1
|
Bond A, Morrissey MA. Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite. J Cell Sci 2025; 138:JCS263513. [PMID: 39749603 DOI: 10.1242/jcs.263513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris. Depending on the context, macrophages can increase their appetite for phagocytosis, to prioritize an effective immune response, or decrease their appetite, to avoid damage to healthy tissue during homeostasis. In this Review, we discuss the biochemical and biophysical mechanisms that macrophages employ to increase or decrease their sensitivity or capacity for phagocytosis. We discuss evidence that macrophages tune their sensitivity via several mechanisms, including altering the balance of activating and inhibitory receptor expression, altering the availability of activating receptors, as well as influencing their clustering and mobility, and modulating inhibitory receptor location. We also highlight how membrane availability limits the capacity of macrophages for phagocytosis and discuss potential mechanisms to promote membrane recycling and increase phagocytic capacity. Overall, this Review highlights recent work detailing the molecular toolkit that macrophages use to alter their appetite.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Silva NJ, Anderson S, Mula SA, Escoubas CC, Nakajo H, Molofsky AV. Microglial cathepsin B promotes neuronal efferocytosis during brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626596. [PMID: 39677624 PMCID: PMC11642881 DOI: 10.1101/2024.12.03.626596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Half of all newborn neurons in the developing brain are removed via efferocytosis - the phagocytic clearance of apoptotic cells. Microglia are brain-resident professional phagocytes that play important roles in neural circuit development including as primary effectors of efferocytosis. While the mechanisms through which microglia recognize potential phagocytic cargo are widely studied, the lysosomal mechanisms that are necessary for efficient digestion are less well defined. Here we show that the lysosomal protease cathepsin B promotes microglial efferocytosis of neurons and restricts the accumulation of apoptotic cells during brain development. We show that cathepsin B is microglia-specific and enriched in brain regions where neuronal turnover is high in both zebrafish and mouse. Myeloid-specific cathepsin B knockdown in zebrafish led to dysmorphic microglia containing undigested dead cells, as well as an accumulation of dead cells in surrounding tissue. These effects where phenocopied in mice globally deficient for Ctsb using markers for apoptosis. We also observed behavioral impairments in both models. Live imaging studies in zebrafish revealed deficits in phagolysosomal fusion and acidification, and live imaging of cultured mouse microglia reveal delayed phagocytosis consistent with impairments in digestion and resolution of phagocytosis rather than initial uptake. These data reveal a novel role for microglial cathepsin B in mediating neuronal efferocytosis during typical brain development.
Collapse
|
3
|
Goldmann O, Lang JC, Rohde M, May T, Molinari G, Medina E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1- and cholesterol-rich lipid rafts. Cell Mol Life Sci 2024; 81:435. [PMID: 39412594 PMCID: PMC11488825 DOI: 10.1007/s00018-024-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-β-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5β1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Julia C Lang
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
4
|
Graham CT, Gordon S, Kubes P. A historical perspective of Kupffer cells in the context of infection. Cell Tissue Res 2024:10.1007/s00441-024-03924-4. [PMID: 39392500 DOI: 10.1007/s00441-024-03924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Kupffer cell was first discovered by Karl Wilhelm von Kupffer in 1876, labeling them as "Sternzellen." Since their discovery as the primary macrophages of the liver, researchers have gradually gained an in-depth understanding of the identity, functions, and influential role of Kupffer cells, particularly in infection. It is becoming clear that Kupffer cells perform important tissue-specific functions in homeostasis and disease. Stationary in the sinusoids of the liver, Kupffer cells have a high phagocytic capacity and are adept in clearing the bloodstream of foreign material, toxins, and pathogens. Thus, they are indispensable to host defense and prevent the dissemination of bacteria during infections. To highlight the importance of this cell, this review will explore the history of the Kupffer cell in the context of infection beginning with its discovery to the present day.
Collapse
Affiliation(s)
- Carolyn T Graham
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road Guishan Dist., Taoyuan, Taiwan
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
5
|
Han XQ, Cui ZW, Ma ZY, Wang J, Hu YZ, Li J, Ye JM, Tafalla C, Zhang YA, Zhang XJ. Phagocytic Plasma Cells in Teleost Fish Provide Insights into the Origin and Evolution of B Cells in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:730-742. [PMID: 38984862 DOI: 10.4049/jimmunol.2400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI
| | - Jian-Min Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
6
|
Tinker J, Anees P, Krishnan Y. Quantitative Chemical Imaging of Organelles. Acc Chem Res 2024; 57:1906-1917. [PMID: 38916405 DOI: 10.1021/acs.accounts.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
ConspectusDNA nanodevices are nanoscale assemblies, formed from a collection of synthetic DNA strands, that may perform artificial functions. The pioneering developments of a DNA cube by Nadrian Seeman in 1991 and a DNA nanomachine by Turberfield and Yurke in 2000 spawned an entire generation of DNA nanodevices ranging from minimalist to rococo architectures. Since our first demonstration in 2009 that a DNA nanodevice can function autonomously inside a living cell, it became clear that this molecular scaffold was well-placed to probe living systems. Its water solubility, biocompatibility, and engineerability to yield molecularly identical assemblies predisposed it to probe and program biology.Since DNA is a modular scaffold, one can integrate independent or interdependent functionalities onto a single assembly. Work from our group has established a new class of organelle-targeted, DNA-based fluorescent reporters. These reporters comprise three to four oligonucleotides that each display a specific motif or module with a specific function. Given the 1:1 stoichiometry of Watson-Crick-Franklin base pairing, all modules are present in a fixed ratio in every DNA nanodevice. These modules include an ion-sensitive dye or a detection module and a normalizing dye for ratiometry that along with detection module forms a "measuring module". The third module is an organelle-targeting module that engages a cognate protein so that the whole assembly is trafficked to the lumen of a target organelle. Together, these modules allow us to measure free ion concentrations with accuracies that were previously unattainable, in subcellular locations that were previously inaccessible, and at single organelle resolution. By revealing that organelles exist in different chemical states, DNA nanodevices are providing new insights into organelle biology. Further, the ability to deliver molecules with cell-type and organelle level precision in animal models is leading to biomedical applications.This Account outlines the development of DNA nanodevices as fluorescent reporters for chemically mapping or modulating organelle function in real time in living systems. We discuss the technical challenges of measuring ions within endomembrane organelles and show how the unique properties of DNA nanodevices enable organelle targeting and chemical mapping. Starting from the pioneering finding that an autonomous DNA nanodevice could map endolysosomal pH in cells, we chart the development of strategies to target organelles beyond the endolysosomal pathway and expanding chemical maps to include all the major ions in physiology, reactive species, enzyme activity, and voltage. We present a series of vignettes highlighting the new biology unlocked with each development, from the discovery of chemical heterogeneity in lysosomes to identifying the first protein importer of Ca2+ into lysosomes. Finally, we discuss the broader applicability of targeting DNA nanodevices organelle-specifically beyond just reporting ions, namely using DNA nanodevices to modulate organelle state, and thereby cell state, with potential therapeutic applications.
