1
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
2
|
Niezen S, Connelly MA, Hirsch C, Kizer JR, Benitez ME, Minchenberg S, Perez‐Matos MC, Jiang ZG, Mukamal KJ. Elevated Plasma Levels of Ketone Bodies Are Associated With All-Cause Mortality and Incidence of Heart Failure in Older Adults: The CHS. J Am Heart Assoc 2023; 12:e029960. [PMID: 37609928 PMCID: PMC10547348 DOI: 10.1161/jaha.123.029960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
Background Chronic disease, such as heart failure, influences cellular metabolism and shapes circulating metabolites. The relationships between key energy metabolites and chronic diseases in aging are not well understood. This study aims to determine the relationship between main components of energy metabolism with all-cause mortality and incident heart failure. Methods and Results We analyzed the association between plasma metabolite levels with all-cause mortality and incident heart failure among US older adults in the CHS (Cardiovascular Health Study). We followed 1758 participants without heart failure at baseline with hazard ratios (HRs) of analyte levels and metabolic profiles characterized by high levels of ketone bodies for all-cause mortality and incident heart failure. Multivariable Cox analyses revealed a dose-response relationship of 50% increase in all-cause mortality between lowest and highest quintiles of ketone body concentrations (HR, 1.5 [95% CI, 1.0-1.9]; P=0.007). Ketone body levels remained associated with incident heart failure after adjusting for cardiovascular disease confounders (HR, 1.2 [95% CI, 1.0-1.3]; P=0.02). Using K-means cluster analysis, we identified a cluster with higher levels of ketone bodies, citrate, interleukin-6, and B-type natriuretic peptide but lower levels of pyruvate, body mass index, and estimated glomerular filtration rate. The cluster with elevated ketone body levels was associated with higher all-cause mortality (HR, 1.7 [95% CI, 1.1-2.7]; P=0.01). Conclusions Higher concentrations of ketone bodies predict incident heart failure and all-cause mortality in an older US population, independent of metabolic and cardiovascular confounders. This association suggests a potentially important relationship between ketone body metabolism and aging.
Collapse
Affiliation(s)
- Sebastian Niezen
- Department of MedicineUniversity of Pittsburgh Medical Center, University of PittsburghPittsburghPA
| | | | - Calvin Hirsch
- Department of General Internal MedicineUniversity of California Davis HealthSacramentoCA
| | - Jorge R. Kizer
- Cardiac Section, San Francisco Veterans Affairs Health Care System, Departments of Medicine, and Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCA
| | - Maria E. Benitez
- Department of Internal MedicineAdvocate Illinois Masonic Medical CenterChicagoIL
| | - Scott Minchenberg
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | - Zhenghui Gordon Jiang
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
3
|
Qin X, Zhang Y, Zheng Q. Metabolic Inflexibility as a Pathogenic Basis for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23158291. [PMID: 35955426 PMCID: PMC9368187 DOI: 10.3390/ijms23158291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, is closely intertwined with metabolic abnormalities. Recently, a metabolic paradox in AF pathogenesis has been suggested: under different forms of pathogenesis, the metabolic balance shifts either towards (e.g., obesity and diabetes) or away from (e.g., aging, heart failure, and hypertension) fatty acid oxidation, yet they all increase the risk of AF. This has raised the urgent need for a general consensus regarding the metabolic changes that predispose patients to AF. “Metabolic flexibility” aptly describes switches between substrates (fatty acids, glucose, amino acids, and ketones) in response to various energy stresses depending on availability and requirements. AF, characterized by irregular high-frequency excitation and the contraction of the atria, is an energy challenge and triggers a metabolic switch from preferential fatty acid utilization to glucose metabolism to increase the efficiency of ATP produced in relation to oxygen consumed. Therefore, the heart needs metabolic flexibility. In this review, we will briefly discuss (1) the current understanding of cardiac metabolic flexibility with an emphasis on the specificity of atrial metabolic characteristics; (2) metabolic heterogeneity among AF pathogenesis and metabolic inflexibility as a common pathological basis for AF; and (3) the substrate-metabolism mechanism underlying metabolic inflexibility in AF pathogenesis.
Collapse
Affiliation(s)
- Xinghua Qin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- Correspondence: or
| |
Collapse
|
4
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
5
|
Aktaş İ, Mehmet Gür F. Hepato-protective effects of thymoquinone and beta-aminoisobutyric acid in streptozocin induced diabetic rats. Biotech Histochem 2021; 97:67-76. [PMID: 34281431 DOI: 10.1080/10520295.2021.1949041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the hepato-protective effects of thymoquinone (TQ) and beta-aminoisobutyric acid (BAIBA). We used five groups of 8-week-old male rats: untreated control group, streptozotocin (STZ) diabetic group, STZ + TQ group, STZ + BAIBA group, and STZ + TQ + BAIBA group. After experimental diabetes mellitus (DM) was established using STZ, TQ was given to the STZ + TQ group, BAIBA to the STZ + BAIBA group, and TQ and BAIBA to the STZ + TQ + BAIBA group. In the STZ group, body weight, relative liver weight, and glutathione, blood albumin and insulin levels were decreased compared to the control. Also, water and food consumption, tumor necrosis factor-α expression, malondialdehyde, blood glucose, alanine aminotransferase, aspartate aminotransferase and gamma glutamyl transferase levels were increased the STZ group compared to the control group. In the STZ group, sinusoid congestion and dilation, monocyte and lymphocyte infiltration and microvesicular steatosis were observed in the liver tissue. Pathological changes caused by DM were reduced significantly in the STZ + TQ, STZ + BAIBA and STZ + TQ + BAIBA groups. The protective effect of BAIBA was greater than for TQ; the greatest protective effect was observed following combined use of TQ + BAIBA. We suggest that our findings for the STZ + TQ, STZ + BAIBA and STZ + TQ + BAIBA groups were due to the antioxidant effects of TQ and BAIBA. TQ and BAIBA appear to be potential therapeutic agents for ameliorating hepatic damage due to DM.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Department of Pharmacology, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
6
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Brahma MK, Wende AR, McCommis KS. CrossTalk opposing view: Ketone bodies are not an important metabolic fuel for the heart. J Physiol 2021; 600:1005-1007. [PMID: 33644874 DOI: 10.1113/jp281005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle S McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
