrombin receptors, but by interfering with intracellular signalling. While inhibition by genistein may be a consequence of affecting calcium mobilization, subsequent platelet secretion and aggregation, for quercetin and apigenin, inhibition of kinase activation may also be involved in the impairment of platelet responses.
Collapse
Affiliation(s)
- L Navarro-Núñez
- Centro Regional de Hemodonación, University of Murcia, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Kim S, Mangin P, Dangelmaier C, Lillian R, Jackson SP, Daniel JL, Kunapuli SP. Role of phosphoinositide 3-kinase beta in glycoprotein VI-mediated Akt activation in platelets. J Biol Chem 2009; 284:33763-72. [PMID: 19700402 DOI: 10.1074/jbc.m109.048553] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y(12) receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kbeta inhibitor TGX-221 indicating an essential role of PI3Kbeta in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca(2+) mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kalpha inhibitor PIK75, but were not affected by PI3Kgamma inhibitor AS252424 and PI3Kdelta inhibitor IC87114. Consistently, GPVI-induced integrin alpha(IIb)beta(3) activation of PI3Kgamma(-/-) and PI3Kdelta(-/-) platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on G(i) stimulation through P2Y(12) receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kbeta plays an essential role in GPVI-mediated platelet aggregation and Akt activation.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.
Collapse
|
31
|
Abstract
A rise in the intracellular calcium (Ca2+) concentration is a major component of the signaling mechanisms regulating platelet function in thrombosis and hemostasis. Previous studies, however, failed to identify many key molecules regulating Ca2+ signaling in platelets. Here, we review recent findings, which identified CalDAG-GEFI as a critical Ca2+ sensor that links increases in intracellular Ca2+ to integrin activation, TxA2 formation, and granule release in stimulated platelets. Furthermore, we summarize work that lead to the discovery of STIM1 and Orai1 as key regulators of store-operated calcium entry (SOCE) in platelets. A short discussion on the usefulness of each molecule as a potential new target for antiplatelet therapy is included.
Collapse
Affiliation(s)
- W Bergmeier
- Cardeza Foundation and Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
32
|
Bynagari YS, Nagy B, Tuluc F, Bhavaraju K, Kim S, Vijayan KV, Kunapuli SP. Mechanism of activation and functional role of protein kinase Ceta in human platelets. J Biol Chem 2009; 284:13413-13421. [PMID: 19286657 PMCID: PMC2679441 DOI: 10.1074/jbc.m808970200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/06/2009] [Indexed: 11/06/2022] Open
Abstract
The novel class of protein kinase C (nPKC) isoform eta is expressed in platelets, but not much is known about its activation and function. In this study, we investigated the mechanism of activation and functional implications of nPKCeta using pharmacological and gene knock-out approaches. nPKCeta was phosphorylated (at Thr-512) in a time- and concentration-dependent manner by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1 receptor antagonist, or YM-254890, a G(q) blocker, abolished 2MeSADP-induced phosphorylation of nPKCeta. Similarly, ADP failed to activate nPKCeta in platelets isolated from P2Y1 and G(q) knock-out mice. However, pretreatment of platelets with P2Y12 receptor antagonist, AR-C69331MX did not interfere with ADP-induced nPKCeta phosphorylation. In addition, when platelets were activated with 2MeSADP under stirring conditions, although nPKCeta was phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by activated integrin alpha(IIb)beta3 mediated outside-in signaling. Moreover, in the presence of SC-57101, a alpha(IIb)beta3 receptor antagonist, nPKCeta dephosphorylation was inhibited. Furthermore, in murine platelets lacking PP1cgamma, a catalytic subunit of serine/threonine phosphatase, alpha(IIb)beta3 failed to dephosphorylate nPKCeta. Thus, we conclude that ADP activates nPKCeta via P2Y1 receptor and is subsequently dephosphorylated by PP1gamma phosphatase activated by alpha(IIb)beta3 integrin. In addition, pretreatment of platelets with eta-RACK antagonistic peptides, a specific inhibitor of nPKCeta, inhibited ADP-induced thromboxane generation. However, these peptides had no affect on ADP-induced aggregation when thromboxane generation was blocked. In summary, nPKCeta positively regulates agonist-induced thromboxane generation with no effects on platelet aggregation.