Collapse
Affiliation(s)
- JoAnn Tinker
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Zhang K, Repnik U, Diab N, Friske D, Pütz A, Bachmann AZ, Gubbi NMKP, Hensel M, Förstner KU, Westermann AJ, Dupont A, Hornef MW. Non-professional efferocytosis of Salmonella-infected intestinal epithelial cells in the neonatal host. J Exp Med 2024; 221:e20231237. [PMID: 38305765 PMCID: PMC10837083 DOI: 10.1084/jem.20231237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The intestinal epithelium is the first line of defense against enteric pathogens. Removal of infected cells by exfoliation prevents mucosal translocation and systemic infection in the adult host, but is less commonly observed in the neonatal intestine. Instead, here, we describe non-professional efferocytosis of Salmonella-infected enterocytes by neighboring epithelial cells in the neonatal intestine. Intestinal epithelial stem cell organoid cocultures of neonatal and adult cell monolayers with damaged enterocytes replicated this observation, confirmed the age-dependent ability of intestinal epithelial cells for efferocytosis, and identified the involvement of the "eat-me" signals and adaptors phosphatidylserine and C1q as well as the "eat-me" receptors integrin-αv (CD51) and CD36 in cellular uptake. Consistent with this, massive epithelial cell membrane protrusions and CD36 accumulation at the contact site with apoptotic cells were observed in the infected neonatal host in vivo. Efferocytosis of infected small intestinal enterocytes by neighboring epithelial cells may represent a previously unrecognized mechanism of neonatal antimicrobial host defense to maintain barrier integrity.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | - Urska Repnik
- Department of Biology, Central Microscopy Unit, University of Kiel, Kiel, Germany
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nour Diab
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | - Daniel Friske
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | - Andreas Pütz
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | - Alina Z Bachmann
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | | | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology, University of Würzburg , Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg , Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research , Würzburg, Germany
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital , Aachen, Germany
| |
Collapse
|
9
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
10
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
11
|
Nakayama H, Hanafusa K, Yamaji T, Oshima E, Hotta T, Takamori K, Ogawa H, Iwabuchi K. Phylactic role of anti-lipoarabinomannan IgM directed against mannan core during mycobacterial infection in macrophages. Tuberculosis (Edinb) 2023; 143:102391. [PMID: 37574397 DOI: 10.1016/j.tube.2023.102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan.
| | - Kei Hanafusa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Eriko Oshima
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Tomomi Hotta
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba, Japan; Institute for Environmental and Gender-specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba, Japan
| |
Collapse
|
12
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Zhao M, Chen N, Guo Y, Wu N, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Li Y, Zhang L. D-mannose acts as a V-ATPase inhibitor to suppress inflammatory cytokines generation and bacterial killing in macrophage. Mol Immunol 2023; 162:84-94. [PMID: 37660434 DOI: 10.1016/j.molimm.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Vacuolar-type H+-ATPase (V-ATPase) critically controls phagosome acidification to promote pathogen digestion and clearance in macrophage. However, the specific subunits of V-ATPase have been evidenced to play contradictory functions in inflammatory cytokines generation and secretion exposure to external bacterial or LPS stimulation. Therefore, identifying the unique function of the separate subunit of V-ATPase is extremely important to regulate macrophage function. Here, we found that D-mannose, a C-2 epimer of glucose, suppressed ATP6V1B2 lysosomal translocation to inhibit V-ATPase activity in macrophages, thereby causing the scaffold protein axis inhibitor protein (AXIN) recruitment to lysosomal membrane and AMPK activation. Correspondingly, LPS-stimulated macrophage M1 polarization was significantly suppressed by D-mannose via down-regulating NF-κB signaling pathway in response to AMPK activation, while IL-4 induced macrophage M2 polarization were not affected. Furthermore, the failure of lysosomal localization of ATP6V1B2 caused by D-mannose also led to the acidification defects of lysosome. Therefore, D-mannose displayed a remarkable function in inhibiting macrophage phagocytosis and bacterial killing. Taken together, D-mannose acts a novel V-ATPase suppressor to attenuate macrophage inflammatory production but simultaneously prevent macrophage phagocytosis and bacterial killing.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nuo Chen
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Zhao M, Han Y, Yang Q, Yue Q, Zhang S, Zhao C, Sun X, Xu J, Jiang X, Li K, Li B, Zhao L, Su L. Evaluation of the Effects of e-Cigarette Aerosol Extracts and Tobacco Cigarette Smoke Extracts on RAW264.7 Cells. ACS OMEGA 2023; 8:29336-29345. [PMID: 37599962 PMCID: PMC10433514 DOI: 10.1021/acsomega.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
With the advancement of society, electronic cigarettes (e-cigarettes) have gained popularity among a growing number of individuals. While numerous toxicological studies have suggested that e-cigarettes are a safer alternative to traditional cigarettes, there is also a body of literature presenting contrasting findings. This in vitro study aimed to compare the effects of e-cigarettes and tobacco cigarettes (t-cigarettes) on RAW264.7 cells by using four e-cigarette aerosol extracts (ECA) and cigarette smoking extracts (CS) containing different nicotine concentrations. The results revealed that low concentration of nicotine in CS as well as in ECA with grape, watermelon, and cola flavors could promote cell viability. Conversely, high nicotine concentration in CS and ECA with four flavors decreased cell viability. Furthermore, our study demonstrated that CS significantly reduced the phagocytic capability of RAW264.7 cells and increased the levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β) and reactive oxygen species (ROS) compared to ECA. Overall, our findings indicate all four e-cigarettes induced less cytotoxicity to RAW264.7 cells and might be safer than t-cigarettes.
Collapse
Affiliation(s)
- Minghan Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yuting Han
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qi Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qiulin Yue
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Song Zhang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Chen Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Xin Sun
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Jing Xu
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Xingtao Jiang
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Kunlun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Baojun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Lin Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shandong
Chenzhang Biotechnology Co., Ltd., Jinan 250353, P. R. China
| | - Le Su
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| |
Collapse
|
15
|
Ibrahim S, Yang C, Yue C, Song X, Deng Y, Li Q, Lü W. Whole Transcriptome Analysis Reveals the Global Molecular Responses of mRNAs, lncRNAs, miRNAs, circRNAs, and Their ceRNA Networks to Salinity Stress in Hong Kong Oysters, Crassostrea hongkongensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:624-641. [PMID: 37493868 DOI: 10.1007/s10126-023-10234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
The Hong Kong oyster, Crassostrea hongkongensis, is an estuarine bivalve with remarkable commercial value in South China, and the increase of salinity in estuaries during the dry season has posed a major threat to the oyster farming. To explore the global transcriptional response to salinity stress, a whole-transcriptome analysis was performed with the gills of oysters in 6‰, 18‰, and 30‰ filtered seawater. Overall, 2243, 194, 371, and 167 differentially expressed mRNAs (DEmRNAs), differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), and differentially expressed microRNAs (DEmiRNAs) were identified, respectively. Based on GO enrichment and KEGG pathway analysis, these important DEmRNAs, DElncRNAs, DEcircRNAs, and DEmiRNAs were predicted to be mainly involved in amino acids metabolism, microtubule movement, and immune defense. This demonstrated the complexity of dynamic transcriptomic profiles of C. hongkongensis in response to salinity fluctuation. The regulatory relationships of DEmiRNAs-DEmRNAs, DElncRNAs-DEmiRNAs, and DEcircRNAs-DEmiRNAs were also predicted, and finally, a circRNA-associated competing endogenous RNA (ceRNA) network was constructed, consisting of six DEcircRNAs, eight DEmiRNAs, and five DEmRNAs. The key roles of taurine and hypotaurine metabolism and phenylalanine metabolism were highlighted in this ceRNA network, which was consistent with the major contribution of free amino acids to intracellular osmolality and cell volume regulation. Collectively, this study provides comprehensive data, contributing to the exploration of coding and non-coding RNAs in C. hongkongensis salinity response. The results would benefit the understanding of the response mechanism of bivalves against salinity fluctuation, and provide clues for genetic improvement of C. hongkongensis with hyper-salinity tolerance.