8
|
Demir CF, Balduz M, Taşcı İ, Kuloğlu T. Protective effect of pregabalin on the brain tissue of diabetic rats. Diabetol Int 2020; 12:207-216. [PMID: 33786275 DOI: 10.1007/s13340-020-00476-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/28/2020] [Indexed: 01/24/2023]
Abstract
Purpose Diabetes mellitus (DM) is a metabolic disorder characterized by insulin deficiency or insulin resistance. Pregabalin (PGB) is an antiepileptic drug with proven efficacy in the treatment of epilepsy, generalized anxiety disorder, and neuropathic pain. In this study, we aimed to investigate the protective effects of PGB in brain tissue of rats with streptozotocin (STZ)-induced experimental diabetes. Materials and methods Twenty-eight Wistar albino male rats were randomly divided into four groups with seven rats each: (I) Control group, (II) PGB (50 mg/kg PBG), (III) DM, and (IV) DM + PGB (50 mg/kg/day PGB per orally for 8 weeks). Diabetes was induced with an intraperitoneal (i.p.) STZ injection (Sigma Chemical Co Louis Missour, USA) at a dose of 180 mg/kg. STZ was dissolved in 0.1 M phosphate-citrate tampon (pH 4.5). Paraffin sections were examined using histological and immunohistochemical analyses. To detect oxidative damage biochemically, malondialdehyde (MDA), the end product of lipid peroxidation; superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GPx) which are antioxidant enzymes, levels were studied. In addition, bax, caspase-3 enzyme activities and TUNEL assay were studied to evaluate the apoptosis status. Results In the DM group, MDA concentrations were significantly higher and GPx and SOD activities were significantly lower compared to the control group. MDA concentrations were significantly lower and SOD activity was significantly higher in the DM + PGB group than in the DM group. The GPx activity in the DM group decreased significantly compared to the control group. In immunohistochemical examinations (Bax, Caspase-3 and TUNEL), the apoptosis rate was significantly lower in the in DM + PGB group than in the DM group. Conclusion Pregabalin may prevent harmful effects of oxidative damage by decreasing the MDA levels and increasing the SOD levels. In addition, it was thought that PGB may have antiapoptotic properties due to decreased bax and caspase-3 immunoreactivity and TUNEL positivity in PGB groups. Based on these findings, we think that PGB may be effective in reducing the risk of brain damage associated with DM.
Collapse
Affiliation(s)
- Caner F Demir
- Department of Neurology, Firat University School of Medicine, Elazig, Turkey
| | - Metin Balduz
- Department of Neurology, Çukurova State Hospital, Adana, Turkey
| | - İrem Taşcı
- Department of Neurology, Malatya Training Research Hospital, Malatya, Turkey
| | - Tuncay Kuloğlu
- Department of Histology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
9
|
Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 2020; 18:291-304. [PMID: 33188304 DOI: 10.1038/s41569-020-00465-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Diabesity is a term used to describe the combined adverse health effects of obesity and diabetes mellitus. The worldwide dual epidemic of obesity and type 2 diabetes is an important public health issue. Projections estimate a sixfold increase in the number of adults with obesity in 40 years and an increase in the number of individuals with diabetes to 642 million by 2040. Increased adiposity is the strongest risk factor for developing diabetes. Early detection of the effects of diabesity on the cardiovascular system would enable the optimal implementation of effective therapies that prevent atherosclerosis progression, cardiac remodelling, and the resulting ischaemic heart disease and heart failure. Beyond conventional imaging techniques, such as echocardiography, CT and cardiac magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this Review, we summarize the effects of obesity and diabetes on myocardial structure and function and illustrate the use of state-of-the-art multimodality cardiac imaging to elucidate the pathophysiology of myocardial dysfunction, prognosticate long-term clinical outcomes and potentially guide treatment strategies.
Collapse
|
10
|
Brahma MK, Ha C, Pepin ME, Mia S, Sun Z, Chatham JC, Habegger KM, Abel ED, Paterson AJ, Young ME, Wende AR. Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization. J Am Heart Assoc 2020; 9:e013039. [PMID: 32750298 PMCID: PMC7792234 DOI: 10.1161/jaha.119.013039] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Perturbations in myocardial substrate utilization have been proposed to contribute to the pathogenesis of cardiac dysfunction in diabetic subjects. The failing heart in nondiabetics tends to decrease reliance on fatty acid and glucose oxidation, and increases reliance on ketone body oxidation. In contrast, little is known regarding the mechanisms mediating this shift among all 3 substrates in diabetes mellitus. Therefore, we tested the hypothesis that changes in myocardial glucose utilization directly influence ketone body catabolism. Methods and Results We examined ventricular-cardiac tissue from the following murine models: (1) streptozotocin-induced type 1 diabetes mellitus; (2) high-fat-diet-induced glucose intolerance; and transgenic inducible cardiac-restricted expression of (3) glucose transporter 4 (transgenic inducible cardiac restricted expression of glucose transporter 4); or (4) dominant negative O-GlcNAcase. Elevated blood glucose (type 1 diabetes mellitus and high-fat diet mice) was associated with reduced cardiac expression of β-hydroxybutyrate-dehydrogenase and succinyl-CoA:3-oxoacid CoA transferase. Increased myocardial β-hydroxybutyrate levels were also observed in type 1 diabetes mellitus mice, suggesting a mismatch between ketone body availability and utilization. Increased cellular glucose delivery in transgenic inducible cardiac restricted expression of glucose transporter 4 mice attenuated cardiac expression of both Bdh1 and Oxct1 and reduced rates of myocardial BDH1 activity and β-hydroxybutyrate oxidation. Moreover, elevated cardiac protein O-GlcNAcylation (a glucose-derived posttranslational modification) by dominant negative O-GlcNAcase suppressed β-hydroxybutyrate dehydrogenase expression. Consistent with the mouse models, transcriptomic analysis confirmed suppression of BDH1 and OXCT1 in patients with type 2 diabetes mellitus and heart failure compared with nondiabetic patients. Conclusions Our results provide evidence that increased glucose leads to suppression of cardiac ketolytic capacity through multiple mechanisms and identifies a potential crosstalk between glucose and ketone body metabolism in the diabetic myocardium.