Collapse
Affiliation(s)
- Yamini S Bynagari
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Bela Nagy
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Florin Tuluc
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Kamala Bhavaraju
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Soochong Kim
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - K Vinod Vijayan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Satya P Kunapuli
- Departments of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Pharmacology and the Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
33
|
Chari R, Getz T, Nagy B, Bhavaraju K, Mao Y, Bynagari YS, Murugappan S, Nakayama K, Kunapuli SP. Protein kinase C[delta] differentially regulates platelet functional responses. Arterioscler Thromb Vasc Biol 2009; 29:699-705. [PMID: 19213940 DOI: 10.1161/atvbaha.109.184010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Protein Kinase C delta (PKCdelta) is expressed in platelets and activated downstream of protease-activated receptors (PAR)s and glycoprotein VI (GPVI) receptors. The purpose of this study was to investigate the role of PKCdelta in platelets. METHODS AND RESULTS We evaluated the role of PKCdelta in platelets using two approaches--pharmacological and molecular genetic approach. In human platelets pretreated with isoform selective antagonistic RACK peptide (delta V1-1)TAT, and in the murine platelets lacking PKCdelta, PAR4-mediated dense granule secretion was inhibited, whereas GPVI-mediated dense granule secretion was potentiated. These effects were statistically significant in the absence and presence of thromboxane A2 (TXA2). Furthermore, TXA2 generation was differentially regulated by PKCdelta. However, PKCdelta had a small effect on platelet P-selectin expression. Calcium- and PKC-dependent pathways independently activate fibrinogen receptor in platelets. When calcium pathways are blocked by dimethyl-BAPTA, AYPGKF-induced aggregation in PKCdelta null mouse platelets and in human platelets pretreated with (delta V1-1)TAT, was inhibited. In a FeCl3-induced injury in vivo thrombosis model, PKCdelta-/- mice occluded similar to their wild-type littermates. CONCLUSIONS Hence, we conclude that PKCdelta differentially regulates platelet functional responses such as dense granule secretion and TXA2 generation downstream of PARs and GPVI receptors, but PKCdelta deficiency does not affect the thrombus formation in vivo.
Collapse
Affiliation(s)
- Ramya Chari
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Protein kinase C (PKC) isoforms have been implicated in several platelet functional responses, but the contribution of individual isoforms has not been thoroughly evaluated. Novel PKC isoform PKC-theta is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by adenosine diphosphate. In human platelets, PKC-theta-selective antagonistic (RACK; receptor for activated C kinase) peptide significantly inhibited GPVI and PAR-induced aggregation, dense and alpha-granule secretion at low agonist concentrations. Consistently, in murine platelets lacking PKC-theta, platelet aggregation and secretion were also impaired. PKC-mediated phosphorylation of tSNARE protein syntaxin-4 was strongly reduced in human platelets pretreated with PKC-theta RACK peptide, which may contribute to the lower levels of granule secretion when PKC-theta function is lost. Furthermore, the level of JON/A binding to activated alpha(IIb)beta(3) receptor was also significantly decreased in PKC-theta(-/-) mice compared with wild-type littermates. PKC-theta(-/-) murine platelets showed significantly lower agonist-induced thromboxane A(2) (TXA(2)) release through reduced extracellular signal-regulated kinase phosphorylation. Finally, PKC-theta(-/-) mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl(3) in vivo thrombosis model compared with wild-type mice. In conclusion, PKC-theta isoform plays a significant role in platelet functional responses downstream of PAR and GPVI receptors.
Collapse
|
35
|
Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JMEM, Karim ZA, Whiteheart SW, Molkentin JD, Verkade P, Watson SP, Heemskerk JWM, Poole AW. PKCalpha regulates platelet granule secretion and thrombus formation in mice. J Clin Invest 2009; 119:399-407. [PMID: 19147982 DOI: 10.1172/jci34665] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/03/2008] [Indexed: 12/21/2022] Open
Abstract
Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.
