1
|
Sekunov AV, Protopopov VA, Skurygin VV, Shalagina MN, Bryndina IG. Muscle Plasticity under Functional Unloading: Effects of an Acid Sphingomyelinase Inhibitor Clomipramine. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021; 41:525-536. [PMID: 32415577 DOI: 10.1007/s10571-020-00869-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and β1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with β1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.
Collapse
Affiliation(s)
- Fernanda S O Campos
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Piña-Rodrigues
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Reis
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia S Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Leny A Cavalcante
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
3
|
Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM. Early Lipid Raft-Related Changes: Interplay between Unilateral Denervation and Hindlimb Suspension. Int J Mol Sci 2021; 22:ijms22052239. [PMID: 33668129 PMCID: PMC7956661 DOI: 10.3390/ijms22052239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 01/15/2023] Open
Abstract
Muscle disuse and denervation leads to muscle atrophy, but underlying mechanisms can be different. Previously, we have found ceramide (Cer) accumulation and lipid raft disruption after acute hindlimb suspension (HS), a model of muscle disuse. Herein, using biochemical and fluorescent approaches the influence of unilateral denervation itself and in combination with short-term HS on membrane-related parameters of rat soleus muscle was studied. Denervation increased immunoexpression of sphingomyelinase and Cer in plasmalemmal regions, but decreased Cer content in the raft fraction and enhanced lipid raft integrity. Preliminary denervation suppressed (1) HS-induced Cer accumulation in plasmalemmal regions, shown for both nonraft and raft-fractions; (2) HS-mediated decrease in lipid raft integrity. Similar to denervation, inhibition of the sciatic nerve afferents with capsaicin itself increased Cer plasmalemmal immunoexpression, but attenuated the membrane-related effects of HS. Finally, both denervation and capsaicin treatment increased immunoexpression of proapoptotic protein Bax and inhibited HS-driven increase in antiapoptotic protein Bcl-2. Thus, denervation can increase lipid raft formation and attenuate HS-induced alterations probably due to decrease of Cer levels in the raft fraction. The effects of denervation could be at least partially caused by the loss of afferentation. The study points to the importance of motor and afferent inputs in control of Cer distribution and thereby stability of lipid rafts in the junctional and extrajunctional membranes of the muscle.
Collapse
Affiliation(s)
- Irina G. Bryndina
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Maria N. Shalagina
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Vladimir A. Protopopov
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Alexey V. Sekunov
- Department of Pathophysiology and Immunology, Izhevsk State Medical Academy, Kommunarov St. 281, Izhevsk 426034, Russia; (I.G.B.); (M.N.S.); (V.A.P.); (A.V.S.)
| | - Andrey L. Zefirov
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
| | - Guzalia F. Zakirjanova
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, P. O. Box 30, Lobachevsky St. 2/31, Kazan 420111, Russia
| | - Alexey M. Petrov
- Institute of Neuroscience, Kazan State Medical University, Butlerova St. 49, Kazan 420012, Russia; (A.L.Z.); (G.F.Z.)
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, P. O. Box 30, Lobachevsky St. 2/31, Kazan 420111, Russia
- Correspondence: or
| |
Collapse
|
4
|
Zabroski IO, Nugent MA. Lipid Raft Association Stabilizes VEGF Receptor 2 in Endothelial Cells. Int J Mol Sci 2021; 22:ijms22020798. [PMID: 33466887 PMCID: PMC7830256 DOI: 10.3390/ijms22020798] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The binding of vascular endothelial growth factor A (VEGF) to VEGF receptor-2 (VEGFR-2) stimulates angiogenic signaling. Lipid rafts are cholesterol-dense regions of the plasma membrane that serve as an organizational platform for biomolecules. Although VEGFR2 has been shown to colocalize with lipid rafts to regulate its activation, the effect of lipid rafts on non-activated VEGFR2 has not been explored. Here, we characterized the involvement of lipid rafts in modulating the stability of non-activated VEGFR2 in endothelial cells using raft disrupting agents: methyl-β-cyclodextrin, sphingomyelinase and simvastatin. Disrupting lipid rafts selectively decreased the levels of non-activated VEGFR2 as a result of increased lysosomal degradation. The decreased expression of VEGFR2 translated to reduced VEGF-activation of the extracellular signal-regulated protein kinases (ERK). Overall, our results indicate that lipid rafts stabilize VEGFR2 and its associated signal transduction activities required for angiogenesis. Thus, modulation of lipid rafts may provide a means to regulate the sensitivity of endothelial cells to VEGF stimulation. Indeed, the ability of simvastatin to down regulate VEGFR2 and inhibit VEGF activity suggest a potential mechanism underlying the observation that this drug improves outcomes in the treatment of certain cancers.