Collapse
Affiliation(s)
- Salifu Ibrahim
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chenyang Yue
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xinyu Song
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wengang Lü
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
16
|
Nadeem A, Kindopp A, Wyllie I, Hubert L, Joubert J, Lucente S, Randall E, Jena PV, Roxbury D. Enhancing Intracellular Optical Performance and Stability of Engineered Nanomaterials via Aqueous Two-Phase Purification. NANO LETTERS 2023; 23:6588-6595. [PMID: 37410951 PMCID: PMC11068083 DOI: 10.1021/acs.nanolett.3c01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Supramolecular hybrids of DNA and single-walled carbon nanotubes (SWCNTs) have been introduced in numerous biosensing applications due to their unique optical properties. Recent aqueous two-phase (ATP) purification methods for SWCNTs have gained popularity by introducing specificity and homogeneity into the sensor design process. Using murine macrophages probed by near-infrared and Raman microscopies, we show that ATP purification increases the retention time of DNA-SWCNTs within cells while simultaneously enhancing the optical performance and stability of the engineered nanomaterial. Over a period of 6 h, we observe 45% brighter fluorescence intensity and no significant change in emission wavelength of ATP-purified DNA-SWCNTs relative to as-dispersed SWCNTs. These findings provide strong evidence of how cells differentially process engineered nanomaterials depending on their state of purification, lending to the future development of more robust and sensitive biosensors with desirable in vivo optical parameters using surfactant-based ATP systems with a subsequent exchange to biocompatible functionalization.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ian Wyllie
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lauren Hubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - James Joubert
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sophie Lucente
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ewelina Randall
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
17
|
Jasinski J, Völkl M, Hahn J, Jérôme V, Freitag R, Scheibel T. Polystyrene microparticle distribution after ingestion by murine macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131796. [PMID: 37307726 DOI: 10.1016/j.jhazmat.2023.131796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The impact of microplastic particles on organisms is currently intensely researched. Although it is well established that macrophages ingest polystyrene (PS) microparticles, little is known about the subsequent fate of the particles, such as entrapment in organelles, distribution during cell division, as well as possible mechanisms of excretion. Here, submicrometer (0.2 and 0.5 µm) and micron-sized (3 µm) particles were used to analyze particle fate upon ingestion of murine macrophages (J774A.1 and ImKC). Distribution and excretion of PS particles was investigated over cycles of cellular division. The distribution during cell division seems cell-specific upon comparing two different macrophage cell lines, and no apparent active excretion of microplastic particles could be observed. Using polarized cells, M1 polarized macrophages show higher phagocytic activity and particle uptake than M2 polarized ones or M0 cells. While particles with all tested diameters were found in the cytoplasm, submicron particles were additionally co-localized with the endoplasmic reticulum. Further, 0.5 µm particles were occasionally found in endosomes. Our results indicate that a possible reason for the previously described low cytotoxicity upon uptake of pristine PS microparticles by macrophages may be due to the preferential localization in the cytoplasm.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Jonas Hahn
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
18
|
Peña-Ramos O, Zhou Z. Measuring the acidification of the phagosomal lumen in live C. elegans embryos. STAR Protoc 2023; 4:102332. [PMID: 37270784 DOI: 10.1016/j.xpro.2023.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
In metazoans, the acidification of the phagosomal lumen is essential for the efficient degradation of cargoes. Here, we present a protocol for measuring the rate of acidification inside phagosomal lumen containing apoptotic cells in living C. elegans embryos. We describe steps for generating a worm population, selecting embryos, and mounting embryos on agar pads. We then detail live imaging of embryos and data analysis. This protocol is applicable to any organism in which real-time fluorescence imaging can be performed. For complete details on the use and execution of this protocol, please refer to Pena-Ramos et al. (2022).1.
Collapse
Affiliation(s)
- Omar Peña-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Ma Y, Qiao X, Dong M, Lian X, Li Y, Jin Y, Wang L, Song L. A C-type lectin from Crassostrea gigas with novel EFG/FVN motif involved in recognition of various PAMPs and induction of interleukin expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104680. [PMID: 36907338 DOI: 10.1016/j.dci.2023.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
C-type lectins (CTLs) are a superfamily of Ca2+-dependent carbohydrate-recognition proteins, which participate in the nonself-recognition and triggering the transduction pathways in the innate immunity. In the present study, a novel CTL (designated as CgCLEC-TM2) with a carbohydrate-recognition domain (CRD) and a transmembrane domain (TM) was identified from the Pacific oyster Crassostrea gigas. Two novel EFG and FVN motifs were found in Ca2+-binding site 2 of CgCLEC-TM2. The mRNA transcripts of CgCLEC-TM2 were detected in all tested tissues with the highest expression level in haemocytes, which was 94.41-fold (p < 0.01) of that in adductor muscle. The relative expression level of CgCLEC-TM2 in haemocytes significantly up-regulated at 6 h and 24 h after the stimulation of Vibrio splendidus, which was 4.94- and 12.77-fold of that in control group (p < 0.01), respectively. The recombinant CRD of CgCLEC-TM2 (rCRD) was able to bind lipopolysaccharide (LPS), mannose (MAN), peptidoglycan (PGN), and poly (I: C) in a Ca2+-dependent manner. The rCRD exhibited binding activity to V. anguillarum, Bacillus subtilis, V. splendidus, Escherichia coli, Pichia pastoris, Staphylococcus aureus and Micrococcus luteus in a Ca2+-dependent manner. The rCRD also exhibited agglutination activity to E. coli, V. splendidus, S. aureus, M. luteus and P. pastoris in a Ca2+-dependent manner. The phagocytosis rate of haemocytes towards V. splendidus significantly down-regulated from 27.2% to 20.9% after treatment of anti-CgCLEC-TM2-CRD antibody, while the growth of V. splendidus and E. coli was inhibited compared with the TBS and rTrx groups. After the expression of CgCLEC-TM2 was inhibited by RNAi, the expression level of phospho-extracellular regulated protein kinases (p-CgERK) in haemocytes, and the mRNA expressions of interleukin17s (CgIL17-1 and CgIL17-4) decreased significantly after V. splendidus stimulation, compared with that in EGFP-RNAi oysters, respectively. These results suggested that CgCLEC-TM2 with novel motifs served as a pattern recognition receptor (PRR) involved in the recognition of microorganisms, and induction of CgIL17s expression in the immune response of oysters.
