1
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Millichap L, Turton N, Damiani E, Marcheggiani F, Orlando P, Silvestri S, Tiano L, Hargreaves IP. The Effect of Neuronal CoQ 10 Deficiency and Mitochondrial Dysfunction on a Rotenone-Induced Neuronal Cell Model of Parkinson's Disease. Int J Mol Sci 2024; 25:6622. [PMID: 38928331 PMCID: PMC11204355 DOI: 10.3390/ijms25126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
Collapse
Affiliation(s)
- Lauren Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy; (L.M.); (E.D.); (F.M.); (P.O.); (S.S.); (L.T.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 5UA, UK;
| |
Collapse
|
3
|
Dermitzakis I, Theotokis P, Axarloglou E, Delilampou E, Miliaras D, Meditskou S, Manthou ME. The Impact of Lifestyle on the Secondary Sex Ratio: A Review. Life (Basel) 2024; 14:662. [PMID: 38929646 PMCID: PMC11205111 DOI: 10.3390/life14060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The secondary sex ratio (SSR), indicating the ratio of male to female live births, has garnered considerable attention within the realms of reproductive biology and public health. Numerous factors have been posited as potential trendsetters of the SSR. Given the extensive research on the impact of daily behaviors and habits on individuals' reproductive health, there is a plausible suggestion that lifestyle choices may also influence the SSR. By synthesizing the existing literature on the current research field, this comprehensive review indicates that an elevated SSR has been associated with an increased intake of fatty acids and monosaccharides, proper nutrition, higher educational levels, financial prosperity, and favorable housing conditions. On the other hand, a decreased SSR may be linked to undernutrition, socioeconomic disparities, and psychological distress, aligning with the Trivers-Willard hypothesis. Occupational factors, smoking habits, and cultural beliefs could also contribute to trends in the SSR. Our review underscores the significance of considering the aforementioned factors in studies examining the SSR and emphasizes the necessity for further research to unravel the mechanisms underpinning these connections. A more profound comprehension of SSR alterations due to lifestyle holds the potential to adequately develop public health interventions and healthcare strategies to enhance reproductive health and overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (E.A.); (E.D.); (D.M.); (S.M.)
| |
Collapse
|
4
|
Karunakaran U, Elumalai S, Chung SM, Maedler K, Won KC, Moon JS. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biol 2024; 69:102994. [PMID: 38128451 PMCID: PMC10776427 DOI: 10.1016/j.redox.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Progression of β-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in β-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in β-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves β-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves β-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved β-cell function and survival under high-glucose conditions via the glutathione redox balance.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea.
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Sato F, Sato K, Ono T, Chitose SI, Sato K, Kurita T, Umeno H. Glycolytic Metabolism of the Tissue Stem Cells in the Maculae Flavae of the Human Vocal Fold. J Voice 2023:S0892-1997(23)00374-0. [PMID: 38135596 DOI: 10.1016/j.jvoice.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Metabolic programs in the stem cells are essential for maintaining homeostasis and protecting against stem cell aging. There is growing evidence that the tissue stem cells reside in the anterior and posterior maculae flavae of the human vocal fold mucosa. Our previous studies observed that the glycolysis of the cell in the human maculae flavae seems to rely more on anaerobic glycolysis for energy supply in comparison with oxidative phosphorylation. However, previous studies showed only the metabolic enzymes of glycolysis and functional morphology of the mitochondria, therefore, it has not yet been determined whether anaerobic glycolysis actually took place. The purpose of this study is to investigate the glycolytic metabolites of the cells in the maculae flavae of the human vocal fold in vitro. METHODS Four normal human vocal folds were used. After extraction of the anterior maculae flavae, cells in the maculae flavae were cultured and proliferated. Glucose transporter-1 was assessed using immunocytochemistry and metabolites of glycolysis (lactate and NADPH) were measured. RESULTS The cells in the maculae flavae expressed glucose transporter-1 in the cytoplasm and the cell membranes. In addition, the cultured cells produced lactate (metabolites of anaerobic glycolysis) and NADPH (metabolites of the pentose phosphate pathway). CONCLUSIONS The cells in the maculae flavae of the human vocal folds were found to undergo anaerobic glycolysis via the pentose phosphate pathway. This suggests that the cells in the maculae flavae of the human vocal fold have a metabolism that favors the maintenance of stemness and undifferentiated states.
Collapse
Affiliation(s)
- Fumihiko Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan.
| | - Kiminobu Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Ono
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Shun-Ichi Chitose
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Kiminori Sato
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Kurita
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
6
|
Helegbe GK, Wemakor A, Ameade EPK, Anabire NG, Anaba F, Bautista JM, Zorn BG. Co-Occurrence of G6PD Deficiency and SCT among Pregnant Women Exposed to Infectious Diseases. J Clin Med 2023; 12:5085. [PMID: 37568487 PMCID: PMC10419962 DOI: 10.3390/jcm12155085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 08/13/2023] Open
Abstract
During pregnancy, women have an increased relative risk of exposure to infectious diseases. This study was designed to assess the prevalence of the co-occurrence of glucose-6-phosphate dehydrogenase deficiency (G6PDd) and sickle cell trait (SCT) and the impact on anemia outcomes among pregnant women exposed to frequent infectious diseases. Over a six-year period (March 2013 to October 2019), 8473 pregnant women attending antenatal clinics (ANCs) at major referral hospitals in Northern Ghana were recruited and diagnosed for common infectious diseases (malaria, syphilis, hepatitis B, and HIV), G6PDd, and SCT. The prevalence of all the infections and anemia did not differ between women with and without G6PDd (χ2 < 3.6, p > 0.05 for all comparisons). Regression analysis revealed a significantly higher proportion of SCT in pregnant women with G6PDd than those without G6PDd (AOR = 1.58; p < 0.011). The interaction between malaria and SCT was observed to be associated with anemia outcomes among the G6PDd women (F-statistic = 10.9, p < 0.001). Our findings show that anemia is a common condition among G6PDd women attending ANCs in northern Ghana, and its outcome is impacted by malaria and SCT. This warrants further studies to understand the impact of antimalarial treatment and the blood transfusion outcomes in G6PDd/SCT pregnant women.