Collapse
Affiliation(s)
- Olga Konopatskaya
- Department of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 2008; 112:1696-703. [PMID: 18544684 DOI: 10.1182/blood-2008-02-139733] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Second messenger-mediated inside-out activation of integrin alphaIIbbeta3 is a key step in platelet aggregation. We recently showed strongly impaired but not absent alphaIIbbeta3-mediated aggregation of CalDAG-GEFI-deficient platelets activated with various agonists. Here we further evaluated the roles of CalDAG-GEFI and protein kinase C (PKC) for alphaIIbbeta3 activation in platelets activated with a PAR4 receptor-specific agonist, GYPGKF (PAR4p). Compared with wild-type controls, platelets treated with the PKC inhibitor Ro31-8220 or CalDAG-GEFI-deficient platelets showed a marked defect in aggregation at low (< 1mM PAR4p) but not high PAR4p concentrations. Blocking of PKC function in CalDAG-GEFI-deficient platelets, how-ever, strongly decreased aggregation at all PAR4p concentrations, demonstrating that CalDAG-GEFI and PKC represent separate, but synergizing, pathways important for alphaIIbbeta3 activation. PAR4p-induced aggregation in the absence of CalDAG-GEFI required cosignaling through the Galphai-coupled receptor for ADP, P2Y12. Independent roles for CalDAG-GEFI and PKC/Galphai signaling were also observed for PAR4p-induced activation of the small GTPase Rap1, with CalDAG-GEFI mediating the rapid but reversible activation of this small GTPase. In summary, our study identifies CalDAG-GEFI and PKC as independent pathways leading to Rap1 and alphaIIbbeta3 activation in mouse platelets activated through the PAR4 receptor.
Collapse
|
37
|
Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. TRANSLATIONAL ONCOGENOMICS 2008; 3:99-136. [PMID: 21566747 PMCID: PMC3022353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins.
Collapse
Affiliation(s)
- Joseph Z Zaretsky
- Department Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Haim Levanon St., 69978 Tel-Aviv, Israel
| | | |
Collapse
|
38
|
Iyengar S, Rabbani LE. Beyond platelet inhibition: potential pleiotropic effects of ADP-receptor antagonists. J Thromb Thrombolysis 2008; 27:300-6. [DOI: 10.1007/s11239-008-0221-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/28/2008] [Indexed: 01/04/2023]
|
39
|
Characterization of a new peptide agonist of the protease-activated receptor-1. Biochem Pharmacol 2007; 75:438-47. [PMID: 17950254 DOI: 10.1016/j.bcp.2007.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/27/2007] [Accepted: 09/04/2007] [Indexed: 01/27/2023]
Abstract
A new peptide (TFRRRLSRATR), derived from the c-terminal of human platelet P2Y(1) receptor, was synthesized and its biological function was evaluated. This peptide activated platelets in a concentration-dependent manner, causing shape change, aggregation, secretion and calcium mobilization. Of the several receptor antagonists tested, only BMS200261, a protease activated receptor 1 (PAR-1) specific antagonist, totally abolished the peptide-induced platelet aggregation, secretion and calcium mobilization. The TFRRR-peptide-pretreated washed platelets failed to aggregate in response to SFLLRN (10 microM) but not to AYPGKF (500 microM). In addition, in mouse platelets, peptide concentrations up to 600 microM failed to cause platelet activation, indicating that the TFRRR-peptide activated platelets through the PAR-1 receptor, rather than through the PAR-4 receptor. The shape change induced by 10 microM peptide was totally abolished by Y-27632, an inhibitor of p160(ROCK) which is a downstream mediator of G12/13 pathways. The TFRRR-peptide, YFLLRNP, and the physiological agonist thrombin selectively activated G12/13 pathways at low concentrations and began to activate both Gq and G12/13 pathways with increasing concentrations. Similar to SFLLRN, the TFRRR-peptide caused phosphorylation of Akt and Erk in a P2Y(12) receptor-dependent manner, and p-38 MAP kinase activation in a P2Y(12)-independent manner. The effects of this peptide are elicited by the first six amino acids (TFRRRL) whereas the remaining peptide (LSRATR), TFERRN, or TFEERN had no effects on platelets. We conclude that TFRRRL activates human platelets through PAR-1 receptors.