Collapse
Affiliation(s)
- Youwen Ma
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
20
|
Eisentraut M, Sabri A, Kress H. The spatial resolution limit of phagocytosis. Biophys J 2023; 122:868-879. [PMID: 36703557 PMCID: PMC10027436 DOI: 10.1016/j.bpj.2023.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Antibody-opsonized bacteria interact with Fc receptors in macrophages and trigger signaling cascades, which induce phagocytosis. The signaling pathways ultimately lead to actin polymerization that induces the protrusion of the membrane around the bacterium until it is completely engulfed. Although many proteins involved in the phagocytic cup formation have already been identified, it is still unclear how far the initial stimulus created by the bacterium-cell contact propagates in the cell. We hypothesize that this spreading distance is closely related to the spatial resolution limit of phagocytosis, the smallest distance in which two stimuli can be differentiated. Here, we probe this resolution limit by using holographic optical tweezers to attach pairs of immunoglobulin G-coated polystyrene microparticles (as models for opsonized bacteria) to murine macrophages in distances ranging from zero to several micrometers. By using 2-μm-sized particles, we found that the particles can be internalized jointly into one phagosome if they are attached to the cell very close together, but that they are taken up separately if they are attached far from each other. To explain this, we developed a model of the signaling process, which predicts the probabilities for separate uptake for different particle sizes and distances using cellular parameters including the average receptor distance. We tested the model by measuring the separate uptake probabilities for particles with a diameter of 1 to 3 μm and for cells with reduced numbers of Fcγ receptors and found very good agreement. Our model shows that the phagocytic uptake behavior can be explained by assuming an effective phagocytic signaling range of about 500 nm. Interestingly, this value corresponds to the lower size limit of phagocytosis. Our work provides quantitative access to spatial parameters of cellular signaling during phagocytosis and thereby contributes to a more quantitative understanding of cellular information processing.
Collapse
Affiliation(s)
| | - Adal Sabri
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
21
|
Gollnick H, Barber J, Wilkinson RJ, Newton S, Garg A. IL-27 inhibits anti- Mycobacterium tuberculosis innate immune activity of primary human macrophages. Tuberculosis (Edinb) 2023; 139:102326. [PMID: 36863206 PMCID: PMC10052773 DOI: 10.1016/j.tube.2023.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen that primarily infects macrophages. Despite a robust anti-mycobacterial response, many times macrophages are unable to control M. tuberculosis. The purpose of this study was to investigate the mechanism by which the immunoregulatory cytokine IL-27 inhibits the anti-mycobacterial activity of primary human macrophages. We found concerted production of IL-27 and anti-mycobacterial cytokines by M. tuberculosis-infected macrophages in a toll-like receptor (TLR) dependent manner. Notably, IL-27 suppressed the production of anti-mycobacterial cytokines TNFα, IL-6, IL-1β, and IL-15 by M. tuberculosis-infected macrophages. IL-27 limits the anti-mycobacterial activity of macrophages by reducing Cyp27B, cathelicidin (LL-37), LC3B lipidation, and increasing IL-10 production. Furthermore, neutralizing both IL-27 and IL-10 increased the expression of proteins involved in LC3-associated phagocytosis (LAP) pathway for bacterial clearance, namely vacuolar-ATPase, NOX2, and RUN-domain containing protein RUBCN. These results implicate IL-27 is a prominent cytokine that impedes M. tuberculosis clearance.
Collapse
Affiliation(s)
- Hailey Gollnick
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jamie Barber
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Robert J Wilkinson
- Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom; The Francis Crick Institute London, NW1 1AT, United Kingdom
| | - Sandra Newton
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, W2 1PG, United Kingdom
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
22
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
23
|
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol 2023; 11:1110225. [PMID: 36743409 PMCID: PMC9892555 DOI: 10.3389/fcell.2023.1110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis. The genetically controlled, autonomously ordered cell death mainly proceeds by apoptosis. Apoptosis is an important way of programmed cell death in multicellular organisms, timely and effective elimination of apoptotic cells plays a key role in the growth and development of organisms and the maintenance of homeostasis. During the clearance of apoptotic cells, transcription factors bind to specific target promoters and act as activators or repressors to regulate multiple genes expression, how transcription factors regulate apoptosis is an important and poorly understood aspect of normal development. This paper summarizes the regulatory mechanisms of transcription factors in the clearance of apoptotic cells to date.
Collapse
Affiliation(s)
| | | | | | | | - Hui Xiao
- *Correspondence: Hui Xiao, ; Qian Zheng,
| | - Qian Zheng
- *Correspondence: Hui Xiao, ; Qian Zheng,
| |
Collapse
|
24
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
25
|
Soffiaturo S, Choy C, Botelho RJ. Quantifying Phagocytosis by Immunofluorescence and Microscopy. Methods Mol Biol 2023; 2692:25-39. [PMID: 37365459 DOI: 10.1007/978-1-0716-3338-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phagocytosis is carried out by cells such as macrophages of the immune system, whereby particulates like bacteria and apoptotic bodies are engulfed and sequestered within phagosomes for subsequent degradation. Hence, phagocytosis is important for infection resolution and tissue homeostasis. Aided by the innate and adaptive immune system, the activation of various phagocytic receptors triggers a cascade of downstream signaling mediators that drive actin and plasma membrane remodeling to entrap the bound particulate within the phagosome. Modulation of these molecular players can lead to distinct changes in the capacity and rates of phagocytosis. Here, we present a fluorescence microscopy-based technique to quantify phagocytosis using a macrophage-like cell line. We exemplify the technique through the phagocytosis of antibody-opsonized polystyrene beads and Escherichia coli. This method can be extended to other phagocytes and phagocytic particles.
Collapse
Affiliation(s)
- Sierra Soffiaturo
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Christopher Choy
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- BlueRock Therapeutics, Toronto, ON, Canada
| | - Roberto J Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada.
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
26
|
Jeschke A, Haas A. Biochemically Reconstituted Fusion of Phagosomes with Endosomes and Lysosomes. Methods Mol Biol 2023; 2692:247-259. [PMID: 37365473 DOI: 10.1007/978-1-0716-3338-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Professional phagocytic cells, such as macrophages, ingest large particles into a specialized endocytic compartment, the phagosome, which eventually turns into a phagolysosome and degrades its contents. This phagosome "maturation" is governed by successive fusion of the phagosome with early sorting endosomes, late endosomes, and lysosomes. Further changes occur by fission of vesicles from the maturing phagosome and by on-and-off cycling of cytosolic proteins. We present here a detailed protocol which allows to reconstitute in a cell-free system the fusion events between phagosomes and the different endocytic compartments. This reconstitution can be used to define the identity of, and interplay between, key players of the fusion events.
Collapse
Affiliation(s)
- Andreas Jeschke
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
27
|
Netting DJ, Mantegazza AR. Examining the Kinetics of Phagocytosis-Coupled Inflammasome Activation in Murine Bone Marrow-Derived Dendritic Cells. Methods Mol Biol 2023; 2692:289-309. [PMID: 37365476 DOI: 10.1007/978-1-0716-3338-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In the present chapter, we describe procedures to assess NLRP3 and NLRC4 inflammasome assembly by immunofluorescence microscopy or live cell imaging, together with inflammasome activation by biochemical and immunological techniques upon phagocytosis. We also include a step-by-step guide to automating the counting of inflammasome "specks" after imaging. While our focus resides on murine bone marrow-derived dendritic cells differentiated in the presence of granulocyte-macrophage colony-stimulating factor, which results in a cell population that resembles inflammatory dendritic cells, the strategies described herein may apply to other phagocytes as well.