Collapse
Affiliation(s)
- Gideon Kofi Helegbe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale P.O. Box TL 1883, Ghana;
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Anthony Wemakor
- Department of Nutritional Sciences, School of Allied Health Sciences, University for Development Studies, Tamale P.O. Box TL 1883, Ghana
| | - Evans Paul Kwame Ameade
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy and Pharmaceutical Sciences, University for Development Studies, Tamale P.O. Box TL 1883, Ghana
| | - Nsoh Godwin Anabire
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale P.O. Box TL 1883, Ghana;
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Frank Anaba
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala P.O. Box TL 1883, Ghana
| | - Jose M. Bautista
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Bruno Gonzalez Zorn
- Department of Animal Health, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
7
|
Sahoo BR, Crook AA, Pattnaik A, Torres-Gerena AD, Khalimonchuk O, Powers R, Franco R, Pattnaik AK. Redox Regulation and Metabolic Dependency of Zika Virus Replication: Inhibition by Nrf2-Antioxidant Response and NAD(H) Antimetabolites. J Virol 2023; 97:e0136322. [PMID: 36688653 PMCID: PMC9972919 DOI: 10.1128/jvi.01363-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Viral infections alter host cell metabolism and homeostasis; however, the mechanisms that regulate these processes have only begun to be elucidated. We report here that Zika virus (ZIKV) infection activates the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2), which precedes oxidative stress. Downregulation of Nrf2 or inhibition of glutathione (GSH) synthesis resulted in significantly increased viral replication. Interestingly, 6-amino-nicotinamide (6-AN), a nicotinamide analog commonly used as an inhibitor of the pentose phosphate pathway (PPP), decreased viral replication by over 1,000-fold. This inhibition was neither recapitulated by the knockdown of PPP enzymes, glucose 6-phosphate dehydrogenase (G6PD), or 6-phosphogluconate dehydrogenase (6PGD), nor prevented by supplementation with ribose 5-phosphate. Instead, our metabolomics and metabolic phenotype studies support a mechanism in which 6-AN depletes cells of NAD(H) and impairs NAD(H)-dependent glycolytic steps resulting in inhibition of viral replication. The inhibitory effect of 6-AN was rescued with precursors of the salvage pathway but not with those of other NAD+ biosynthesis pathways. Inhibition of glycolysis reduced viral protein levels, which were recovered transiently. This transient recovery in viral protein synthesis was prevented when oxidative metabolism was inhibited by blockage of the mitochondrial pyruvate carrier, fatty acid oxidation, or glutaminolysis, demonstrating a compensatory role of mitochondrial metabolism in ZIKV replication. These results establish an antagonistic role for the host cell Nrf2/GSH/NADPH-dependent antioxidant response against ZIKV and demonstrate the dependency of ZIKV replication on NAD(H). Importantly, our work suggests the potential use of NAD(H) antimetabolite therapy against the viral infection. IMPORTANCE Zika virus (ZIKV) is a major public health concern of international proportions. While the incidence of ZIKV infections has declined substantially in recent years, the potential for the reemergence or reintroduction remains high. Although viral infection alters host cell metabolism and homeostasis to promote its replication, deciphering the mechanism(s) involved in these processes is important for identifying therapeutic targets. The present work reveals the complexities of host cell redox regulation and metabolic dependency of ZIKV replication. An antagonistic effect of the Nrf2/GSH/NADP(H)-dependent antioxidant response against ZIKV infection and an essential role of NAD(H) metabolism and glycolysis for viral replication are established for the first time. These findings highlight the potential use of NAD(H) antimetabolites to counter ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alexandra A. Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alondra D. Torres-Gerena
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska, USA
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Chen PH, Tjong WY, Yang HC, Liu HY, Stern A, Chiu DTY. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis. Int J Mol Sci 2022; 23:ijms23042017. [PMID: 35216131 PMCID: PMC8878822 DOI: 10.3390/ijms23042017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Normal embryogenesis requires complex regulation and precision, which depends on multiple mechanistic details. Defective embryogenesis can occur by various mechanisms. Maintaining redox homeostasis is of importance during embryogenesis. NADPH, as produced from the action of glucose-6-phosphate dehydrogenase (G6PD), has an important role in redox homeostasis, serving as a cofactor for glutathione reductase in the recycling of glutathione from oxidized glutathione and for NADPH oxidases and nitric oxide synthases in the generation of reactive oxygen (ROS) and nitrogen species (RNS). Oxidative stress differentially influences cell fate and embryogenesis. While low levels of stress (eustress) by ROS and RNS promote cell growth and differentiation, supra-physiological concentrations of ROS and RNS can lead to cell demise and embryonic lethality. G6PD-deficient cells and organisms have been used as models in embryogenesis for determining the role of redox signaling in regulating cell proliferation, differentiation and migration. Embryogenesis is also modulated by anti-oxidant enzymes, transcription factors, microRNAs, growth factors and signaling pathways, which are dependent on redox regulation. Crosstalk among transcription factors, microRNAs and redox signaling is essential for embryogenesis.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Wen-Ye Tjong
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Correspondence: ; Tel.: +886-3-6108175; Fax: +886-3-6102327
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Daniel Tsun-Yee Chiu
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (P.-H.C.); (W.-Y.T.); (D.T.-Y.C.)
| |
Collapse
|
10
|
High Throughput Analysis Reveals Changes in Gut Microbiota and Specific Fecal Metabolomic Signature in Hematopoietic Stem Cell Transplant Patients. Microorganisms 2021; 9:microorganisms9091845. [PMID: 34576740 PMCID: PMC8469814 DOI: 10.3390/microorganisms9091845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
There is mounting evidence for the emerging role of gut microbiota (GM) and its metabolites in profoundly impacting allogenic hematopoietic stem cell transplantation (allo-HSCT) and its subsequent complications, mainly infections and graft versus host-disease (GvHD). The present study was performed in order to investigate changes in GM composition and fecal metabolic signature between transplant patients (n = 15) and healthy controls (n = 18). The intestinal microbiota was characterized by NGS and gas chromatography-mass spectrometry was employed to perform untargeted analysis of fecal metabolites. We found lower relative abundances of Actinobacteria, Firmicutes, and Bacteroidetes and a higher abundance of Proteobacteria phylum after allo-HSCT. Particularly, the GvHD microbiota was characterized by a lower relative abundance of the short-chain fatty acid-producing bacteria, namely, the Feacalibacterium, Akkermansia, and Veillonella genera and the Lachnospiraceae family, and an enrichment in multidrug-resistant bacteria belonging to Escherichia, Shigella, and Bacteroides. Moreover, network analysis showed that GvHD was linked to a higher number of positive interactions of Blautia and a significant mutual-exclusion rate of Citrobacter. The fecal metabolome was dominated by lipids in the transplant group when compared with the healthy individuals (p < 0.05). Overall, 76 metabolites were significantly altered within transplant recipients, of which 24 were selected as potential biomarkers. Furthermore, the most notable altered metabolic pathways included the TCA cycle; butanoate, propanoate, and pyruvate metabolisms; steroid biosynthesis; and glycolysis/gluconeogenesis. Specific biomarkers and altered metabolic pathways were correlated to GvHD onset. Our results showed significant shifts in gut microbiota structure and fecal metabolites characterizing allo-HSCT.