Collapse
Affiliation(s)
- Manoja K. Brahma
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Chae‐Myeong Ha
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Mark E. Pepin
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| | - Sobuj Mia
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Zhihuan Sun
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - John C. Chatham
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Kirk M. Habegger
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Evan Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and MetabolismCarver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Andrew J. Paterson
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Martin E. Young
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Adam R. Wende
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
11
|
Glatz JFC, Nabben M, Young ME, Schulze PC, Taegtmeyer H, Luiken JJFP. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165579. [PMID: 31678200 PMCID: PMC7586321 DOI: 10.1016/j.bbadis.2019.165579] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Fatty acids and glucose are the main substrates for myocardial energy provision. Under physiologic conditions, there is a distinct and finely tuned balance between the utilization of these substrates. Using the non-ischemic heart as an example, we discuss that upon stress this substrate balance is upset resulting in an over-reliance on either fatty acids or glucose, and that chronic fuel shifts towards a single type of substrate appear to be linked with cardiac dysfunction. These observations suggest that interventions aimed at re-balancing a tilted substrate preference towards an appropriate mix of substrates may result in restoration of cardiac contractile performance. Examples of manipulating cellular substrate uptake as a means to re-balance fuel supply, being associated with mended cardiac function underscore this concept. We also address the molecular mechanisms underlying the apparent need for a fatty acid-glucose fuel balance. We propose that re-balancing cellular fuel supply, in particular with respect to fatty acids and glucose, may be an effective strategy to treat the failing heart.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands.
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
13
|
Topsakal S, Ozmen O, Cicek E, Comlekci S. The ameliorative effect of gallic acid on pancreas lesions induced by 2.45 GHz electromagnetic radiation (Wi-Fi) in young rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Senay Topsakal
- Pamukale University, Faculty of Medicine, Department of Endocrinology and Metabolism, Denizli, Turkey
| | - Ozlem Ozmen
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, Burdur, Turkey
| | - Ekrem Cicek
- Zirve University, EBN Faculty of Medicine, Department of Pharmacology, Gaziantep, Turkey
| | - Selcuk Comlekci
- Suleyman Demirel University, Engineering Faculty, Department of Bioengineering, Isparta, Turkey
| |
Collapse
|
14
|
Di Marino S, Viceconte N, Lembo A, Summa V, Tanzilli G, Raparelli V, Truscelli G, Mangieri E, Gaudio C, Cicero DO. Early metabolic response to acute myocardial ischaemia in patients undergoing elective coronary angioplasty. Open Heart 2018; 5:e000709. [PMID: 29632675 PMCID: PMC5888439 DOI: 10.1136/openhrt-2017-000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 01/10/2023] Open
Abstract
Objective Balloon-induced transient coronary ischaemia represents a model of myocardial ischaemia and reperfusion. We are interested in the very early systemic metabolic response to this event. Methods Blood samples of patients with stable angina (SA) were collected before and after coronary angioplasty. Serum metabolic profiles were obtained using nuclear magnetic resonance spectroscopy. Univariate and multivariate analyses were used to investigate changes in metabolite concentrations. Results Thirty-four consecutive patients with SA, undergoing elective coronary angioplasty at Policlinico Umberto I of Rome, were included in this study. Changes in metabolites concentration induced by balloon occlusion in venous and arterial sera were detected. In both serum types, a significant increase in ketone bodies, 2-hydroxybutyrate, glutamine and O-acetylcarnitine concentration is observed, while alanine, lactate, phenylalanine and tyrosine decreased after intervention. Most significant metabolic changes were detected in arterial serum. Conclusions Our study points out two main global metabolic changes in peripheral blood after balloon-induced coronary ischaemia: ketone bodies increase and lactate decrease. Both could be related to compensation mechanisms finalised to fulfil heart's needs after short period of myocardial ischaemia and probably after reperfusion.
Collapse
Affiliation(s)
| | - Nicola Viceconte
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | | | - Gaetano Tanzilli
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Valeria Raparelli
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giovanni Truscelli
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Enrico Mangieri
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Carlo Gaudio
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Daniel Oscar Cicero
- IRBM Science Park S.p.A., Pomezia, Italy.,Department of Chemical Science and Technology, Università di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
15
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
17
|
Datta K, Basak T, Varshney S, Sengupta S, Sarkar S. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region. J Proteomics 2017; 152:283-299. [DOI: 10.1016/j.jprot.2016.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
18
|
Abstract
OBJECTIVES Diabetes mellitus (DM) is a global epidemic with increasing prevalence. The disease is chronic in nature, and patients must use antidiabetic drugs or insulin during their lifespan. Because of the difficulty of using injectable insulin preparations, patients and practitioners prefer to use oral antidiabetic drugs for prophylaxis and treatment. There are, however, numerous adverse effects of antidiabetic drugs and rapidly increasing attention is being paid to new nutraceutical drugs with fewer adverse effects. The purpose of this study was to evaluate the effects of caffeine and lycopene on streptozotocin (STZ)-induced DM in rats. METHODS Caffeine and lycopene were administered to the study groups by oral gavages for 1 month whereafter experimental diabetes was induced in 90 rats in 6 groups. RESULTS There were no pathological effects of lycopene and caffeine on the pancreas. Marked vacuolization and degeneration were observed in STZ-treated groups. Caffeine and lycopene decreased the pathological findings and lowered the blood and urine glucose levels in the rats with STZ-induced DM, whereas these compounds increased serum insulin levels. CONCLUSIONS This study showed that caffeine and lycopene provided protective effects against experimentally induced DM. The protective effects of lycopene were observed to be much greater than those of caffeine.