Collapse
|
40
|
Abstract
Stable platelet adhesion to extracellular matrices and the formation of a hemostatic or pathological thrombus are dependent on integrin alphaIIbbeta3, also known as GPIIb-IIIa. However, maximal platelet responses to vascular injury may involve the participation of other integrins expressed in platelets (alphaVbeta3, alpha2beta1, alpha5beta1, and alpha6beta1). Platelet membrane 'immunoreceptors' contain at least one subunit with an extracellular immunoglobulin superfamily domain and/or an intracellular stimulatory immunoreceptor tyrosine-based activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM). Platelet ITAM receptors, such as FcgammaRIIA and the GPVI-FcRgamma complex, promote activation of integrins, while ITIM receptors, such as platelet-endothelial cell adhesion molecule-1, may promote their inhibition. This review summarizes the structure and function of platelet integrins and immunoreceptors, the emerging functional relationships between these receptor classes, and the consequences of their interaction for platelet function in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0726, USA.
| | | | | |
Collapse
|
41
|
Sagdilek E, Buyukcoskun NI, Ozluk K. Evaluation of platelet function and lack of response to epinephrine in pregnant women. Int J Lab Hematol 2007; 29:302-9. [PMID: 17617081 DOI: 10.1111/j.1365-2257.2006.00844.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies in healthy subjects have demonstrated a lack of response of platelets to epinephrine at a rate of 16-40% on an aggregometer. An association between the increased procoagulant factors during pregnancy and venous thromboembolism is known, and it has also been shown that prolactin levels increase platelet aggregation. We evaluated whether platelet functions in pregnant women and also assessed the lack of response to epinephrine during this period. We compared 27 healthy and volunteering pregnant women with 26 similar control subjects. Platelet functions were assessed with an aggregometer and a Platelet Function Analyzer (PFA-100). Less than 40% response to epinephrine on the aggregometer was defined as an impaired epinephrine response. The aggregation response of epinephrine was normal in 25 of the 27 pregnant women, while two of them showed a late-rising response. Eight of the 26 subject control group (30.8%) showed an impaired response to epinephrine. When we compared the 25 pregnant and 18 control subjects with normal aggregation responses, the maximum aggregation responses to ADP and epinephrine, and the Col/Epi and Col/ADP cartridge closure time values were significantly lower in pregnant women. There were no difference between second and third trimesters as regards platelet function parameters. The fact that no impaired response to epinephrine was detected in pregnant women while a 30% rate was observed in non-pregnant women indicates that the platelet malfunction caused by a disorder in the Gi protein and intracellular mechanisms is bypassed during pregnancy thanks to some physiological changes.
Collapse
Affiliation(s)
- E Sagdilek
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey.
| | | | | |
Collapse
|
42
|
Bergmeier W, Goerge T, Wang HW, Crittenden JR, Baldwin AC, Cifuni SM, Housman DE, Graybiel AM, Wagner DD. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117:1699-707. [PMID: 17492052 PMCID: PMC1865026 DOI: 10.1172/jci30575] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/27/2007] [Indexed: 12/22/2022] Open
Abstract
Single gene mutations in beta integrins can account for functional defects of individual cells of the hematopoietic system. In humans, mutations in beta(2) integrin lead to leukocyte adhesion deficiency (LAD) syndrome and mutations in beta(3) integrin cause the bleeding disorder Glanzmann thrombasthenia. However, multiple defects in blood cells involving various beta integrins (beta(1), beta(2), and beta(3)) occur simultaneously in patients with the recently described LAD type III (LAD-III). Here we show that the product of a single gene, Ca(2+) and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), controlled the activation of all 3 integrins in the hematopoietic system. Neutrophils from CalDAG-GEFI(-/-) mice exhibited strong defects in Rap1 and beta(1) and beta(2) integrin activation while maintaining normal calcium flux, degranulation, and ROS generation. Neutrophils from CalDAG-GEFI-deficient mice failed to adhere firmly to stimulated venules and to migrate into sites of inflammation. Furthermore, CalDAG-GEFI regulated the activation of beta(1) and beta(3) integrins in platelets, and CalDAG-GEFI deficiency caused complete inhibition of arterial thrombus formation in mice. Thus, mice engineered to lack CalDAG-GEFI have a combination of defects in leukocyte and platelet functions similar to that of LAD-III patients.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Tobias Goerge
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Hong-Wei Wang
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Jill R. Crittenden
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Andrew C.W. Baldwin
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Stephen M. Cifuni
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - David E. Housman
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Ann M. Graybiel
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Denisa D. Wagner
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Strehl A, Munnix ICA, Kuijpers MJE, van der Meijden PEJ, Cosemans JMEM, Feijge MAH, Nieswandt B, Heemskerk JWM. Dual Role of Platelet Protein Kinase C in Thrombus Formation. J Biol Chem 2007; 282:7046-55. [PMID: 17210570 DOI: 10.1074/jbc.m611367200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.