Collapse
|
11
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Inclusion of maintenance energy improves the intracellular flux predictions of CHO. PLoS Comput Biol 2021; 17:e1009022. [PMID: 34115746 PMCID: PMC8221792 DOI: 10.1371/journal.pcbi.1009022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the leading platform for the production of biopharmaceuticals with human-like glycosylation. The standard practice for cell line generation relies on trial and error approaches such as adaptive evolution and high-throughput screening, which typically take several months. Metabolic modeling could aid in designing better producer cell lines and thus shorten development times. The genome-scale metabolic model (GSMM) of CHO can accurately predict growth rates. However, in order to predict rational engineering strategies it also needs to accurately predict intracellular fluxes. In this work we evaluated the agreement between the fluxes predicted by parsimonious flux balance analysis (pFBA) using the CHO GSMM and a wide range of 13C metabolic flux data from literature. While glycolytic fluxes were predicted relatively well, the fluxes of tricarboxylic acid (TCA) cycle were vastly underestimated due to too low energy demand. Inclusion of computationally estimated maintenance energy significantly improved the overall accuracy of intracellular flux predictions. Maintenance energy was therefore determined experimentally by running continuous cultures at different growth rates and evaluating their respective energy consumption. The experimentally and computationally determined maintenance energy were in good agreement. Additionally, we compared alternative objective functions (minimization of uptake rates of seven nonessential metabolites) to the biomass objective. While the predictions of the uptake rates were quite inaccurate for most objectives, the predictions of the intracellular fluxes were comparable to the biomass objective function. There is an increasing demand for protein pharmaceuticals, especially monoclonal antibodies. Chinese Hamster Ovary (CHO) are currently the leading production host due to their ability to perform human-like post-translational modifications. However, it typically takes several months of trial-and-error approaches to develop a high-producer cell line. Metabolic modelling has the potential to make cell line and process development faster and cheaper by predicting targeted modifications to the cell line genome, cultivation medium or bioprocess. In fact, genome-scale metabolic reconstructions of CHO are already available, and ready for use in cell line development. However, in order to successfully use these models, we need to make sure that they are able to accurately predict metabolic phenotypes. Here we use genome-scale metabolic models of CHO to evaluate the models’ ability to correctly predict intracellular flux distributions. We find that a crucial key ingredient for the correct estimation of central carbon fluxes is the non-growth associated maintenance energy (mATP). We estimated mATP computationally and confirmed it experimentally. Adding this single constraint leads to significantly better predictions of intracellular fluxes, especially in glycolysis and the tricarboxylic acid cycle.
Collapse
|
13
|
Polat IH, Tarrado-Castellarnau M, Bharat R, Perarnau J, Benito A, Cortés R, Sabatier P, Cascante M. Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism. BIOLOGY 2021; 10:85. [PMID: 33498665 PMCID: PMC7911610 DOI: 10.3390/biology10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
The pentose phosphate pathway (PPP) plays an essential role in the metabolism of breast cancer cells for the management of oxidative stress and the synthesis of nucleotides. 6-phosphogluconate dehydrogenase (6PGD) is one of the key enzymes of the oxidative branch of PPP and is involved in nucleotide biosynthesis and redox maintenance status. Here, we aimed to analyze the functional importance of 6PGD in a breast cancer cell model. Inhibition of 6PGD in MCF7 reduced cell proliferation and showed a significant decrease in glucose consumption and an increase in glutamine consumption, resulting in an important alteration in the metabolism of these cells. No difference in reactive oxygen species (ROS) production levels was observed after 6PGD inhibition, indicating that 6PGD, in contrast to glucose 6-phosphate dehydrogenase, is not involved in redox balance. We found that 6PGD inhibition also altered the stem cell characteristics and mammosphere formation capabilities of MCF7 cells, opening new avenues to prevent cancer recurrance after surgery or chemotherapy. Moreover, inhibition of 6PGD via chemical inhibitor S3 resulted in an induction of senescence, which, together with the cell cycle arrest and apoptosis induction, might be orchestrated by p53 activation. Therefore, we postulate 6PGD as a novel therapeutic target to treat breast cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| | - Rohit Bharat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Jordi Perarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Roldán Cortés
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Philippe Sabatier
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| |
Collapse
|
14
|
Identification, Characterization, and Stress Responsiveness of Glucose-6-phosphate Dehydrogenase Genes in Highland Barley. PLANTS 2020; 9:plants9121800. [PMID: 33353078 PMCID: PMC7766724 DOI: 10.3390/plants9121800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
G6PDH provides intermediate metabolites and reducing power (nicotinamide adenine dinucleotide phosphate, NADPH) for plant metabolism, and plays a pivotal role in the cellular redox homeostasis. In this study, we cloned five G6PDH genes (HvG6PDH1 to HvG6PDH5) from highland barley and characterized their encoded proteins. Functional analysis of HvG6PDHs in E. coli showed that HvG6PDH1 to HvG6PDH5 encode the functional G6PDH proteins. Subcellular localization and phylogenetic analysis indicated that HvG6PDH2 and HvG6PDH5 are localized in the cytoplasm, while HvG6PDH1, HvG6PDH3, and HvG6PDH4 are plastidic isoforms. Analysis of enzymatic activities and gene expression showed that HvG6PDH1 to HvG6PDH4 are involved in responses to salt and drought stresses. The cytosolic HvG6PDH2 is the major isoform against oxidative stress. HvG6PDH5 may be a house-keeping gene. In addition, HvG6PDH1 to HvG6PDH4 and their encoded enzymes responded to jasmonic acid (JA) and abscisic acid (ABA) treatments, implying that JA and ABA are probably critical regulators of HvG6PDHs (except for HvG6PDH5). Reactive oxygen species analysis showed that inhibition of cytosolic and plastidic G6PDH activities leads to increased H2O2 and O2− contents in highland barley under salt and drought stresses. These results suggest that G6PDH can maintain cellular redox homeostasis and that cytosolic HvG6PDH2 is an irreplaceable isoform against oxidative stress in highland barley.
Collapse
|
15
|
Geng SL, Zhang XS, Xu WH. COXIV and SIRT2-mediated G6PD deacetylation modulate ROS homeostasis to extend pupal lifespan. FEBS J 2020; 288:2436-2453. [PMID: 33058529 DOI: 10.1111/febs.15592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
Previous studies have shown that high physiological levels of reactive oxygen species (ROS) in the brain promote pupal diapause, which extends the pupal lifespan. However, the molecular mechanisms of ROS generation are unclear. In this paper, we found that mitochondrial ROS (mtROS) levels in the brains of Helicoverpa armigera diapause-destined pupae (DP) were higher and that the expression of cytochrome oxidase subunit IV (COXIV) was lower than in NP. In addition, downregulating COXIV caused mitochondrial dysfunction which elevated mtROS levels. Protein kinase A (PKA) was downregulated in DP, which led to the downregulated expression of the mitochondrial transcription factor TFAM. Low TFAM activity failed to promote COXIV expression and resulted in the high ROS levels that induced diapause. In addition, low sirtuin 2 expression suppressed glucose-6-phosphate dehydrogenase (G6PD) deacetylation at K382, which led to reduced G6PD activity and low NADPH levels, thereby maintaining high levels of ROS. Two proteins, COXIV and G6PD, thus play key roles in the elevated accumulation of ROS that induce diapause and extend the pupal lifespan.
Collapse
Affiliation(s)
- Shao-Lei Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Shuai Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Kumari R, Palaniyandi S, Hildebrandt GC. Metabolic Reprogramming-A New Era How to Prevent and Treat Graft Versus Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation Has Begun. Front Pharmacol 2020; 11:588449. [PMID: 33343357 PMCID: PMC7748087 DOI: 10.3389/fphar.2020.588449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the solitary therapeutic therapy for many types of hematological cancers. The benefits of this procedure are challenged by graft vs. host disease (GVHD), causing significant morbidity and mortality. Recent advances in the metabolomics field have revolutionized our understanding of complex human diseases, clinical diagnostics and allow to trace the de novo biosynthesis of metabolites. There is growing evidence for metabolomics playing a role in different aspects of GVHD, and therefore metabolomic reprogramming presents a novel tool for this disease. Pre-transplant cytokine profiles and metabolic status of allogeneic transplant recipients is shown to be linked with a threat of acute GVHD. Immune reactions underlying the pathophysiology of GVHD involve higher proliferation and migration of immune cells to the target site, requiring shifts in energy supply and demand. Metabolic changes and reduced availability of oxygen result in tissue and cellular hypoxia which is extensive enough to trigger transcriptional and translational changes. T cells, major players in acute GVHD pathophysiology, show increased glucose uptake and glycolytic activity. Effector T (Teff) cells activated during nutrient limiting conditions in vitro or multiplying during GVHD in vivo, depend more on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Dyslipidemia, such as the increase of medium and long chain fatty and polyunsaturated acids in plasma of GVHD patients, has been observed. Sphingolipids associate with inflammatory conditions and cancer. Chronic GVHD (cGVHD) patients show reduced branched-chain amino acids (BCAAs) and increased sulfur-containing metabolites post HSCT. Microbiota-derived metabolites such as aryl hydrocarbon receptor (AhR) ligands, bile acids, plasmalogens and short chain fatty acids vary significantly and affect allogeneic immune responses during acute GVHD. Considering the multitude of possibilities, how altered metabolomics are involved in GVHD biology, multi-timepoints related and multivariable biomarker panels for prognosticating and understanding GVHD are needed. In this review, we will discuss the recent work addressing metabolomics reprogramming to control GVHD in detail.