Collapse
|
19
|
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016; 133:698-705. [PMID: 26819376 PMCID: PMC4766035 DOI: 10.1161/circulationaha.115.017355] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Gregory Aubert
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ola J Martin
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Julie L Horton
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ling Lai
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Rick B Vega
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Teresa C Leone
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Timothy Koves
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Stephen J Gardell
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Marcus Krüger
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Charles L Hoppel
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - E Douglas Lewandowski
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Peter A Crawford
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Deborah M Muoio
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Daniel P Kelly
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).
| |
Collapse
|
20
|
Bouteldja N, Andersen LT, Møller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: a review. Metabolism 2014; 63:1375-84. [PMID: 25195069 DOI: 10.1016/j.metabol.2014.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/14/2014] [Accepted: 08/02/2014] [Indexed: 11/25/2022]
Abstract
Ketone bodies - 3-hydroxybutyrate and acetoacetate - are important fuel substrates, which can be oxidized by most tissues in the body. They are synthesized in the liver and are derived from fatty acids released from adipose tissue. Intriguingly, under conditions of stress such as fasting, arterio-venous catheterization studies have shown that the brain switches from the use of almost 100% glucose to the use of >50-60% ketone bodies. A similar adaptive mechanism is observed in the heart, where fasting induces a shift toward ketone body uptake that provides the myocardium with an alternate fuel source and also favorably affects myocardial contractility. Within the past years there has been a renewed interest in ketone bodies and the possible beneficial effects of fasting/semi-fasting/exercising and other "ketogenic" regimens have received much attention. In this perspective, it is promising that positron emission tomography (PET) techniques with isotopically labeled ketone bodies, fatty acids and glucose offer an opportunity to study interactions between ketone body, fatty acid and glucose metabolism in tissues such as the brain and heart. PET scans are non-invasive and thus eliminates the need to place catheters in vascular territories not easily accessible. The short half-life of e.g. 11C-labeled PET tracers even allows multiple scans on the same study day and reduces the total radiation burden associated with the procedure. This short review aims to give an overview of current knowledge on ketone body metabolism obtained by PET studies and discusses the methodological challenges and perspectives involved in PET ketone body research.
Collapse
Affiliation(s)
- Nadia Bouteldja
- Department of Radiology, Hospital of Southwest Denmark, 6700 Esbjerg, Denmark
| | - Lone Thing Andersen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Niels Møller
- Department of Endocrinology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
21
|
Schugar RC, Moll AR, André d'Avignon D, Weinheimer CJ, Kovacs A, Crawford PA. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab 2014; 3:754-69. [PMID: 25353003 PMCID: PMC4209361 DOI: 10.1016/j.molmet.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Exploitation of protective metabolic pathways within injured myocardium still remains an unclarified therapeutic target in heart disease. Moreover, while the roles of altered fatty acid and glucose metabolism in the failing heart have been explored, the influence of highly dynamic and nutritionally modifiable ketone body metabolism in the regulation of myocardial substrate utilization, mitochondrial bioenergetics, reactive oxygen species (ROS) generation, and hemodynamic response to injury remains undefined. METHODS Here we use mice that lack the enzyme required for terminal oxidation of ketone bodies, succinyl-CoA:3-oxoacid CoA transferase (SCOT) to determine the role of ketone body oxidation in the myocardial injury response. Tracer delivery in ex vivo perfused hearts coupled to NMR spectroscopy, in vivo high-resolution echocardiographic quantification of cardiac hemodynamics in nutritionally and surgically modified mice, and cellular and molecular measurements of energetic and oxidative stress responses are performed. RESULTS While germline SCOT-knockout (KO) mice die in the early postnatal period, adult mice with cardiomyocyte-specific loss of SCOT (SCOT-Heart-KO) remarkably exhibit no overt metabolic abnormalities, and no differences in left ventricular mass or impairments of systolic function during periods of ketosis, including fasting and adherence to a ketogenic diet. Myocardial fatty acid oxidation is increased when ketones are delivered but cannot be oxidized. To determine the role of ketone body oxidation in the remodeling ventricle, we induced pressure overload injury by performing transverse aortic constriction (TAC) surgery in SCOT-Heart-KO and αMHC-Cre control mice. While TAC increased left ventricular mass equally in both groups, at four weeks post-TAC, myocardial ROS abundance was increased in myocardium of SCOT-Heart-KO mice, and mitochondria and myofilaments were ultrastructurally disordered. Eight weeks post-TAC, left ventricular volume was markedly increased and ejection fraction was decreased in SCOT-Heart-KO mice, while these parameters remained normal in hearts of control animals. CONCLUSIONS These studies demonstrate the ability of myocardial ketone metabolism to coordinate the myocardial response to pressure overload, and suggest that the oxidation of ketone bodies may be an important contributor to free radical homeostasis and hemodynamic preservation in the injured heart.
Collapse
Affiliation(s)
- Rebecca C Schugar
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Ashley R Moll
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | | | - Carla J Weinheimer
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Attila Kovacs
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA
| | - Peter A Crawford
- Department of Medicine, Center for Cardiovascular Research, Washington University, St. Louis, MO, USA ; Department of Genetics, Washington University, St. Louis, MO, USA
| |
Collapse
|
22
|
Cotter DG, Schugar RC, Wentz AE, d'Avignon DA, Crawford PA. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab 2013; 304:E363-74. [PMID: 23233542 PMCID: PMC3566508 DOI: 10.1152/ajpendo.00547.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.
Collapse
Affiliation(s)
- David G Cotter
- Division of Cardiology, Dept. of Medicine, Washington Univ. School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
23
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
24
|
Abdillahi M, Ananthakrishnan R, Vedantham S, Shang L, Zhu Z, Rosario R, Zirpoli H, Bohren KM, Gabbay KH, Ramasamy R. Aldose reductase modulates cardiac glycogen synthase kinase-3β phosphorylation during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2012; 303:H297-308. [PMID: 22661511 DOI: 10.1152/ajpheart.00999.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Earlier studies have demonstrated that aldose reductase (AR) plays a key role in mediating ischemia-reperfusion (I/R) injury. Our objective was to investigate if AR mediates I/R injury by influencing phosphorylation of glycogen synthase kinase-3β (p-GSK3β). To investigate this issue, we used three separate models to study the effects of stress injury on the heart. Hearts isolated from wild-type (WT), human expressing AR transgenic (ARTg), and AR knockout (ARKO) mice were perfused with/without GSK3β inhibitors (SB-216763 and LiCl) and subjected to I/R. Ad-human AR (Ad-hAR)-expressing HL-1 cardiac cells were exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)) conditions. I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD) was used to study if p-GSK3β was affected through increased AR flux. Lactate dehydrogenase (LDH) release and left ventricular developed pressure (LVDP) were measured. LVDP was decreased in hearts from ARTg mice compared with WT and ARKO after I/R, whereas LDH release and apoptotic markers were increased (P < 0.05). p-GSK3β was decreased in ARTg hearts compared with WT and ARKO (P < 0.05). In ARKO, p-GSK3β and apoptotic markers were decreased compared with WT (P < 0.05). WT and ARTg hearts perfused with GSK3β inhibitors improved p-GSK3β expression and LVDP and exhibited decreased LDH release, apoptosis, and mitochondrial pore opening (P < 0.05). Ad-hAR-expressing HL-1 cardiac cells, exposed to hypoxia (0.5% O(2)) and reoxygenation (20.9% O(2)), had greater LDH release compared with control HL-1 cells (P < 0.05). p-GSK3β was decreased and correlated with increased apoptotic markers in Ad-hAR HL-1 cells (P < 0.05). Treatment with phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) inhibitor increased injury demonstrated by increased LDH release in ARTg, WT, and ARKO hearts and in Ad-hAR-expressing HL-1 cells. Cells treated with protein kinase C (PKC) α/β inhibitor displayed significant increases in p-Akt and p-GSK3β expression, and resulted in decreased LDH release. In summary, AR mediates changes in p-GSK3β, in part, via PKCα/β and Akt during I/R.