Collapse
Affiliation(s)
- Amrei Strehl
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP. Nucleotide receptor signaling in platelets. J Thromb Haemost 2006; 4:2317-26. [PMID: 17059469 DOI: 10.1111/j.1538-7836.2006.02192.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon injury to a vessel wall the exposure of subendothelial collagen results in the activation of platelets. Platelet activation culminates in shape change, aggregation, release of granule contents and generation of lipid mediators. These secreted and generated mediators trigger a positive feedback mechanism potentiating the platelet activation induced by physiological agonists such as collagen and thrombin. Adenine nucleotides, adenosine diphosphate (ADP) and adenosine triphosphate (ATP), released from damaged cells and that are secreted from platelet-dense granules, contribute to the positive feedback mechanism by acting through nucleotide receptors on the platelet surface. ADP acts through two G protein-coupled receptors, the Gq-coupled P2Y1 receptor, and the Gi-coupled P2Y12 receptor. ATP, on the other hand, acts through the ligand-gated channel P2X1. Stimulation of platelets by ADP leads to shape change, aggregation and thromboxane A2 generation. ADP-induced dense granule release depends on generated thromboxane A2. Furthermore, costimulation of both P2Y1 and P2Y12 receptors is required for ADP-induced platelet aggregation. ATP stimulation of P2X1 is involved in platelet shape change and helps to amplify platelet responses mediated by agonists such as collagen. Activation of each of these nucleotide receptors results in unique signal transduction pathways that are important in the regulation of thrombosis and hemostasis.
Collapse
Affiliation(s)
- B N Kahner
- The Cell Signaling Group, Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
45
|
Ibanez B, Vilahur G, Badimon JJ. Pharmacology of thienopyridines: rationale for dual pathway inhibition. Eur Heart J Suppl 2006. [DOI: 10.1093/eurheartj/sul047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Abstract
The development and integrity of the cardiovascular system depends on integrins, a family of adhesion receptors, vitally important for homeostasis of animal species from fruit fly to man. Integrins are critical players in cell migration, cell adhesion, cell cycle progression, differentiation, and apoptosis. Consequently, integrins have a major impact on the patterning and functions of the blood and cardiovascular system. Integrins undergo conformational changes, which alter their affinity for ligands through a process operationally defined as integrin activation. Integrin activation is important for platelet aggregation, leukocyte extravasation, and cell adhesion and migration, thus influencing such processes as hemostasis, inflammation and angiogenesis. Recently, a series of studies have begun to define the mechanism of integrin activation by demonstrating that binding of a cytoskeletal protein, talin, to integrin beta subunit cytoplasmic tail is a last common step in integrin activation. These findings indicate that talin is likely to be at the center of converging signaling pathways regulating integrin activation.