Collapse
Affiliation(s)
| | | | - Gerhard C. Hildebrandt
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
18
|
Jin ES, Lee MH, Malloy CR. Divergent effects of glutathione depletion on isocitrate dehydrogenase 1 and the pentose phosphate pathway in hamster liver. Physiol Rep 2020; 8:e14554. [PMID: 32812387 PMCID: PMC7435027 DOI: 10.14814/phy2.14554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
The liver regenerates NADPH via multiple pathways to maintain redox balance and reductive biosynthesis. The pentose phosphate pathway (PPP) contributes to hepatic lipogenesis by supplying NADPH, and it is thought to play a major role in response to oxidative stress. This study determined the significance of the PPP and related NADPH-regenerating enzymes in the liver under oxidative stress. Fasted hamsters received acetaminophen (400 mg/kg) to deplete glutathione in the liver and [U-13 C3 ]glycerol to measure the PPP activity by analysis of 13 C distribution in plasma glucose. Blood and liver were harvested to assess NADPH-producing enzymes, antioxidant defense, PPP, and other relevant biochemical processes. Acetaminophen caused glutathione depletion and decreased activities of glutathione peroxidase and catalase in the liver, but it did not change triglyceride synthesis. Although the PPP is potentially an abundant source of NADPH, its activity was decreased and the expression of glucose 6-phosphate dehydrogenase remained unchanged after acetaminophen treatment. The effects of acetaminophen on other NADPH-producing enzymes were complex. Isocitrate dehydrogenase 1 was overexpressed, both isocitrate dehydrogenase 2 and malic enzyme 1 were underexpressed, and methylenetetrahydrofolate dehydrogenase 1 remained unchanged. In summary, isocitrate dehydrogenase 1 was most sensitive to glutathione depletion caused by acetaminophen, but glucose 6-phosphate dehydrogenase, the regulatory enzyme of PPP, was not.
Collapse
Affiliation(s)
- Eunsook S. Jin
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Min H. Lee
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Craig R. Malloy
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- VA North Texas Health Care SystemDallasTXUSA
| |
Collapse
|
19
|
PEKER K, YILMAZ İ, DEMİRYILMAZ İ, ISIK A, SAYAR İ, GÜRSUL C, ÇANKAYA M, ÇOBAN TA. The Effect of Ozone Treatment on Thermal Burn Wound Healing; An Experimental Study. KONURALP TIP DERGISI 2020. [DOI: 10.18521/ktd.706218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
21
|
Somasundaram L, Levy S, Hussein AM, Ehnes DD, Mathieu J, Ruohola-Baker H. Epigenetic metabolites license stem cell states. Curr Top Dev Biol 2020; 138:209-240. [PMID: 32220298 DOI: 10.1016/bs.ctdb.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. In this review, we summarize some of the transitions in adult and pluripotent cell types and will propose that the key function in this process is the generation of epigenetic metabolites that govern critical epigenetic modifications, and therefore stem cell states.
Collapse
Affiliation(s)
- Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Shiri Levy
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
22
|
Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020; 11:941. [PMID: 32071304 PMCID: PMC7029000 DOI: 10.1038/s41467-020-14788-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major pathogenic mechanism in Parkinson's disease (PD). As an important cellular antioxidant, glutathione (GSH) balances the production and incorporation of free radicals to protect neurons from oxidative damage. GSH level is decreased in the brains of PD patients. Hence, clarifying the molecular mechanism of GSH deficiency may help deepen our knowledge of PD pathogenesis. Here we report that the astrocytic dopamine D2 receptor (DRD2) regulates GSH synthesis via PKM2-mediated Nrf2 transactivation. In addition we find that pyridoxine can dimerize PKM2 to promote GSH biosynthesis. Further experiments show that pyridoxine supplementation increases the resistance of nigral dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in wild-type mice as well as in astrocytic Drd2 conditional knockout mice. We conclude that dimerizing PKM2 may be a potential target for PD treatment.
Collapse
|
23
|
Abstract
Graft-versus-host disease (GVHD) is a major source of morbidity and mortality following allogeneic hematopoietic stem cell transplant (allo-HSCT), one of the most effective approaches to treat hematopoietic malignancies.1 However, current prophylaxis regimens and treatments that reduce the detrimental effect of acute GVHD can be offset by increased incidence in opportunistic infections and relapse of the primary malignancy.2 In addition, the majority of the approaches that inhibit T cell responses are non-specific, resulting in the inhibition of both alloreactive T cells and protective T cells from the donor. Therefore, there is an increase in the demand to develop novel approaches that selectively target alloreactive T cells. One potential means to address this issue is to take advantage of the unique metabolic profile of activated T cells.
Collapse
|
24
|
Tokuda K, Baron B, Yamashiro C, Kuramitsu Y, Kitagawa T, Kobayashi M, Sonoda KH, Kimura K. Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina. Cell Biol Int 2020; 44:137-144. [PMID: 31393075 DOI: 10.1002/cbin.11212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/04/2019] [Indexed: 01/24/2023]
Abstract
The metabolic state influences the regulation of neural stem/progenitor cells. The pentose phosphate pathway (PPP), an alternative metabolic pathway that operates parallel to glycolysis, not only provides key intermediates for biosynthetic reactions but also controls the fate of neural stem/progenitor cells. We have previously shown that glutamate application leads to the induction of neural progenitor cells in mature ex vivo rat retina. In this study, we investigated whether regulation of the PPP might be changed following glutamate treatment of the retina. Immunoblot analysis revealed that the amount of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP as well as that of 6-phosphogluconate dehydrogenase (6PGD), another enzyme in this pathway, increased in the glutamate-treated retina. Consistent with the fact that both these enzymes generate reduced nicotinamide adenine dinucleotide phosphate (NADPH), the amount of NAPDH in the treated retina was significantly higher compared with that in the untreated retina. We also found that both DNA synthesis as well as the expression of fatty acid synthase (FASN) increased significantly in the glutamate-treated retina. Furthermore, hypoxia-inducible factor 1-α (HIF-1α), a positive transcriptional regulator of PPP enzymes, was up-regulated at both messenger RNA (mRNA) and protein levels. Finally, we found the interaction of HIF-1α with the M2 isozyme of pyruvate kinase (PKM2), with this interaction having been shown to contribute to a positive feedback loop in the control of glycolysis. Our results thus show that specific metabolic change in the PPP occurs in the process of neural progenitor cell induction in the mature rat retina.