Collapse
Affiliation(s)
- Mariane Abdillahi
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen KH, Cheng ML, Jing YH, Chiu DTY, Shiao MS, Chen JK. Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2011; 301:E853-63. [PMID: 21791624 DOI: 10.1152/ajpendo.00048.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by dysregulated energy metabolism. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in diabetic animals. However, its overall in vivo effects on energy metabolism and the underlying mechanism require further investigation. In the present study, electrospray ionization-tandem mass spectrometry was employed to characterize the urine and plasma metabolomes of control, streptozotocin-induced DM and RSV-treated DM rats. Using principal component analysis (PCA) and heat map analysis, we discovered significant differences among control and experimental groups. RSV treatment significantly reduced the metabolic abnormalities in DM rats. Compared with the age-matched control rats, the level of carnitine was lower, and the levels of acetylcarnitine and butyrylcarnitine were higher in the urine and plasma of DM rats. RSV treatment ameliorated the deranged carnitine metabolism in DM rats. In addition, RSV treatment attenuated the diabetic ketoacidosis and muscle protein degradation, as evidenced from the attenuation of elevated urinary methyl-histidine and plasma branched-chain amino acids levels in DM rats. The beneficial effects of RSV in DM rats were correlated with activation of hepatic AMP-activated protein kinase and SIRT1 expression, increase of hepatic and muscular mitochondrial biogenesis and inhibition of muscle NF-κB activities. We concluded that RSV possesses multiple beneficial metabolic effects in insulin-deficient DM rats, particularly in improving energy metabolism and reducing protein wasting.
Collapse
MESH Headings
- Adenylate Kinase/genetics
- Adenylate Kinase/metabolism
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Cytokines/genetics
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Drug Evaluation, Preclinical
- Male
- Metabolic Diseases/etiology
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/prevention & control
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Diseases/etiology
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/prevention & control
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Rats
- Rats, Sprague-Dawley
- Resveratrol
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Streptozocin
- Wasting Syndrome/etiology
- Wasting Syndrome/genetics
- Wasting Syndrome/metabolism
- Wasting Syndrome/prevention & control
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Heather LC, Clarke K. Metabolism, hypoxia and the diabetic heart. J Mol Cell Cardiol 2011; 50:598-605. [PMID: 21262230 DOI: 10.1016/j.yjmcc.2011.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
The diabetic heart becomes metabolically remodelled as a consequence of exposure to abnormal circulating substrates and hormones. Fatty acid uptake and metabolism are increased in the type 2 diabetic heart, resulting in accumulation of intracellular lipid intermediates and an increased contribution of fatty acids towards energy generation. Cardiac glucose uptake and oxidation are decreased, predominantly due to increased fatty acid metabolism, which suppresses glucose utilisation via the Randle cycle. These metabolic changes decrease cardiac efficiency and energetics in both humans and animal models of diabetes. Diabetic hearts have decreased recovery following ischemia, indicating a reduced tolerance to oxygen-limited conditions. There is evidence that diabetic hearts have a compromised hypoxia signalling pathway, as hypoxia-inducible factor (HIF) and downstream signalling from HIF are reduced following ischemia. Failure to activate HIF under oxygen-limited conditions results in less angiogenesis, and an inability to upregulate glycolytic ATP generation. Given that glycolysis is already suppressed in the diabetic heart under normoxic conditions, the inability to upregulate glycolysis in response to hypoxia may have deleterious effects on ATP production. Thus, impaired HIF signalling may contribute to metabolic and energetic abnormalities, and impaired collateral vessel development following myocardial infarction in the type 2 diabetic heart.
Collapse
Affiliation(s)
- Lisa C Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
27
|
Kim DH, Kim YJ, Chang SA, Lee HW, Kim HN, Kim HK, Chang HJ, Sohn DW, Park YB. The protective effect of thalidomide on left ventricular function in a rat model of diabetic cardiomyopathy. Eur J Heart Fail 2010; 12:1051-60. [PMID: 20601373 DOI: 10.1093/eurjhf/hfq103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To evaluate the protective effect of thalidomide, a potent anti-inflammatory drug, on the development of diabetic cardiomyopathy (DMCMP). METHODS AND RESULTS We induced type 1 diabetes using streptozocin in 8-week-old Sprague-Dawley rats, divided them into two groups-a thalidomide treatment group (DM-T, n = 15) and a non-treatment group (DM-N, n = 15)-and compared them with a normal control (n = 10). Ten weeks after diabetes induction, heart and lung mass indices were higher in the DM-N group compared with the control group. In the DM-T group, increases in heart and lung mass indices were attenuated compared with the DM-N group. On echocardiographic examination, systolic and diastolic mitral annulus velocities were impaired in the DM-N group, but they remained normal in the DM-T group. On haemodynamic analyses, left ventricular (LV) systolic function, represented by end-systolic elastance (0.35 ± 0.14 vs. 0.18 ± 0.07 mmHg/μl, P < 0.001) and preload-recruitable stroke work (90.5 ± 24.3 vs. 51.8 ± 22.0 mmHg, P < 0.001), was preserved in the DM-T group compared with the DM-N group. Likewise, deterioration of LV diastolic function was attenuated in the DM-T group. Increases in serum levels of TNF-α were attenuated in the DM-T group compared with the DM-N group. On histological analysis, thalidomide treatment lowered total myocardial collagen content and the expression of TNF-α, IL-1β, ICAM-1, and VCAM-1. CONCLUSION In an animal model of DMCMP, deterioration of LV systolic and diastolic function was partially prevented by thalidomide treatment.