Collapse
Affiliation(s)
- Daniel J Netting
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adriana R Mantegazza
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Udinia S, Suar M, Kumar D. Host-directed therapy against tuberculosis: Concept and recent developments. J Biosci 2023; 48:54. [PMID: 38088376 DOI: 10.1007/s12038-023-00374-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/28/2023] [Indexed: 01/04/2025]
Abstract
Tuberculosis (TB) continues to remain at the forefront of the infectious disease burden globally, albeit with some aberrations during the COVID-19 pandemic. Among many factors, the emergence of drug resistance or antimicrobial resistance (AMR) has necessitated a renewed focus on developing novel and repurposed drugs against TB. Host-directed therapy (HDT) has emerged as an attractive alternative and a complementary strategy to the conventional antibiotic-based therapy of tuberculosis since HDT enjoys the advantage of disarming the pathogen of its ability to develop drug resistance. Considering the imminent threat of AMR across the spectrum of bacterial pathogens, HDT promises to overcome the drug shortage against superbugs. While all these make HDT a very attractive strategy, identifying the right set of host targets to develop HDT remains a challenge, despite remarkable development in the field over the past decade. In this review, we examine the host mechanisms, that either inadvertently or through targeted perturbation by the pathogen, help TB pathogenesis, and we discuss the latest developments in the targeting of some of the key pathways to achieve newer TB therapeutics.
Collapse
Affiliation(s)
- Sonakshi Udinia
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
29
|
Pinto AT, Machado AB, Osório H, Pinto ML, Vitorino R, Justino G, Santa C, Castro F, Cruz T, Rodrigues C, Lima J, Sousa JLR, Cardoso AP, Figueira R, Monteiro A, Marques M, Manadas B, Pauwels J, Gevaert K, Mareel M, Rocha S, Duarte T, Oliveira MJ. Macrophage Resistance to Ionizing Radiation Exposure Is Accompanied by Decreased Cathepsin D and Increased Transferrin Receptor 1 Expression. Cancers (Basel) 2022; 15:270. [PMID: 36612268 PMCID: PMC9818572 DOI: 10.3390/cancers15010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify a molecular signature of macrophages exposed to clinically relevant ionizing radiation (IR) doses, mirroring radiotherapy sessions. METHODS Human monocyte-derived macrophages were exposed to 2 Gy/ fraction/ day for 5 days, mimicking one week of cancer patient's radiotherapy. Protein expression profile by proteomics was performed. RESULTS A gene ontology analysis revealed that radiation-induced protein changes are associated with metabolic alterations, which were further supported by a reduction of both cellular ATP levels and glucose uptake. Most of the radiation-induced deregulated targets exhibited a decreased expression, as was the case of cathepsin D, a lysosomal protease associated with cell death, which was validated by Western blot. We also found that irradiated macrophages exhibited an increased expression of the transferrin receptor 1 (TfR1), which is responsible for the uptake of transferrin-bound iron. TfR1 upregulation was also found in tumor-associated mouse macrophages upon tumor irradiation. In vitro irradiated macrophages also presented a trend for increased divalent metal transporter 1 (DMT1), which transports iron from the endosome to the cytosol, and a significant increase in iron release. CONCLUSIONS Irradiated macrophages present lower ATP levels and glucose uptake, and exhibit decreased cathepsin D expression, while increasing TfR1 expression and altering iron metabolism.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Beatriz Machado
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Champalimaud Centre for the Unknown, Fundação Champalimaud, 1400-038 Lisboa, Portugal
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marta Laranjeiro Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural–Institute of Molecular Sciences, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - Cátia Santa
- CNC–Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Flávia Castro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Rodrigues
- REQUIMTE–LAQV, Chemistry Department, NOVA School of Science and Technology, Universidade de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Lima
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - José Luís R. Sousa
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, 30-054 Krakow, Poland
| | - Ana Patrícia Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Bruno Manadas
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sónia Rocha
- Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3 GE, UK
| | - Tiago Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
30
|
Wang J, Thaimuangphol W, Chen Z, Li G, Gong X, Zhao M, Chen Z, Wang B, Wang Z. A C1q domain-containing protein in Pinctada fucata contributes to the innate immune response and elimination of the pathogen. FISH & SHELLFISH IMMUNOLOGY 2022; 131:582-589. [PMID: 36280130 DOI: 10.1016/j.fsi.2022.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The C1q domain-containing proteins (C1qDCs) in bivalve mollusks primarily exist as the globular head C1q proteins (ghC1qs), for the N-terminal collagen domains were very rare in bivalves, although widespread in C1qDCs of vertebrates. In this work, the C1qDC protein with only a ghC1q domain (named as Pf-ghC1q) was identified from Pinctada fucata, and molecular characterization, gene expression, and functional studies were also conducted. The full-length cDNA sequence of Pf-ghC1q was 738 bp long, containing a signal peptide of 23 residues encoded. Pf-ghC1q was clustered with some C1qDCs from other invertebrates in the phylogenetic tree analysis, rather than vertebrates. Pf-ghC1q was detected in all tested tissues, including the mantle, hemocyte, digestive gland, gill, and adductor muscle. Moreover, the expression levels of Pf-ghC1q were up-regulated in all tested tissues after the challenge with Vibrio alginolyticus 4 h later. The expression level of Pf-ghC1q was inhibited by specific si-276, and the low level of Pf-ghC1q affected the phagocytosis efficiency of V. alginolyticus by hemocytes. These results indicated that Pf-ghC1q may participate in the target recognition of V. alginolyticus and the phagocytosis process in the immune response of P. fucata.
Collapse
Affiliation(s)
- Jing Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Zhiwei Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guiying Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoqing Gong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Mingming Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zongfa Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| |
Collapse
|
31
|
Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. PLoS Biol 2022; 20:e3001858. [PMID: 36279312 PMCID: PMC9632905 DOI: 10.1371/journal.pbio.3001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cells survive chemotherapy and cause lethal relapse by entering a senescent state that facilitates expression of many phagocytosis/macrophage-related genes that engender a novel cannibalism phenotype. We used biosensors and live-cell imaging to reveal the basic steps and mechanisms of engulfment by senescent human and mouse tumor cells. We show filamentous actin in predator cells was localized to the prey cell throughout the process of engulfment. Biosensors to various phosphoinositide (PI) species revealed increased concentration and distinct localization of predator PI(4) P and PI(4,5)P2 at the prey cell during early stages of engulfment, followed by a transient burst of PI(3) P before and following internalization. PIK3C2B, the kinase responsible for generating PI(3)P, was required for complete engulfment. Inhibition or knockdown of Clathrin, known to associate with PIK3C2B and PI(4,5)P2, severely impaired engulfment. In sum, our data reveal the most fundamental cellular processes of senescent cell engulfment, including the precise localizations and dynamics of actin and PI species throughout the entire process.