Collapse
Affiliation(s)
- Kazuhiro Tokuda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuhiro Kuramitsu
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takao Kitagawa
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
25
|
FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: a New Window on an Old Problem. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Santos RR, Awati A, Roubos-van den Hil PJ, van Kempen TATG, Tersteeg-Zijderveld MHG, Koolmees PA, Smits C, Fink-Gremmels J. Effects of a feed additive blend on broilers challenged with heat stress. Avian Pathol 2019; 48:582-601. [PMID: 31389714 DOI: 10.1080/03079457.2019.1648750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We evaluated a blend of medium-chain fatty acids (MCFA), organic acids, and a polyphenol antioxidant on gut integrity. Eighty Ross Broilers were exposed to 20-22°C (control - normothermic) or to 35-39.5°C (heat stress) for eight hours a day for a period of 1 or 5 days. Birds were fed a standard diet, or a diet supplemented with the test blend. Thereafter, birds were euthanized, and intestinal sections were excised for morphological, morphometric and gene expression analyses. Blood samples were collected for glucose-6-phosphate dehydrogenase (G6PD), glutathione peroxidase (GSH-Px) activity and trolox equivalent antioxidant capacity (TEAC) determination. Heart and liver tissues were used to quantify the expression of heat shock proteins 60 and 70 (HSP60 and HSP70, respectively) and inhibitor of kappa light chain gene enhancer in B cells alpha (IKBA). The jejunum was the most sensitive intestinal section, where heat stress modulated the expression of HSP70, of the inflammatory markers IKBA, interleukin 8 (IL-8), interferon gamma (IFNγ), and toll-like receptor 4 (TLR4). Moreover, expression of tight junctions (CLDN1, ZO1 and ZO2) and nutrient transporters (PEPT1 and EAAT3) was modulated especially in the jejunum. In conclusion, the feed additive blend protected intestines during heat stress from the decrease in villus height and crypt depth, and from the increase in villus width. Especially in the jejunum, heat stress played an important role by modulating oxidative stress and inflammation, impairing gut integrity and nutrient transport, and such deleterious effects were alleviated by the feed additive blend. RESEARCH HIGHLIGHTS Jejunum is the most sensitive intestinal segment during heat stress. Heat stress affects the expression of tight junctions and nutrient transporters. Feed management helps to alleviate the disturbances caused by heat stress. A blend of MCFA, organic acids and a polyphenol protects broilers under heat stress.
Collapse
Affiliation(s)
- Regiane R Santos
- Institute for Risk Assessment Sciences, Division of Veterinary Pharmacy, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands.,Animal Sciences Post-graduation Program, Federal University of Pará , Belém , Pará , Brazil
| | - Ajay Awati
- Trouw Nutrition R&D , Boxmeer , Netherlands
| | | | - Theo A T G van Kempen
- Trouw Nutrition R&D , Boxmeer , Netherlands.,Department of Animal Science, North Carolina State University , Raleigh , NC , USA
| | - Monique H G Tersteeg-Zijderveld
- Institute for Risk Assessment Sciences, Division of Veterinary Pharmacy, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| | - Peter A Koolmees
- Institute for Risk Assessment Sciences, Division of Veterinary Pharmacy, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| | - Coen Smits
- Trouw Nutrition R&D , Boxmeer , Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Division of Veterinary Pharmacy, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
27
|
Wang M, Hu J, Yan L, Yang Y, He M, Wu M, Li Q, Gong W, Yang Y, Wang Y, Handy DE, Lu B, Hao C, Wang Q, Li Y, Hu R, Stanton RC, Zhang Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33:6296-6310. [PMID: 30785802 DOI: 10.1096/fj.201801921r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress contributes substantially to podocyte injury, which plays an important role in the development of diabetic kidney disease. The mechanism of hyperglycemia-induced oxidative stress in podocytes is not fully understood. Glucose-6-phosphate dehydrogenase (G6PD) is critical in maintaining NADPH, which is an important cofactor for the antioxidant system. Here, we hypothesized that high glucose induced ubiquitination and degradation of G6PD, which injured podocytes by reactive oxygen species (ROS) accumulation. We found that G6PD protein expression was decreased in kidneys of both diabetic patients and diabetic rodents. G6PD activity was also reduced in diabetic mice. Overexpressing G6PD reversed redox imbalance and podocyte apoptosis induced by high glucose and palmitate. Inhibition of G6PD with small interfering RNA induced podocyte apoptosis. In kidneys of G6PD-deficient mice, podocyte apoptosis was significantly increased. Interestingly, high glucose had no effect on G6PD mRNA expression. Decreased G6PD protein expression was mediated by the ubiquitin proteasome pathway. We found that the von Hippel-Lindau (VHL) protein, an E3 ubiquitin ligase subunit, directly bound to G6PD and degraded G6PD through ubiquitylating G6PD on K366 and K403. In summary, our data suggest that high glucose induces ubiquitination of G6PD by VHL E3 ubiquitin ligase, which leads to ROS accumulation and podocyte injury.-Wang, M., Hu, J., Yan, L., Yang, Y., He, M., Wu, M., Li, Q., Gong, W., Yang, Y., Wang, Y., Handy, D. E., Lu, B., Hao, C., Wang, Q., Li, Y., Hu, R., Stanton, R. C., Zhang, Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes.
Collapse
Affiliation(s)
- Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Linling Yan
- Department of Endocrinology, The First People's Hospital of Taicang, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Li
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Lu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Zhao J, Zhang X, Guan T, Wang X, Zhang H, Zeng X, Dai Q, Wang Y, Zhou L, Ma X. The association between glucose-6-phosphate dehydrogenase deficiency and abnormal blood pressure among prepregnant reproductive-age Chinese females. Hypertens Res 2018; 42:75-84. [PMID: 30382176 DOI: 10.1038/s41440-018-0118-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 01/28/2023]
Abstract
The morbidity of hypertension is increasing among young adults worldwide, and glucose-6-phosphate dehydrogenase (G6PD) deficiency is a high-prevalence genetic disease. We investigated whether G6PD deficiency was associated with abnormal blood pressure (including elevated blood pressure and hypertension) among prepregnant reproductive-age females. We conducted a cross-sectional study in Shenzhen, which included 154 917 females aged 20-49 who participated in the National Free Pre-conception Check-up Projects supported by the Chinese government. After adjusting for confounding factors, the odds ratios (ORs) for the effects of G6PD deficiency on elevated blood pressure and hypertension were 1.18 (95% confidence interval (CI): 1.03-1.35) and 1.11 (95% CI: 1.00-1.23), respectively. Moreover, the association between G6PD deficiency and abnormal blood pressure was statistically significant for systolic blood pressure (SBP) but not significant for diastolic blood pressure (DBP). The multivariable-adjusted ORs for females with G6PD deficiency in the SBP 120-139 mm Hg and SBP ≥ 140 mm Hg groups were 1.10 (95% CI: 1.00-1.21) and 1.75 (95% CI: 1.25-2.42), respectively, while the multivariable-adjusted ORs for females with G6PD deficiency in the DBP 80-89 mm Hg and DBP ≥ 90 mm Hg groups were 1.09 (95% CI: 0.98-1.21) and 0.89 (95% CI: 0.66-1.19), respectively. Subgroup analyses showed similar results. The findings of this study underscored that reproductive-age females with a G6PD deficiency had a higher risk of elevated blood pressure and hypertension. Therefore, females with G6PD deficiency combined with elevated blood pressure or hypertension were high-risk populations during prepregnancy and pregnancy periods. Early intervention and collaborative management approaches should be explored to reduce the burden of these two diseases and improve maternal and child health.