Collapse
Affiliation(s)
- Dae-Hee Kim
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wentz AE, d'Avignon DA, Weber ML, Cotter DG, Doherty JM, Kerns R, Nagarajan R, Reddy N, Sambandam N, Crawford PA. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J Biol Chem 2010; 285:24447-56. [PMID: 20529848 DOI: 10.1074/jbc.m110.100651] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor alpha-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial (13)C enrichment of glutamate when (13)C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states.
Collapse
Affiliation(s)
- Anna E Wentz
- Department of Medicine, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1468] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
30
|
den Hartog GJM, Boots AW, Adam-Perrot A, Brouns F, Verkooijen IWCM, Weseler AR, Haenen GRMM, Bast A. Erythritol is a sweet antioxidant. Nutrition 2009; 26:449-58. [PMID: 19632091 DOI: 10.1016/j.nut.2009.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hyperglycemia, oxidative stress, and the onset and progression of diabetic complications are strongly linked. Reduction of oxidative stress could be of utmost importance in the long-term treatment of diabetic patients. The chronic nature of the disease calls for a mode of antioxidant intake that can be sustained easily, e.g., by the diet. Erythritol, a simple polyol, could be such a compound. It is orally available, well tolerated, and its chemical structure resembles that of mannitol, a well-known hydroxyl radical (HO*) scavenger. METHODS We studied the antioxidant properties of erythritol in vitro and subsequently determined its antioxidant activity and its vasoprotective effect in the streptozotocin diabetic rat. RESULTS Erythritol was shown to be an excellent HO* radical scavenger and an inhibitor of 2,2'-azobis-2-amidinopropane dihydrochloride-induced hemolysis but inert toward superoxide radicals. High-performance liquid chromatographic and electron spin resonance spectroscopy studies showed that the reaction of erythritol with hydroxyl radicals resulted in the formation of erythrose and erythrulose by abstraction of a carbon-bound hydrogen atom. In the streptozotocin diabetic rat, erythritol displayed an endothelium-protective effect and, in accordance with the in vitro experiments, erythrose was found in the urine of erythritol-consuming rats. CONCLUSION Erythritol acts as an antioxidant in vivo and may help protect against hyperglycemia-induced vascular damage.
Collapse
Affiliation(s)
- Gertjan J M den Hartog
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 2009; 46:842-9. [PMID: 19217910 DOI: 10.1016/j.yjmcc.2009.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/22/2022]
Abstract
Diabetes is recognized as an independent risk factor for cardiovascular morbidity and mortality. This is due, in large part, to premature atherosclerosis, enhanced thrombogenicity and activation of systemic inflammatory programs with resultant vascular dysfunction. More enigmatic mechanisms underpinning diabetes-associated cardiac pathophysiology include the direct metabolic consequences of this disease on the myocardium. Nevertheless, a role for diabetes-associated disruption in cardiac contractile mechanics and in increasing cardiomyocyte susceptibility to ischemic-stress has been implicated independent of vascular pathology. This review will focus broadly on the direct effects of diabetes on the cardiac myocardium with more specific reference to the role of the modulation of cardiomyocyte mitochondrial function in these disease processes. This focus in part, stems from the growing recognition that in some instances mitochondrial dysfunction is central to the development of insulin resistance and diabetes, and in others, diabetes associated disruption in mitochondrial function exacerbates and accentuates the pathophysiology of diabetes.
Collapse
|
32
|
Ségalen C, Longnus SL, Baetz D, Counillon L, Van Obberghen E. 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. Endocrinology 2008; 149:1490-8. [PMID: 18187546 DOI: 10.1210/en.2007-1326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by an increased AMP/ATP ratio. AMPK is now well recognized to induce glucose uptake in skeletal muscle and heart. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is phosphorylated to form the AMP analog ZMP, which activates AMPK. Its effects on glucose transport appear to be tissue specific. The purpose of our study was to examine the effect of AICAR on insulin-induced glucose uptake in adult rat ventricular cardiomyocytes. We studied isolated adult rat ventricular cardiomyocytes treated or not with the AMPK activators AICAR and metformin and, subsequently, with insulin or not. Insulin action was investigated by determining deoxyglucose uptake, insulin receptor substrate-1- or -2-associated phosphatidylinositol 3-kinase activity and protein kinase B (PKB) cascade using antibodies to PKB, glycogen synthase kinase-3, and Akt substrate of 160 kDa. Intracellular pH was evaluated using the fluorescent pH-sensitive dye 2',7'-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Na(+)/H(+) exchanger 1 (NHE1) activity was assessed using the NH(4)(+) prepulse method. Our key findings are as follows. AICAR and metformin enhance insulin signaling downstream of PKB. Metformin potentiates insulin-induced glucose uptake, but surprisingly, AICAR inhibits both basal and insulin-induced glucose uptake. Moreover, we found that AICAR decreases intracellular pH, via inhibition of NHE1. In conclusion, AMPK potentiates insulin signaling downstream of PKB in isolated cardiac myocytes, consistent with findings in the heart in vivo. Furthermore, AICAR inhibits basal and insulin-induced glucose uptake in isolated cardiac myocytes via the inhibition of NHE1 and the subsequent reduction of intracellular pH. Importantly, AICAR exerts these effects in a manner independent of AMPK activation.