Collapse
Affiliation(s)
- B I Ratnikov
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | | | | |
Collapse
|
47
|
Quinton TM, Kim S, Jin J, Kunapuli SP. Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost 2005; 3:1036-41. [PMID: 15869601 DOI: 10.1111/j.1538-7836.2005.01325.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ADP is important in propagating hemostasis upon its secretion from activated platelets in response to other agonists. Lipid rafts are microdomains within the plasma membrane that are rich in cholesterol and sphingolipids, and have been implicated in the stimulatory mechanisms of platelet agonists. We sought to determine the importance of lipid rafts in ADP-mediated platelet activation via the G protein-coupled P2Y1 and P2Y12 receptors using lipid raft disruption by cholesterol depletion with methyl-beta-cyclodextrin. Stimulation of cholesterol-depleted platelets with ADP resulted in a reduction in the extent of aggregation but no difference in the extent of shape change or intracellular calcium release. Furthermore, repletion of cholesterol to previously depleted membranes restored ADP-mediated platelet aggregation. In addition, P2Y12-mediated inhibition of cAMP formation was significantly decreased upon cholesterol depletion from platelets. Stimulation of cholesterol-depleted platelets with agonists that depend upon Galpha(i) activation for full activation displayed significant loss of aggregation and secretion, but showed restoration when simultaneously stimulated with the Galpha(z)-coupled agonist epinephrine. Finally, Galpha(i) preferentially localizes to lipid rafts as determined by sucrose density centrifugation. We conclude that Galpha(i) signaling downstream of P2Y12 activation, but not Galpha(q) or Galpha(z) signaling downstream of P2Y1 or alpha2A activation, respectively, has a requirement for lipid rafts that is necessary for its function in ADP-mediated platelet activation.
Collapse
Affiliation(s)
- T M Quinton
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
48
|
Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, Poncz M, Wu D, Abrams CS. The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood 2005; 106:110-7. [PMID: 15705797 PMCID: PMC1895115 DOI: 10.1182/blood-2004-05-2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of platelet G protein-coupled receptors results in the cleavage of phosphatidylinositol 4,5-trisphosphate (PIP(2)) into inositol 1,4,5-trisphosphate and 1,2-diacylglycerol by phospholipase C (PLCbeta). It also results in the phosphorylation of PIP2 by the gamma isoform of phosphatidylinositol 3-kinase (PI3Kgamma) to synthesize phosphatidylinositol 3,4,5-trisphosphate. To understand the role of PIP2 in platelet signaling, we evaluated knock-out mice lacking 2 isoforms of PLCbeta (PLCbeta2 and PLCbeta3) or lacking the G(betagamma)-activated isoform of PI3K (PI3Kgamma). Both knock-out mice were unable to form stable thrombi in a carotid injury model. To provide a functional explanation, knock-out platelets were studied ex vivo. PLCbeta2/beta3-/- platelets failed to assemble filamentous actin, had defects in both secretion and mobilization of intracellular calcium, and were unable to form stable aggregates following low doses of agonists. Platelets lacking PI3Kgamma disaggregated following low-dose adenosine diphosphate (ADP) and had a mildly impaired ability to mobilize intracellular calcium. Yet, they exhibited essentially normal actin assembly and secretion. Remarkably, both PLCbeta2/beta3-/- and PI3Kgamma-/- platelets spread more slowly upon fibrinogen. These results suggest substantial redundancy in platelet signaling pathways. Nonetheless, the diminished ability of knock-out platelets to normally spread after adhesion and to form stable thrombi in vivo suggests that both PLCbeta2/beta3 and PI3Kgamma play vital roles in platelet cytoskeletal dynamics.