Collapse
Affiliation(s)
- Jun Zhao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Xu Zhang
- National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Ting Guan
- Shenzhen Family Planning and Service Center, Guangdong, China
| | - Xingyu Wang
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China.,Beijing Hypertension League Institute, Beijing, China
| | - Hongguang Zhang
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Xuchun Zeng
- Shenzhen Family Planning and Service Center, Guangdong, China
| | - Qiaoyun Dai
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Yuanyuan Wang
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Long Zhou
- Shenzhen Family Planning and Service Center, Guangdong, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China. .,National Human Genetic Resources Center, Beijing, China. .,Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
30
|
Pala F, Di Girolamo D, Mella S, Yennek S, Chatre L, Ricchetti M, Tajbakhsh S. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci 2018; 131:131/14/jcs212977. [PMID: 30054310 PMCID: PMC6080609 DOI: 10.1242/jcs.212977] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
During growth, homeostasis and regeneration, stem cells are exposed to different energy demands. Here, we characterise the metabolic pathways that mediate the commitment and differentiation of mouse skeletal muscle stem cells, and how their modulation can influence the cell state. We show that quiescent satellite stem cells have low energetic demands and perturbed oxidative phosphorylation during ageing, which is also the case for cells from post-mortem tissues. We show also that myogenic fetal cells have distinct metabolic requirements compared to those proliferating during regeneration, with the former displaying a low respiration demand relying mostly on glycolysis. Furthermore, we show distinct requirements for peroxisomal and mitochondrial fatty acid oxidation (FAO) in myogenic cells. Compromising peroxisomal but not mitochondrial FAO promotes early differentiation of myogenic cells. Acute muscle injury and pharmacological block of peroxisomal and mitochondrial FAO expose differential requirements for these organelles during muscle regeneration. Taken together, these observations indicate that changes in myogenic cell state lead to significant alterations in metabolic requirements. In addition, perturbing specific metabolic pathways impacts on myogenic cell fates and the regeneration process. Summary: Distinct energy metabolism pathways act during mouse skeletal muscle stem cell commitment and differentiation in different physiological states.
Collapse
Affiliation(s)
- Francesca Pala
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Daniela Di Girolamo
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy
| | - Sébastien Mella
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Siham Yennek
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France.,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Laurent Chatre
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Miria Ricchetti
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France.,Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris 75015, France .,CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| |
Collapse
|
31
|
Almeida AS, Soares NL, Sequeira CO, Pereira SA, Sonnewald U, Vieira HLA. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway. Redox Biol 2018; 17:338-347. [PMID: 29793167 PMCID: PMC6007049 DOI: 10.1016/j.redox.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the silent-killer carbon monoxide (CO) has been shown to also be an endogenous cytoprotective molecule able to inhibit cell death and modulate mitochondrial metabolism. Neuronal metabolism is mostly oxidative and neurons also use glucose for maintaining their anti-oxidant status by generation of reduced glutathione (GSH) via the pentose-phosphate pathway (PPP). It is established that neuronal differentiation depends on reactive oxygen species (ROS) generation and signalling, however there is a lack of information about modulation of the PPP during adult neurogenesis. Thus, the main goal of this study was to unravel the role of CO on cell metabolism during neuronal differentiation, particularly by targeting PPP flux and GSH levels as anti-oxidant system. A human neuroblastoma SH-S5Y5 cell line was used, which differentiates into post-mitotic neurons by treatment with retinoic acid (RA), supplemented or not with CO-releasing molecule-A1 (CORM-A1). SH-SY5Y cell differentiation supplemented with CORM-A1 prompted an increase in neuronal yield production. It did, however, not alter glycolytic metabolism, but increased the PPP. In fact, CORM-A1 treatment stimulated (i) mRNA expression of 6-phosphogluconate dehydrogenase (PGDH) and transketolase (TKT), which are enzymes for oxidative and non-oxidative phases of the PPP, respectively and (ii) protein expression and activity of glucose 6-phosphate dehydrogenase (G6PD) the rate-limiting enzyme of the PPP. Likewise, whenever G6PD was knocked-down CO-induced improvement on neuronal differentiation was reverted, while pharmacological inhibition of GSH synthesis did not change CO's effect on the improvement of neuronal differentiation. Both results indicate the key role of PPP in CO-modulation of neuronal differentiation. Furthermore, at the end of SH-SY5Y neuronal differentiation process, CORM-A1 supplementation increased the ratio of reduced and oxidized glutathione (GSH/GSSG) without alteration of GSH metabolism. These data corroborate with PPP stimulation. In conclusion, CO improves neuronal differentiation of SH-S5Y5 cells by stimulating the PPP and modulating the GSH system.
Collapse
Affiliation(s)
- Ana S Almeida
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| | - Nuno L Soares
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Helena L A Vieira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
32
|
Positive Effects against UV-A Induced Damage and Oxidative Stress on an In Vitro Cell Model Using a Hyaluronic Acid Based Formulation Containing Amino Acids, Vitamins, and Minerals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8481243. [PMID: 30046611 PMCID: PMC6038662 DOI: 10.1155/2018/8481243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022]
Abstract
Ultraviolet (UV) radiations are responsible for skin photoaging inducing alteration of the molecular and cellular pathways resulting in dryness and reduction of skin elasticity. In this study, we investigated, in vitro, the antiaging and antioxidant effects of hyaluronan formulations based hydrogel. Skinkò E, an intradermic formulation composed of hyaluronic acid (HA), minerals, amino acids, and vitamins, was compared with the sole HA of the same size. For this purpose, HaCaT cells were subjected to UV-A radiations and H2O2 exposure and then treated with growth medium (CTR) combined with M-HA or Skinkò E to evaluate their protective ability against stressful conditions. Cells reparation was evaluated using a scratch in vitro model and Time-Lapse Video Microscopy. A significant protective effect for Skinkò E was shown with respect to M-HA. In addition, Skinkò E increased cell reparation. Therefore, NF-kB, SOD-2, and HO-1 were significantly reduced at the transcriptional and protein level. Interestingly, γ-H2AX and protein damage assay confirmed the protection by hyaluronans tested against oxidative stress. G6pdΔ ES cell line, highly susceptible to oxidative stress, was used as a further cellular model to assess the antioxidant effect of Skinkò E. Western blotting analyses showed that the treatment with this new formulation exerts marked antioxidant action in cells exposed to UV-A and H2O2. Thus, the protective and reparative properties of Skinkò E make it an interesting tool to treat skin aging.