Collapse
|
5
|
Janković T, Danilović Luković J, Miler I, Mitić N, Hajduković L, Janković M. Assembly of tetraspanins, galectin-3, and distinct N-glycans defines the solubilization signature of seminal prostasomes from normozoospermic and oligozoospermic men. Ups J Med Sci 2021; 126:7673. [PMID: 34540145 PMCID: PMC8431989 DOI: 10.48101/ujms.v126.7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prostasomes, extracellular vesicles (EVs) abundantly present in seminal plasma, express distinct tetraspanins (TS) and galectin-3 (gal-3), which are supposed to shape their surface by an assembly of different molecular complexes. In this study, detergent-sensitivity patterns of membrane-associated prostasomal proteins were determined aiming at the solubilization signature as an intrinsic multimolecular marker and a new parameter suitable as a reference for the comparison of EVs populations in health and disease. METHODS Prostasomes were disrupted by Triton X-100 and analyzed by gel filtration under conditions that maintained complete solubilization. Redistribution of TS (CD63, CD9, and CD81), gal-3, gamma-glutamyltransferase (GGT), and distinct N-glycans was monitored using solid-phase lectin-binding assays, transmission electron microscopy, electrophoresis, and lectin blot. RESULTS Comparative data on prostasomes under normal physiology and conditions of low sperm count revealed similarity regarding the redistribution of distinct N-glycans and GGT, all presumed to be mainly part of the vesicle coat. In contrast to this, a greater difference was found in the redistribution of integral membrane proteins, exemplified by TS and gal-3. Accordingly, they were grouped into two molecular patterns mainly consisting of overlapped CD9/gal-3/wheat germ agglutinin-reactive glycoproteins and CD63/GGT/concanavalin A-reactive glycoproteins. CONCLUSIONS Solubilization signature can be considered as an all-inclusive distinction factor regarding the surface properties of a particular vesicle since it reflects the status of the parent cell and the extracellular environment, both of which contribute to the composition of spatial membrane arrangements.
Collapse
Affiliation(s)
- Tamara Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | | | - Irena Miler
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
- University of Belgrade, Institute of Nuclear Sciences, VINČA, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ninoslav Mitić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Ljiljana Hajduković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Miroslava Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| |
Collapse
|
6
|
Gajate C, Mollinedo F. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. Methods Mol Biol 2021; 2187:147-186. [PMID: 32770506 DOI: 10.1007/978-1-0716-0814-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipid rafts are heterogeneous membrane domains enriched in cholesterol, sphingolipids, and gangliosides that serve as sorting platforms to compartmentalize and modulate signaling pathways. Death receptors and downstream signaling molecules have been reported to be recruited into these raft domains during the triggering of apoptosis. Here, we provide two protocols that support the presence of Fas/CD95 in lipid rafts during apoptosis, involving lipid raft isolation and confocal microscopy techniques. A detailed protocol is provided for the isolation of lipid rafts, by taking advantage of their resistance to Triton X-100 solubilization at 4 °C, followed by subsequent sucrose gradient centrifugation and analysis of the protein composition of the different gradient fractions by Western blotting. In addition, we also provide a detailed protocol for the visualization of the coclustering of Fas/CD95 death receptor and lipid rafts, as assessed by using anti-Fas/CD95 antibodies and fluorescent dye-conjugated cholera toxin B subunit that binds to ganglioside GM1, a main component of lipid rafts, by immunofluorescence and confocal microscopy. These protocols can be extended to any protein of interest to be analyzed for its association to lipid rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
7
|
Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB, Filipova M, Cervenakova L, Holada K. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 2019; 112:1-21. [PMID: 31736091 DOI: 10.1111/boc.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johanka Kucerova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Kostelanska
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
8
|