Collapse
Affiliation(s)
- Coralie Ségalen
- Faculté de Medecine, Institut National de la Santé et de la Recherche Médicale Unité 907, Avenue de Valombrose, Nice, France
| | | | | | | | | |
Collapse
|
33
|
Hughes DT, Martel PM, Kinlaw WB, Eisenberg BL. The synthetic triterpenoid CDDO-Im inhibits fatty acid synthase expression and has antiproliferative and proapoptotic effects in human liposarcoma cells. Cancer Invest 2008; 26:118-27. [PMID: 18259941 DOI: 10.1080/07357900701522612] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Liposarcomas constitute a rare group of tumors of mesenchymal origin that are often poorly responsive to therapy. This study characterizes a novel human liposarcoma cell line (LiSa-2) and defines the mechanism of its response to a synthetic triterpenoid. Fatty acid synthase (FAS) is a key enzyme of de-novo fatty acid synthesis and is highly expressed in both human liposarcoma tissue specimens and LiSa-2 cells. Treatment of the LiSa-2 cell line with the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-Im) markedly inhibited FAS mRNA expression, FAS protein production and FAS gene promoter activity. As expected, fatty acid synthesis was down regulated, but there was no effect on cellular fatty acid uptake or glycerol-3-phosphate synthesis suggesting a selective inhibition of endogenous fatty acid synthesis. Importantly, CDDO-Im produced a dose-dependent apoptotic effect in the LiSa-2 cell line, and simultaneous treatment with CDDO-Im and the fatty acid synthase inhibitor Cerulenin produced a synergistic cytotoxic effect. Thus, CDDO-Im and Cerulenin act at different loci to inhibit long chain fatty acid synthesis in liposarcoma cells. This study's demonstration of CDDO-Im inhibition of FAS and Spot 14 (S14) expression is the first report of triterpenoid compounds affecting the fatty acid synthesis pathway. The observed dependence of liposarcomas on lipogenesis to support their growth and survival provides a novel approach to the treatment of liposarcomas with agents that target fatty acid production.
Collapse
Affiliation(s)
- David T Hughes
- Department of Surgery, Section of Surgical Oncology, Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.
| | | | | | | |
Collapse
|
34
|
Bak I, Lekli I, Juhasz B, Nagy N, Varga E, Varadi J, Gesztelyi R, Szabo G, Szendrei L, Bacskay I, Vecsernyes M, Antal M, Fesus L, Boucher F, de Leiris J, Tosaki A. Cardioprotective mechanisms ofPrunus cerasus(sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am J Physiol Heart Circ Physiol 2006; 291:H1329-36. [PMID: 16617126 DOI: 10.1152/ajpheart.01243.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of kernel extract obtained from sour cherry ( Prunus cerasus) seed on the postischemic cardiac recovery were studied in isolated working rat hearts. Rats were treated with various daily doses of the extract for 14 days, and hearts were then isolated and subjected to 30 min of global ischemia followed by 120 min of reperfusion. The incidence of ventricular fibrillation (VF) and tachycardia (VT) fell from their control values of 92% and 100% to 50% (not significant) and 58% (not significant), 17% ( P < 0.05), and 25% ( P < 0.05) with the doses of 10 mg/kg and 30 mg/kg of the extract, respectively. Lower concentrations of the extract (1 and 5 mg/kg) failed to significantly reduce the incidence of VF and VT during reperfusion. Sour cherry seed kernel extract (10 and 30 mg/kg) significantly improved the postischemic recovery of cardiac function (coronary flow, aortic flow, and left ventricular developed pressure) during reperfusion. We have also demonstrated that the extract-induced protection in cardiac function significantly reflected in a reduction of infarct size. Immunohistochemistry indicates that a reduction in caspase-3 activity and apoptotic cells by the extract, beside other potential action mechanisms of proanthocyanidin, trans-resveratrol, and flavonoid components of the extract, could be responsible for the cardioprotection in ischemic-reperfused myocardium.
Collapse
Affiliation(s)
- Istvan Bak
- Department of Pharmacology, Faculty of Pharmacy, Health and Science Center, University of Debrecen, Nagyerdei krt. 98, 4032-Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2006; 291:H1489-506. [PMID: 16751293 DOI: 10.1152/ajpheart.00278.2006] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In patients with diabetes, an increased risk of symptomatic heart failure usually develops in the presence of hypertension or ischemic heart disease. However, a predisposition to heart failure might also reflect the effects of underlying abnormalities in diastolic function that can occur in asymptomatic patients with diabetes alone (termed diabetic cardiomyopathy). Evidence of cardiomyopathy has also been demonstrated in animal models of both Type 1 (streptozotocin-induced diabetes) and Type 2 diabetes (Zucker diabetic fatty rats and ob/ob or db/db mice). During insulin resistance or diabetes, the heart rapidly modifies its energy metabolism, resulting in augmented fatty acid and decreased glucose consumption. Accumulating evidence suggests that this alteration of cardiac metabolism plays an important role in the development of cardiomyopathy. Hence, a better understanding of this dysregulation in cardiac substrate utilization during insulin resistance and diabetes could provide information as to potential targets for the treatment of cardiomyopathy. This review is focused on evaluating the acute and chronic regulation and dysregulation of cardiac metabolism in normal and insulin-resistant/diabetic hearts and how these changes could contribute toward the development of cardiomyopathy.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Mice
- Mice, Obese
- Myocardium/metabolism
- Myocardium/pathology
- Rats
- Rats, Zucker
Collapse
Affiliation(s)
- Ding An
- Div. of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Oakes ND, Thalén P, Aasum E, Edgley A, Larsen T, Furler SM, Ljung B, Severson D. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Am J Physiol Endocrinol Metab 2006; 290:E870-81. [PMID: 16352676 DOI: 10.1152/ajpendo.00233.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of cardiac fuel metabolism in mice have been almost exclusively conducted ex vivo. The major aim of this study was to assess in vivo plasma FFA and glucose utilization by the hearts of healthy control (db/+) and diabetic (db/db) mice, based on cardiac uptake of (R)-2-[9,10-(3)H]bromopalmitate ([3H]R-BrP) and 2-deoxy-D-[U-14C]glucose tracers. To obtain quantitative information about the evaluation of cardiac FFA utilization with [3H]R-BrP, simultaneous comparisons of [3H]R-BrP and [14C]palmitate ([14C]P) uptake were first made in isolated perfused working hearts from db/+ mice. It was found that [3H]R-BrP uptake was closely correlated with [14C]P oxidation (r2 = 0.94, P < 0.001). Then, methods for in vivo application of [3H]R-BrP and [14C]2-DG previously developed for application in the rat were specially adapted for use in the mouse. The method yields indexes of cardiac FFA utilization (R(f)*) and clearance (K(f)*), as well as glucose utilization (R(g)'). Finally, in the main part of the study, the ability of the heart to switch between FFA and glucose fuels (metabolic flexibility) was investigated by studying anesthetized, 8-h-fasted control and db/db mice in either the basal state or during glucose infusion. In control mice, glucose infusion raised plasma levels of glucose and insulin, raised R(g)' (+58%), and lowered plasma FFA level (-48%), K(f)* (-45%), and R(f)* (-70%). This apparent reciprocal regulation of glucose and FFA utilization by control hearts illustrates metabolic flexibility for substrate use. By contrast, in the db/db mice, glucose infusion raised glucose levels with no apparent influence on cardiac FFA or glucose utilization. In conclusion, tracer methodology for assessing in vivo tissue-specific plasma FFA and glucose utilization has been adapted for use in mice and reveals a profound loss of metabolic flexibility in the diabetic db/db heart, suggesting a fixed level of FFA oxidation in fasted and glucose-infused states.