Collapse
|
33
|
Jin ES, Lee MH, Murphy RE, Malloy CR. Pentose phosphate pathway activity parallels lipogenesis but not antioxidant processes in rat liver. Am J Physiol Endocrinol Metab 2018; 314:E543-E551. [PMID: 29351478 PMCID: PMC6032064 DOI: 10.1152/ajpendo.00342.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/22/2022]
Abstract
The pentose phosphate pathway (PPP) is widely assumed to play a key role in both reductive biosynthesis and protection from oxidative stress because it is the major source of NADPH. However, little is known about the activity of the PPP in fatty liver, which is characterized by both oxidative stress and lipogenesis. This study was designed to test whether the PPP is active in parallel with lipogenesis and antioxidant processes in the fatty liver of whole animals. Eight- and 16-wk-old obese Zucker diabetic fatty rats and their lean littermates received [U-13C3]glycerol, and 13C labeling patterns of glucose and triglycerides were analyzed for the assessment of hepatic PPP activity and the potentially related processes simultaneously. Oxidative stress, antioxidant activity, and NADPH-producing enzymes in the liver were further examined. Both PPP activity and lipogenesis increased in the fatty liver of young obese Zucker rats but decreased together in older obese Zucker rats. As expected, lipid peroxidation measured by malondialdehyde increased in the fatty liver of obese Zucker rats at both ages. However, evidence for antioxidant processes such as [glutathione] or activities of glutathione reductase, glutathione peroxidase, and catalase was not altered. Hepatic PPP activity paralleled lipogenesis but was dissociated from biomarkers of oxidative stress or antioxidant processes. In summary, NADPH from the PPP was presumably consumed for reductive biosynthesis rather than antioxidant defense in the fatty liver.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Min Hee Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rebecca E Murphy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Radiology, University of Texas Southwestern Medical Center , Dallas, Texas
- Veterans Administration, North Texas Health Care System, Dallas, Texas
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. CRITICAL ISSUES The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. FUTURE DIRECTIONS Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
35
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
36
|
Corbet C. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight. Front Pharmacol 2018; 8:958. [PMID: 29403375 PMCID: PMC5777397 DOI: 10.3389/fphar.2017.00958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Wisse LE, Penning R, Zaal EA, van Berkel CGM, Ter Braak TJ, Polder E, Kenney JW, Proud CG, Berkers CR, Altelaar MAF, Speijer D, van der Knaap MS, Abbink TEM. Proteomic and Metabolomic Analyses of Vanishing White Matter Mouse Astrocytes Reveal Deregulation of ER Functions. Front Cell Neurosci 2017; 11:411. [PMID: 29375313 PMCID: PMC5770689 DOI: 10.3389/fncel.2017.00411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
Vanishing white matter (VWM) is a leukodystrophy with predominantly early-childhood onset. Affected children display various neurological signs, including ataxia and spasticity, and die early. VWM patients have bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (eIF2B). eIF2B regulates protein synthesis rates under basal and cellular stress conditions. The underlying molecular mechanism of how mutations in eIF2B result in VWM is unknown. Previous studies suggest that brain white matter astrocytes are primarily affected in VWM. We hypothesized that the translation rate of certain astrocytic mRNAs is affected by the mutations, resulting in astrocytic dysfunction. Here we subjected primary astrocyte cultures of wild type (wt) and VWM (2b5ho) mice to pulsed labeling proteomics based on stable isotope labeling with amino acids in cell culture (SILAC) with an L-azidohomoalanine (AHA) pulse to select newly synthesized proteins. AHA was incorporated into newly synthesized proteins in wt and 2b5ho astrocytes with similar efficiency, without affecting cell viability. We quantified proteins synthesized in astrocytes of wt and 2b5ho mice. This proteomic profiling identified a total of 80 proteins that were regulated by the eIF2B mutation. We confirmed increased expression of PROS1 in 2b5ho astrocytes and brain. A DAVID enrichment analysis showed that approximately 50% of the eIF2B-regulated proteins used the secretory pathway. A small-scale metabolic screen further highlighted a significant change in the metabolite 6-phospho-gluconate, indicative of an altered flux through the pentose phosphate pathway (PPP). Some of the proteins migrating through the secretory pathway undergo oxidative folding reactions in the endoplasmic reticulum (ER), which produces reactive oxygen species (ROS). The PPP produces NADPH to remove ROS. The proteomic and metabolomics data together suggest a deregulation of ER function in 2b5ho mouse astrocytes.
Collapse
Affiliation(s)
- Lisanne E Wisse
- Pediatrics, VU University Medical Center, Amsterdam, Netherlands
| | - Renske Penning
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Timo J Ter Braak
- Pediatrics, VU University Medical Center, Amsterdam, Netherlands
| | - Emiel Polder
- Pediatrics, VU University Medical Center, Amsterdam, Netherlands
| | - Justin W Kenney
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher G Proud
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Maarten A F Altelaar
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Dave Speijer
- Medical Biochemistry, Academic Medical Center, Amsterdam, Netherlands
| | | | - Truus E M Abbink
- Pediatrics, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
38
|
Moreno-Sánchez R, Gallardo-Pérez JC, Rodríguez-Enríquez S, Saavedra E, Marín-Hernández Á. Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med 2017; 112:149-161. [PMID: 28739529 DOI: 10.1016/j.freeradbiomed.2017.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
It has not been systematically analyzed whether the NADPH supply is a limiting factor for oxidative stress management in cancer cells. In the present work, it was determined in non-cancer and cancer cells the protein contents and kinetomics of (i) the cytosolic enzymes responsible for the NADPH production (i.e., Glc6PDH, 6PGDH, ME, IDH-1); and (ii) the two main enzymes responsible for NADPH/NADP+ and GSH/GSSG recycling (GR, GPx-1) associated to oxidative stress management. With these data, kinetic models were built and further validated. Rat liver and hepatoma AS-30D cytosolic fractions exhibited greater Vmax for IDH-1 than for Glc6PDH and 6PGDH whereas human cancer cells and platelets showed greater Vmax for Glc6PDH than for 6PGDH and IDH-1. The ME activity was comparatively low in all cell types tested. The Km values for the respective specific substrates were all similar among the different cell types. Most activities were lower in AS-30D cells than in liver. In contrast, IDH-1, Glc6PDH and GR activities in human cancer cells were similar or greater to those of platelets, but GPx-1 activity was severely suppressed, despite showing similar GPx-1 protein content vs. platelets. Kinetic analysis and pathway modeling revealed a previously unveiled feedback IDH-1 regulation by GSH. The oxidative stress management in cancer cells (i) was mainly controlled by GPx-1 and the main NADPH provider was Glc6PDH; and (ii) modeling indicated that NADPH supply was not a controlling step. These data suggested that Glc6PDH and GPx-1 are adequate and promising targets for anti-cancer therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | | | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico.
| |
Collapse
|
39
|
Abstract
Cancer and stem cells appear to share a common metabolic profile that is characterized by high utilization of glucose through aerobic glycolysis. In the presence of sufficient nutrients, this metabolic strategy provides sufficient cellular ATP while additionally providing important metabolites necessary for the biosynthetic demands of continuous cell proliferation. Recent studies indicate that this metabolic profile is dependent on genes that regulate the fusion and fission of mitochondria. High levels of mitochondrial fission activity are associated with high proliferation and invasiveness in some cancer cells and with self-renewal and resistance to differentiation in some stem cells. These observations reveal new ways in which mitochondria regulate cell physiology, through their effects on metabolism and cell signaling.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA.
| |
Collapse
|
40
|
Jekabsons MB, Gebril HM, Wang YH, Avula B, Khan IA. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats. Neurochem Int 2017; 109:54-67. [PMID: 28412312 DOI: 10.1016/j.neuint.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2-13C2]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose utilization by aerobic glycolysis as well as the oxidative PPP and/or reverse non-oxidative PPP, but negligible glucose consumption by the pentose cycle.