Collapse
Affiliation(s)
- Wesley D. Frey
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Ashlyn Y. Anderson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hyemin Lee
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Julie B. Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Emma L. Cowles
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - Hua Lu
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| | - James G. Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, Louisiana, United States of America
| |
Collapse
|
32
|
Qi L, Li X, Liu SM, Jiao DL, Hu D, Ju XY, Zhao SY, Si SH, Hu L, Li GN, Ma BZ, Zhou S, Zhao C. Identification of a hippocampal lncRNA-regulating network in a natural aging rat model. BMC Neurosci 2022; 23:56. [PMID: 36171542 PMCID: PMC9520886 DOI: 10.1186/s12868-022-00743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Background Dysregulation of long noncoding RNA (lncRNA) expression is related to aging and age-associated neurodegenerative diseases, and the lncRNA expression profile in the aging hippocampus is not well characterized. In the present investigation, the changed mRNAs and lncRNAs were confirmed via deep RNA sequencing. GO and KEGG pathway analyses were conducted to investigate the principal roles of the clearly dysregulated mRNAs and lncRNAs. Subsequently, through the prediction of miRNAs via which mRNAs and lncRNAs bind together, a competitive endogenous RNA network was constructed. Results A total of 447 lncRNAs and 182 mRNAs were upregulated, and 385 lncRNAs and 144 mRNAs were downregulated. Real-time reverse transcription-polymerase chain reaction validated the reliability of mRNA and lncRNA sequencing. KEGG pathway and GO analyses revealed that differentially expressed (DE) mRNAs were associated with cell adhesion molecules (CAMs), the p53 signaling pathway (SP), phagosomes, PPAR SP and ECM—receptor interactions. KEGG pathway and GO analyses showed that the target genes of the DE lncRNAs were related to cellular senescence, the p53 signaling pathway, leukocyte transendothelial migration and tyrosine metabolism. Coexpression analyses showed that 561 DE lncRNAs were associated with DE mRNAs. A total of 58 lncRNA–miRNA–mRNA target pairs were confirmed in this lncRNA‒miRNA‒mRNA network, comprising 10 mRNAs, 13 miRNAs and 38 lncRNAs. Conclusions We found specific lncRNAs and mRNAs in the hippocampus of natural aging model rats, as well as abnormal regulatory ceRNA networks. Our outcomes help explain the pathogenesis of brain aging and provide direction for further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00743-7.
Collapse
Affiliation(s)
- Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Li
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi-Min Liu
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan-Li Jiao
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Hu
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yao Ju
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shu-Yu Zhao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Shu-Han Si
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Na Li
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing-Zhe Ma
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chen Zhao
- College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
33
|
Koda K, Keller S, Kojima R, Kamiya M, Urano Y. Measuring the pH of Acidic Vesicles in Live Cells with an Optimized Fluorescence Lifetime Imaging Probe. Anal Chem 2022; 94:11264-11271. [PMID: 35913787 DOI: 10.1021/acs.analchem.2c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.
Collapse
Affiliation(s)
| | | | - Ryosuke Kojima
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
34
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
35
|
The sodium proton exchanger NHE9 regulates phagosome maturation and bactericidal activity in macrophages. J Biol Chem 2022; 298:102150. [PMID: 35716776 PMCID: PMC9293770 DOI: 10.1016/j.jbc.2022.102150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Acidification of phagosomes is essential for the bactericidal activity of macrophages. Targeting machinery that regulates pH within the phagosomes is a prominent strategy employed by various pathogens that have emerged as major threats to public health. Nascent phagosomes acquire the machinery for pH regulation through a graded maturation process involving fusion with endolysosomes. In addition, meticulous coordination between proton pumping and leakage mechanisms is crucial for maintaining optimal pH within the phagosome. However, relative to mechanisms involved in acidifying the phagosome lumen, little is known about proton leakage pathways in this organelle. Sodium proton transporter NHE9 is a known proton leakage pathway located on the endosomes. As phagosomes acquire proteins through fusions with endosomes during maturation, NHE9 seemed a promising candidate for regulating proton fluxes on the phagosome. Here, using genetic and biophysical approaches, we show NHE9 is an important proton leakage pathway associated with the maturing phagosome. NHE9 is highly expressed in immune cells, specifically macrophages; however, NHE9 expression is strongly downregulated upon bacterial infection. We show that compensatory ectopic NHE9 expression hinders the directed motion of phagosomes along microtubules and promotes early detachment from the microtubule tracks. As a result, these phagosomes have shorter run lengths and are not successful in reaching the lysosome. In accordance with this observation, we demonstrate that NHE9 expression levels negatively correlate with bacterial survival. Together, our findings show that NHE9 regulates lumenal pH to affect phagosome maturation, and consequently, microbicidal activity in macrophages.
Collapse
|
36
|
Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, Liu YL, Amatore C, Huang WH. Homeostasis inside Single Activated Phagolysosomes: Quantitative and Selective Measurements of Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a Nanoelectrochemical Sensor. J Am Chem Soc 2022; 144:9723-9733. [PMID: 35617327 DOI: 10.1021/jacs.2c01857] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are generated by macrophages inside their phagolysosomes. This production is essential for phagocytosis of damaged cells and pathogens, i.e., protecting the organism and maintaining immune homeostasis. The ability to quantitatively and individually monitor the four primary ROS/RNS (ONOO-, H2O2, NO, and NO2-) with submillisecond resolution is clearly warranted to elucidate the still unclear mechanisms of their rapid generation and to track their concentration variations over time inside phagolysosomes, in particular, to document the origin of ROS/RNS homeostasis during phagocytosis. A novel nanowire electrode has been specifically developed for this purpose. It consisted of wrapping a SiC nanowire with a mat of 3 nm platinum nanoparticles whose high electrocatalytic performances allow the characterization and individual measurements of each of the four primary ROS/RNS. This allowed, for the first time, a quantitative, selective, and statistically robust determination of the individual amounts of ROS/RNS present in single dormant phagolysosomes. Additionally, the submillisecond resolution of the nanosensor allowed confirmation and measurement of the rapid ability of phagolysosomes to differentially mobilize their enzyme pools of NADPH oxidases and inducible nitric oxide synthases to finely regulate their homeostasis. This reveals an essential key to immune responses and immunotherapies and rationalizes its biomolecular origin.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, UPMC Univ. Paris 06, CNRS 24 rue Lhomond, Paris 75005, France
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
37
|
Jiao M, Li W, Yu Y, Yu Y. Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. BIOPHYSICAL REPORTS 2022; 2:100041. [PMID: 35382229 PMCID: PMC8978551 DOI: 10.1016/j.bpr.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Anisotropic arrangement of cell wall components is ubiquitous among bacteria and fungi, but how such functional anisotropy affects interactions between microbes and host immune cells is not known. Here we address this question with regard to phagosome maturation, the process used by host immune cells to degrade internalized microbes. We developed two-faced microparticles as model pathogens that display ligands on only one hemisphere and simultaneously function as fluorogenic sensors for probing biochemical reactions inside phagosomes during degradation. The fluorescent indicator on just one hemisphere gives the particle sensors a moon-like appearance. We show that anisotropic presentation of ligands on particles delays the start of acidification and proteolysis in phagosomes, but does not affect their degradative capacity. Our work suggests that the spatial presentation of ligands on pathogens plays a critical role in modulating the degradation process in phagosomes during host-pathogen interactions.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana
| |
Collapse
|
38
|
da Conceição Aquino de Sá M, Filho JTRR, Alcantara ME, da Costa Silva M, Dos Santos MM, Dos Santos AS, da Costa MM, Meyer R. Analysis of Gtpases Rab 5 and Rab 7 expression from macrophages infected with biofilm-producing and non biofilm-producing strains of Corynebacterium pseudotuberculosis. Braz J Microbiol 2022; 53:447-453. [PMID: 35023082 PMCID: PMC8882527 DOI: 10.1007/s42770-021-00665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/24/2021] [Indexed: 01/16/2023] Open
Abstract
Corynebacterium pseudotuberculosis is a facultative intracellular pathogen that uses various mechanisms to survive within macrophages. In phagocytosis, this survival can be attributed to the ability to inhibit phagosome-lysosome fusion. In this fusion, some proteins, including Rabs GTPases, are involved in the maturation process and are responsible for regulating membrane vesicle trafficking. Thus, to better understand these mechanisms, the capacity of biofilm-producing and non biofilm-producing strains of Corynebacterium pseudotuberculosis for modulating the expression of endosomal proteins GTPases Rab 5 and Rab 7 was evaluated in an in vitro study of infection of goat macrophages. Blood was collected from ten Canindé goats, infected with biofilm-producing and non biofilm-producing strains of C. pseudotuberculosis. Blood cells were separated in colloidal silica-polyvinylpyrrolidone gradients (GE Healthcare®). These cells were maintained at 37 °C, with 5% of CO2. After differentiation, macrophages were infected with the mentioned strains. The bacterial pellets were marked with Rab 5 and Rab 7 antibodies, and their expression was observed by flow cytometry. Both strains of C. pseudotuberculosis (biofilm-producing and non biofilm-producing) were observed to be capable of altering the expression of Rab proteins in macrophages cultivated in vitro. Macrophages from the animals infected with the biofilm-producing strain had an increase in the expression of Rab 5 protein, mainly when these macrophages were treated with the non biofilm-producing strain. The same mechanism was shown to function with Rab 7 protein, however at a lower intensity of expression when compared with Rab 5.