Collapse
Affiliation(s)
- Nicholas D Oakes
- Integrative Pharmacology, AstraZeneca R&D, S-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tsai YC, Chou YC, Wu AB, Hu CM, Chen CY, Chen FA, Lee JA. Stereoselective effects of 3-hydroxybutyrate on glucose utilization of rat cardiomyocytes. Life Sci 2006; 78:1385-91. [PMID: 16225892 DOI: 10.1016/j.lfs.2005.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 07/11/2005] [Indexed: 11/16/2022]
Abstract
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.
Collapse
Affiliation(s)
- Yih-Chiao Tsai
- Department of Pharmaceutical Analysis, School of Pharmacy, Taipei Medical University, No. 250, Wu-Hsing St., Taipei 11031, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
38
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1429] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|
39
|
Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:112-26. [PMID: 15904868 DOI: 10.1016/j.bbalip.2005.03.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 12/30/2022]
Abstract
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.
Collapse
Affiliation(s)
- Andrew N Carley
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
40
|
Dhaunsi GS, Bitar MS. Antioxidants attenuate diabetes-induced activation of peroxisomal functions in the rat kidney. J Biomed Sci 2004. [DOI: 10.1007/bf02256120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Coort SLM, Hasselbaink DM, Koonen DPY, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JFC, Luiken JJFP. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 2004; 53:1655-63. [PMID: 15220187 DOI: 10.2337/diabetes.53.7.1655] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In obesity, the development of cardiomyopathy is associated with the accumulation of myocardial triacylglycerols (TAGs), possibly stemming from elevation of myocardial long-chain fatty acid (LCFA) uptake. Because LCFA uptake is regulated by insulin and contractions, we examined in cardiac myocytes from lean and obese Zucker rats the effects of insulin and the contraction-mimetic agent oligomycin on the initial rate of LCFA uptake, subcellular distribution of FAT/CD36, and LCFA metabolism. In cardiac myocytes from obese Zucker rats, under basal conditions, FAT/CD36 was relocated to the sarcolemma at the expense of intracellular stores. In addition, the LCFA uptake rate, LCFA esterification rate into TAGs, and the intracellular unesterified LCFA concentration each were significantly increased. All these metabolic processes were normalized by the FAT/CD36 inhibitor sulfo-N-succinimidyloleate, indicating its antidiabetic potential. In cardiac myocytes isolated from lean rats, in vitro administration of insulin induced the translocation of FAT/CD36 to the sarcolemma and stimulated initial rates of LCFA uptake and TAG esterification. In contrast, in myocytes from obese rats, insulin failed to alter the subcellular localization of FAT/CD36 and the rates of LCFA uptake and TAG esterification. In cardiac myocytes from lean and obese animals, oligomycin stimulated the initial rates of LCFA uptake and oxidation, although oligomycin only induced the translocation of FAT/CD36 to the sarcolemma in lean rats. The present results indicate that in cardiac myocytes from obese Zucker rats, a permanent relocation of FAT/CD36 to the sarcolemma is responsible for myocardial TAG accumulation. Furthermore, in vitro these cardiac myocytes, although sensitive to contraction-like stimulation, were completely insensitive to insulin, as the basal conditions in hyperinsulinemic, obese animals resemble the insulin-stimulated condition in lean littermates.
Collapse
Affiliation(s)
- Susan L M Coort
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, NL-6200 Maastricht, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stanley WC, Meadows SR, Kivilo KM, Roth BA, Lopaschuk GD. beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol 2003; 285:H1626-31. [PMID: 12969881 DOI: 10.1152/ajpheart.00332.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that an acute infusion of beta-hydroxybutyrate inhibits myocardial fatty acid uptake and oxidation in vivo. Anesthetized pigs were untreated (n = 6) or treated with an intravenous infusion of fat emulsion (n = 7) to elevate plasma free fatty acid levels. A third group received fat emulsion plus an intravenous infusion of beta-hydroxybutyrate (25 micromol.kg-1.min-1; n = 7) for 60 min. All animals received a continuous infusion of [3H]palmitate, and myocardial fatty acid oxidation was measured from the cardiac production of 3H2O. Plasma free fatty acid concentrations were elevated in the fat emulsion group (0.77 +/- 0.11 mM) compared with the untreated group (0.15 +/- 0.03 mM), which resulted in greater myocardial free fatty acid oxidation. In contrast, the group receiving beta-hydroxybutyrate in addition to fat emulsion had elevated beta-hydroxybutyrate concentration (0.87 +/- 0.11 vs. 0.04 +/- 0.01 mM), but suppressed fatty acid oxidation (0.053 +/- 0.013 micromol.g-1.min-1) (P < 0.05) compared with the fat emulsion group (0.116 +/- 0.029 micromol.g-1.min-1). There were no differences among the three groups in the tissue content for malonyl-CoA, acetyl-CoA, or free CoA or the activity of acetyl-CoA carboxylase; thus the inhibition of fatty acid oxidation by elevated beta-hydroxybutyrate did not appear to be due to malonyl-CoA inhibition of carnitine palmitoyl transferase-I or to an increase in the acetyl-CoA-to-free CoA ratio. In conclusion, fatty acid uptake and oxidation is blocked by an infusion of beta-hydroxybutyrate; this effect was not due to elevated myocardial malonyl-CoA content.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | | | | | | | |
Collapse
|
43
|
Alterations in muscular fatty acid handling in diabetes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|