Collapse
Affiliation(s)
- Mika B Jekabsons
- Department of Biology, 110 Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Hoda M Gebril
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
41
|
Abstract
In this review, Ng and Shyh-Chang review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. Advances in metabolomics have deepened our understanding of the roles that specific modes of metabolism play in programming stem cell fates. Here, we review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. The metabolic programming of stem cells represents a fine balance between the intrinsic needs of a cellular state and the constraints imposed by extrinsic conditions. A more complete understanding of these needs and constraints will afford us greater mastery over our control of stem cell fates.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore 138675
| |
Collapse
|
42
|
Chen TL, Yang HC, Hung CY, Ou MH, Pan YY, Cheng ML, Stern A, Lo SJ, Chiu DTY. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism. Cell Death Dis 2017; 8:e2545. [PMID: 28079896 PMCID: PMC5386372 DOI: 10.1038/cddis.2016.463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/20/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a commonly pervasive inherited disease in many parts of the world. The complete lack of G6PD activity in a mouse model causes embryonic lethality. The G6PD-deficient Caenorhabditis elegans model also shows embryonic death as indicated by a severe hatching defect. Although increased oxidative stress has been implicated in both cases as the underlying cause, the exact mechanism has not been clearly delineated. In this study with C. elegans, membrane-associated defects, including enhanced permeability, defective polarity and cytokinesis, were found in G6PD-deficient embryos. The membrane-associated abnormalities were accompanied by impaired eggshell structure as evidenced by a transmission electron microscopic study. Such loss of membrane structural integrity was associated with abnormal lipid composition as lipidomic analysis revealed that lysoglycerophospholipids were significantly increased in G6PD-deficient embryos. Abnormal glycerophospholipid metabolism leading to defective embryonic development could be attributed to the increased activity of calcium-independent phospholipase A2 (iPLA) in G6PD-deficient embryos. This notion is further supported by the fact that the suppression of multiple iPLAs by genetic manipulation partially rescued the embryonic defects in G6PD-deficient embryos. In addition, G6PD deficiency induced disruption of redox balance as manifested by diminished NADPH and elevated lipid peroxidation in embryos. Taken together, disrupted lipid metabolism due to abnormal redox homeostasis is a major factor contributing to abnormal embryonic development in G6PD-deficient C. elegans.
Collapse
Affiliation(s)
- Tzu-Ling Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chi Yang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yu Hung
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsin Ou
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Yun Pan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Chang Gung University, Taoyuan, Taiwan.,Clinical Phenome Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Arnold Stern
- New York University School of Medicine, New York,NY, USA
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Daniel Tsun-Yee Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
43
|
Abstract
G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Scientific Direction, Istituto Toscano Tumori, Viale Pieraccini 6, Florence 50139, Italy; University of Florence, Florence, Italy.
| | - Caterina Nannelli
- Core Research Laboratory-Istituto Toscano Tumori, Azienda Universitaria-Ospedaliera Careggi, Viale Pieraccini 6, Florence 50139, Italy
| | - Rosario Notaro
- Core Research Laboratory-Istituto Toscano Tumori, Azienda Universitaria-Ospedaliera Careggi, Viale Pieraccini 6, Florence 50139, Italy
| |
Collapse
|
44
|
Zeng C, Wu Q, Wang J, Yao B, Ma L, Yang Z, Li J, Liu B. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells. Free Radic Biol Med 2016; 101:236-248. [PMID: 27989748 DOI: 10.1016/j.freeradbiomed.2016.10.500] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and contributes to cancer progression. Nevertheless, the comprehensive mechanisms for NOX4-mediated malignant progression and oxidative resistance of cancer cells remain largely unknown. This study found that NOX4 directed glucose metabolism not only to the glycolysis but also to pentose phosphate pathway (PPP) pathway for production of NADPH in NSCLC cell lines. Besides, we also found that NOX4 promoted glutaminolysis into total GSH synthesis. Specifically, the data showed that ectopic NOX4 expression did not induce apoptosis of NSCLC cells; however, inhibition of GSH production resulted in obvious apoptotic death of NOX4-overexpressed NSCLC cells. Furthermore, we demonstrated that NOX4-induced glycolysis probably via ROS/PI3K/Akt signaling-dependent c-Myc upregulation. The selective NOX4 inhibitor, GKT137831, significantly inhibited glucose and glutamine metabolic phenotypes both in vitro and in vivo, and itself or combination with 2-DG, a synthetic glycolytic inhibitor, suppressed cancer cell growth both in vivo and in vitro. Elimination of NOX4-derived H2O2 effectively reversed NOX4 overexpression-mediated metabolic effects in NSCLC cells. NOX4 levels were significantly correlated with increased glucose and glutamine metabolism-related genes, as well as Akt phosphorylation and c-Myc expression in primary NSCLC specimens. In conclusion, these results reveal that NOX4 promotes glycolysis, contributing to NSCLC growth, and supports glutaminolysis for oxidative resistance. Therefore, NOX4 may be a promising target to reverse malignant progression of NSCLC.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qipeng Wu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Bei Yao
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Ma
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhicheng Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juan Li
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
46
|
Lewis AM, Croughan WD, Aranibar N, Lee AG, Warrack B, Abu-Absi NR, Patel R, Drew B, Borys MC, Reily MD, Li ZJ. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process. PLoS One 2016; 11:e0157111. [PMID: 27310468 PMCID: PMC4911072 DOI: 10.1371/journal.pone.0157111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability.
Collapse
Affiliation(s)
- Amanda M. Lewis
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
- * E-mail:
| | - William D. Croughan
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Nelly Aranibar
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, United States of America
| | - Alison G. Lee
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Bethanne Warrack
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, United States of America
| | - Nicholas R. Abu-Absi
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Rutva Patel
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Barry Drew
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Michael C. Borys
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| | - Michael D. Reily
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, United States of America
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, United States of America
| |
Collapse
|
47
|
Nguyen HD, Chatterjee S, Haarberg KMK, Wu Y, Bastian D, Heinrichs J, Fu J, Daenthanasanmak A, Schutt S, Shrestha S, Liu C, Wang H, Chi H, Mehrotra S, Yu XZ. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 2016; 126:1337-52. [PMID: 26950421 DOI: 10.1172/jci82587] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD.
Collapse
|
48
|
Xiao W, Sarsour EH, Wagner BA, Doskey CM, Buettner GR, Domann FE, Goswami PC. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes. Arch Toxicol 2016; 90:319-32. [PMID: 25417049 PMCID: PMC4441874 DOI: 10.1007/s00204-014-1407-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/04/2014] [Indexed: 12/27/2022]
Abstract
Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.
Collapse
Affiliation(s)
- Wusheng Xiao
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Claire M Doskey
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Frederick E Domann
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
49
|
|
50
|
Gebril HM, Avula B, Wang YH, Khan IA, Jekabsons MB. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Neurochem Int 2015; 93:26-39. [PMID: 26723542 DOI: 10.1016/j.neuint.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a minimal set of measurements.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mika B Jekabsons
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|