Collapse
Affiliation(s)
- Lurong Lian
- Department of Medicine of University of Pennsylvania, 421 Curie Blvd, Biomedical Research Bldg II/III, Rm 912, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu J, Pestina TI, Berndt MC, Steward SA, Jackson CW, Gartner TK. The roles of ADP and TXA in botrocetin/VWF-induced aggregation of washed platelets. J Thromb Haemost 2004; 2:2213-22. [PMID: 15613029 DOI: 10.1111/j.1538-7836.2004.01023.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Binding of von Willebrand factor (VWF) to the platelet membrane glycoprotein (GP) Ib-IX-V complex initiates a cascade of events leading to alphaIIbbeta3 activation and platelet aggregation. The roles of ADP and thromboxane A2 (TXA2) in agglutination-induced GPIbalpha-mediated platelet activation have not been fully described. METHODS Botrocetin and human VWF were used to stimulate washed mouse platelets. Platelets deficient in TXA2 receptors, Galphaq, or alphaIIbbeta3, and inhibitors and chelating agents were used to investigate the roles of TXA2, ADP, alphaIIbbeta3 and Ca2+ in botrocetin/VWF-induced signaling. RESULTS Our data demonstrate that botrocetin/VWF/GPIbalpha-mediated agglutination results in calcium-independent protein kinase C (PKC) and phospholipase A2 (PLA2) activities required for GPIbalpha-elicited TXA2 production that in turn causes dense granule secretion. Aggregation of washed platelets requires TXA2-induced alphaIIbbeta3 activation and ADP signaling. TXA2 or ADP can activate alphaIIbbeta3, but both are required for alpha-granule secretion and aggregation. Botrocetin/VWF-induced dense granule secretion is Galphaq-dependent. alpha-Granule secretion requires initial ADP signaling through P2Y1 and subsequent signaling through P2Y12. Signaling initiated by agglutination is propagated and amplified in an alphaIIbbeta3-dependent manner. CONCLUSIONS In contrast to adhesion or shear stress-induced GPIb-elicited signaling, agglutination-elicited GPIb signaling that activates alphaIIbbeta3 requires TXA2. Agglutination-elicited TXA2 production is independent of Ca2+ influx and mobilization of internal Ca2+ stores. Therefore, our results demonstrate that agglutination-elicited GPIb signaling causes alphaIIbbeta3 activation by a mechanism that is distinct from those used by adhesion, or shear stress-induced GPIb signaling.
Collapse
Affiliation(s)
- J Liu
- Division of Experimental Hematology, St Jude Children's Research Hospital, Memphis, TN 38152, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Corsonello A, Malara A, De Domenico D, Perticone F, Valenti A, Buemi M, Ientile R, Corica F. Identifying pathways involved in leptin-dependent aggregation of human platelets. Int J Obes (Lond) 2004; 28:979-84. [PMID: 15211358 DOI: 10.1038/sj.ijo.0802722] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the role of phospholipase C (PLC), phospholipase A(2) (PLA(2)), calcium, and protein kinase C (PKC) in mediating leptin-enhanced aggregation of human platelets. DESIGN In vitro, ex vivo study. SETTING Outpatient's Service for Prevention and Treatment of Obesity at the University Hospital of Messina, Italy. SUBJECTS In total, 14 healthy normal-weight male (age 31.4+/-1.9 y; body mass index 22.7+/-0.6 kg/m2) subjects. MEASUREMENTS Adenosine diphosphate-(ADP-) induced platelet aggregation and platelet free calcium were measured after incubation of platelets with leptin alone (5-500 ng/ml), or leptin (50 and 100 ng/ml) in combination with anti-human leptin receptor long form antibody (anti-ObRb-Ab, 1:800-1:100 dilutions), PLC inhibitor U73122 (3.125-25 microM), PLA(2) inhibitor AACOCF3 (1.25-10 microM), or PKC inhibitor Ro31-8220 (1.25-10 microM). RESULTS Platelet stimulation with leptin leads to a significant and dose-dependent increase in ADP-induced platelet aggregation and platelet free calcium concentrations. Leptin effects on both platelet aggregation and calcium mobilization were completely abated by the co-incubation with leptin and anti-ObRb-Ab. Leptin-induced platelet aggregation was dose-dependently inhibited by U73122, AACOCF3, or Ro31-8220. The effect of leptin on intracellular calcium was inhibited in a dose-dependent manner by incubation with U73122 and AACOCF3, but not with Ro31-8220. CONCLUSIONS Our study confirms that leptin is able to enhance ADP-induced aggregation of human platelets, and raise the possibility that PLC, PKC, PLA(2), and calcium could play a relevant role in mediating the proaggregating action of leptin.
Collapse
Affiliation(s)
- A Corsonello
- Italian National Research Centres on Aging (INRCA), I-87100 Cosenza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|