Collapse
Affiliation(s)
- Maria da Conceição Aquino de Sá
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil.
| | - José Tadeu Raynal Rocha Filho
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil
| | - Maria Emilia Alcantara
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil
| | | | - Mariane Melo Dos Santos
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil
| | - Allan Souza Dos Santos
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil
| | | | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences - Federal University of Bahia, Salvador, BA, Brazil
- State University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
39
|
Peña-Ramos O, Chiao L, Liu X, Yu X, Yao T, He H, Zhou Z. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Caenorhabditis elegans. eLife 2022; 11:72466. [PMID: 34982028 PMCID: PMC8769646 DOI: 10.7554/elife.72466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported to facilitate phagocytosis in mammals, it is the canonical double-membrane autophagosomes that facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.
Collapse
Affiliation(s)
- Omar Peña-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xiaomeng Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Tianyou Yao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Henry He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
40
|
Li M, Zhang J, Zhang Z, Qian Y, Qu W, Jiang Z, Zhao B. Identification of Transcriptional Pattern Related to Immune Cell Infiltration With Gene Co-Expression Network in Papillary Thyroid Cancer. Front Endocrinol (Lausanne) 2022; 13:721569. [PMID: 35185791 PMCID: PMC8854657 DOI: 10.3389/fendo.2022.721569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune cell infiltration in cancer is closely related to clinical outcomes. However, there is still a lack of research on papillary thyroid cancer (PTC). METHODS Based on single-sample gene set enrichment analysis (SSGSEA) algorithm and weighted gene co-expression network analysis (WGCNA) tool, the infiltration level of immune cell and key modules and genes associated with the level of immune cell infiltration were identified using PTC gene expression data from The Cancer Genome Atlas (TCGA) database. In addition, the co-expression network and protein-protein interactions network analysis were used to identify the hub genes. Moreover, the immunological and clinical characteristics of these hub genes were verified in TCGA and GSE35570 datasets and quantitative real-time polymerase chain reaction (PCR). Finally, receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value of hub genes. RESULTS Activated B cell, activated dendritic cell, CD56bright natural killer cell, CD56dim natural killer cell, Eosinophil, Gamma delta T cell, Immature dendritic cell, Macrophage, Mast cell, Monocyte, Natural killer cell, Neutrophil and Type 17 T helper cell were significantly changed between PTC and adjacent normal groups. WGCNA results showed that the black model had the highest correlation with the infiltration level of activated dendritic cells. We found 14 hub genes whose expression correlated to the infiltration level of activated dendritic cells in both TCGA and GSE35570 datasets. After validation in the TCGA dataset, the expression level of only 5 genes (C1QA, HCK, HLA-DRA, ITGB2 and TYROBP) in 14 hub genes were differentially expressed between PTC and adjacent normal groups. Meanwhile, the expression levels of these 5 hub genes were successfully validated in GSE35570 dataset. Quantitative real-time PCR results showed the expression of these 4 hub genes (except C1QA) was consistent with the results in TCGA and GSE35570 dataset. Finally, these 4 hub genes had diagnostic value to distinguish PTC and adjacent normal controls. CONCLUSIONS HCK, HLA-DRA, ITGB2 and TYROBP may be key diagnostic biomarkers and immunotherapy targets in PTC.
Collapse
Affiliation(s)
- Meiye Li
- Department of Endocrinology, No. 960 Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Jimei Zhang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zongjing Zhang
- Department of Endocrinology, No. 960 Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Ying Qian
- Department of Endocrinology, No. 960 Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Wei Qu
- Department of Endocrinology, No. 960 Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Zhaoshun Jiang
- Department of Endocrinology, No. 960 Hospital of PLA Joint Logistics Support Force, Jinan, China
- *Correspondence: Baochang Zhao, ; Zhaoshun Jiang,
| | - Baochang Zhao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- *Correspondence: Baochang Zhao, ; Zhaoshun Jiang,
| |
Collapse
|
41
|
Shi P, Qin J, Luo S, Hao P, Li N, Zan X. Effect of the stiffness of one-layer protein-based microcapsules on dendritic cell uptake and endocytic mechanism. Biomater Sci 2021; 10:178-188. [PMID: 34813636 DOI: 10.1039/d1bm01448j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcapsules are one of the most promising microscale drug carriers due to their facile fabrication, excellent deformability, and high efficacy in drug storage and delivery. Understanding the effects of their physicochemical properties (size, shape, rigidity, charge, surface chemistry, etc.) on both in vitro and in vivo performance is not only highly significant and interesting but also very challenging. Stiffness, an important design parameter, has been extensively explored in recent years, but how the rigidity of particles influences cellular internalization and uptake mechanisms remains controversial. Here, one-layered lysozyme-based microcapsules with well-controlled stiffness (modulus ranging from 3.49 ± 0.18 MPa to 26.14 ± 1.09 MPa) were prepared and used to investigate the effect of stiffness on the uptake process in dendritic cells and the underlying mechanism. The cellular uptake process and endocytic mechanism were investigated with laser scanning confocal microscopy, mechanism inhibitors, and pathway-specific antibody staining. Our data demonstrated that the stiffness of protein-based microcapsules could be a strong regulator of intracellular uptake and endocytic kinetics but had no obvious effect on the endocytic mechanism. We believe our results will provide a basic understanding of the intracellular uptake process of microcapsules and the endocytic mechanism and inspire strategies for the further design of potential drug delivery microcarriers.
Collapse
Affiliation(s)
- Pengzhong Shi
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Shan Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Na Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| |
Collapse
|
42
|
Lee S, Zhang Z, Yu Y. Real‐Time Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janus‐Particle Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seonik Lee
- Department of Chemistry Indiana University—Bloomington Bloomington IN 47405 USA
| | - Zihan Zhang
- Department of Chemistry Indiana University—Bloomington Bloomington IN 47405 USA
| | - Yan Yu
- Department of Chemistry Indiana University—Bloomington Bloomington IN 47405 USA
| |
Collapse
|
43
|
Lee S, Zhang Z, Yu Y. Real-Time Simultaneous Imaging of Acidification and Proteolysis in Single Phagosomes Using Bifunctional Janus-Particle Probes. Angew Chem Int Ed Engl 2021; 60:26734-26739. [PMID: 34624158 PMCID: PMC8648996 DOI: 10.1002/anie.202111094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Indexed: 12/15/2022]
Abstract
The digestion of pathogens inside phagosomes by immune cells occurs through a sequence of reactions including acidification and proteolysis, but how the reactions are orchestrated in the right order is unclear due to a lack of methods to simultaneously measure more than one reaction in phagosomes. Here we report a bifunctional Janus-particle probe to simultaneously monitor acidification and proteolysis in single phagosomes in live cells. Each probe consists of a pH reporter and a proteolysis reporter that are spatially separated but function concurrently. Using the Janus probes, we found the acidic pH needed to initiate and maintain proteolysis, revealing the mechanism for the sequential occurrence of both reactions during pathogen digestion. We showed how bacterium-derived lipopolysaccharides alter the acidification and proteolysis in phagosomes. This study showcases Janus-particle probes as a generally applicable tool for monitoring multiple reactions in intracellular vesicles.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University-Bloomington, Bloomington, IN, 47405, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University-Bloomington, Bloomington, IN, 47405, USA
| | - Yan Yu
- Department of Chemistry, Indiana University-Bloomington, Bloomington, IN, 47405, USA
| |
Collapse
|
44
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
45
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
46
|
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 2021; 12:329-345. [PMID: 33356857 PMCID: PMC7808424 DOI: 10.1080/21505594.2020.1868825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic human fungal pathogen and is frequently present in the human microbiome. It has a high relative resistance to environmental stresses and several antifungal drugs. An important component involved in microbial stress tolerance is trehalose. In this work, we characterized the three C. glabrata trehalase enzymes Ath1, Nth1 and Nth2. Single, double and triple deletion strains were constructed and characterized both in vitro and in vivo to determine the role of these enzymes in virulence. Ath1 was found to be located in the periplasm and was essential for growth on trehalose as sole carbon source, while Nth1 on the other hand was important for oxidative stress resistance, an observation which was consistent by the lower survival rate of the NTH1 deletion strain in human macrophages. No significant phenotype was observed for Nth2. The triple deletion strain was unable to establish a stable colonization of the gastrointestinal (GI) tract in mice indicating the importance of having trehalase activity for colonization in the gut.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Bea Timmermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Giel Vanreppelen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, VIB, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Yuke Cen
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, Leuven, KU Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
47
|
Singh S, Kamat SS. The loss of enzymatic activity of the PHARC-associated lipase ABHD12 results in increased phagocytosis that causes neuroinflammation. Eur J Neurosci 2021; 54:7442-7457. [PMID: 34727579 PMCID: PMC7612011 DOI: 10.1111/ejn.15516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Phagocytosis is an important evolutionary conserved process, essential for clearing pathogens and cellular debris in higher organisms, including humans. This well‐orchestrated innate immunological response is intricately regulated by numerous cellular factors, important amongst which are the immunomodulatory lysophosphatidylserines (lyso‐PSs) and the pro‐apoptotic oxidized phosphatidylserines (PSs) signalling lipids. Interestingly, in mammals, both these signalling lipids are physiologically regulated by the lipase ABHD12, mutations of which cause the human neurological disorder PHARC. Despite the biomedical significance of this lipase, detailed mechanistic studies and the specific contribution of ABHD12 to innate processes like phagocytosis remain poorly understood. Here, by immunohistochemical and immunofluorescence approaches, using the murine model of PHARC, we show, that upon an inflammatory stimulus, activated microglial cells in the cerebellum of mice deficient in ABHD12 have an amoeboid morphology, increased soma size and display heightened phagocytosis activity. We also report that upon an inflammatory stimulus, cerebellar levels of ABHD12 increase to possibly metabolize the heightened oxidized PS levels, temper phagocytosis and, in turn, control neuroinflammation during oxidative stress. Next, to complement these findings, with the use of biochemical approaches in cultured microglial cells, we show that the pharmacological inhibition and/or genetic deletion of ABHD12 results in increased phagocytic uptake in a fluorescent bead uptake assay. Together, our studies provide compelling evidence that ABHD12 plays an important role in regulating phagocytosis in cerebellar microglial cells and provides a possible explanation, as to why human PHARC subjects display neuroinflammation and atrophy in the cerebellum.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Pune, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Pune, India
| |
Collapse
|
48
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|
49
|
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathog 2021; 17:e1009943. [PMID: 34555129 PMCID: PMC8491875 DOI: 10.1371/journal.ppat.1009943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/05/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.
Collapse
|
50
|
Pais P, Vagueiro S, Mil-Homens D, Pimenta AI, Viana R, Okamoto M, Chibana H, Fialho AM, Teixeira MC. A new regulator in the crossroads of oxidative stress resistance and virulence in Candida glabrata: The transcription factor CgTog1. Virulence 2021; 11:1522-1538. [PMID: 33135521 PMCID: PMC7605352 DOI: 10.1080/21505594.2020.1839231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Candida glabrata is a prominent pathogenic yeast which exhibits a unique ability to survive the harsh environment of host immune cells. In this study, we describe the role of the transcription factor encoded by the gene CAGL0F09229g, here named CgTog1 after its Saccharomyces cerevisiae ortholog, as a new determinant of C. glabrata virulence. Interestingly, Tog1 is absent in the other clinically relevant Candida species (C. albicans, C. parapsilosis, C. tropicalis, C. auris), being exclusive to C. glabrata. CgTog1 was found to be required for oxidative stress resistance and for the modulation of reactive oxygen species inside C. glabrata cells. Also, CgTog1 was observed to be a nuclear protein, whose activity up-regulates the expression of 147 genes and represses 112 genes in C. glabrata cells exposed to H2O2, as revealed through RNA-seq-based transcriptomics analysis. Given the importance of oxidative stress response in the resistance to host immune cells, the effect of CgTOG1 expression in yeast survival upon phagocytosis by Galleria mellonella hemocytes was evaluated, leading to the identification of CgTog1 as a determinant of yeast survival upon phagocytosis. Interestingly, CgTog1 targets include many whose expression changes in C. glabrata cells after engulfment by macrophages, including those involved in reprogrammed carbon metabolism, glyoxylate cycle and fatty acid degradation. In summary, CgTog1 is a new and specific regulator of virulence in C. glabrata, contributing to oxidative stress resistance and survival upon phagocytosis by host immune cells.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Susana Vagueiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Dalila Mil-Homens
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Andreia I Pimenta
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Michiyo Okamoto
- Medical Mycology Research Center (MMRC), Chiba University , Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University , Chiba, Japan
| | - Arsénio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| |
Collapse
|