Xiong X, Lee CF, Li W, Yu J, Zhu L, Kim Y, Zhang H, Sun H. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open 2019; 8:bio.040311. [PMID: 31142470 PMCID: PMC6826292 DOI: 10.1242/bio.040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In human, loss of acid sphingomyelinase (ASM/SMPD1) causes Niemann–Pick disease, type A. ASM hydrolyzes sphingomyelins to produce ceramides but protein targets of ASM remain largely unclear. Our mass spectrometry-based proteomic analyses have identified >100 proteins associated with the ASM-dependent, detergent-resistant membrane microdomains (lipid rafts), with >60% of these proteins being palmitoylated, including SNAP23, Src-family kinases Yes and Lyn, and Ras and Rab family small GTPases. Inactivation of ASM abolished the presence of these proteins in the plasma membrane, with many of them trapped in the Golgi. While palmitoylation inhibitors and palmitoylation mutants phenocopied the effects of ASM inactivation, we demonstrated that ASM is required for the transport of palmitoylated proteins, such as SNAP23 and Lyn, from the Golgi to the plasma membrane without affecting palmitoylation directly. Importantly, ASM delivered extracellularly can regulate the trafficking of SNAP23 from the Golgi to the plasma membrane. Our studies suggest that ASM, acting at the plasma membrane to produce ceramides, regulates the localization and trafficking of the palmitoylated proteins. Summary: Acid sphingomyelinase (ASM) regulates palmitoylated protein trafficking and localization.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Chia-Fang Lee
- Protea Biosciences, 1311 Pineview drive, Morgantown, West Virginia, USA
| | - Wenjing Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Jiekai Yu
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Linyu Zhu
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Yongsoon Kim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154-4003, USA
| |
Collapse
|
9
|
Changes in Membrane Ceramide Pools in Rat Soleus Muscle in Response to Short-Term Disuse. Int J Mol Sci 2019; 20:ijms20194860. [PMID: 31574943 PMCID: PMC6801848 DOI: 10.3390/ijms20194860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid raft disruption is an early event during skeletal muscle unloading. Ceramide (Cer) serves as a signaling lipid that can contribute to lipid raft disturbance and muscle atrophy. Using biochemical and fluorescent approaches, the distribution of Cer and related molecules in the rat soleus muscle subjected to 12 h of hindlimb suspension (HS) was studied. HS led to upregulation of TNFα receptor 1 (TNFR1), Cer-producing enzymes, and acid and neutral sphingomyelinase (SMase) in detergent-resistant membranes (lipid rafts), which was accompanied by an increase in Cer and a decrease in sphingomyelin in this membrane fraction. Fluorescent labeling indicated increased Cer in the sarcoplasm as well as the junctional (synaptic) and extrajunctional compartments of the suspended muscles. Also, a loss of membrane asymmetry (a hallmark of membrane disturbance) was induced by HS. Pretreatment with clomipramine, a functional inhibitor of acid SMase, counteracted HS-mediated changes in the Cer/sphingomyelin ratio and acid SMase abundance as well as suppressed Cer accumulation in the intracellular membranes of junctional and extrajunctional regions. However, the elevation of plasma membrane Cer and disturbance of the membrane asymmetry were suppressed only in the junctional compartment. We suggest that acute HS leads to TNFR1 and SMase upregulation in the lipid raft fraction and deposition of Cer throughout the sarcolemma and intracellularly. Clomipramine-mediated downregulation of acid SMase can suppress Cer accumulation in all compartments, excluding the extrajunctional plasma membrane.
Collapse
|
10
|
Pathogenicity of the H1N1 influenza virus enhanced by functional synergy between the NPV100I and NAD248N pair. PLoS One 2019; 14:e0217691. [PMID: 31150476 PMCID: PMC6544299 DOI: 10.1371/journal.pone.0217691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
By comparing and measuring covariations of viral protein sequences from isolates of the 2009 pH1N1 influenza A virus (IAV), specific substitutions that co-occur in the NP-NA pair were identified. To investigate the effect of these co-occurring substitution pairs, the V100I substitution in NP and the D248N substitution in NA were introduced into laboratory-adapted WSN IAVs. The recombinant WSN with the covarying NPV100I-NAD248N pair exhibited enhanced pathogenicity, as characterized by increased viral production, increased death and inflammation of host cells, and high mortality in infected mice. Although direct interactions between the NPV100I and NAD248N proteins were not detected, the RNA-binding ability of NPV100I was increased, which was further strengthened by NAD248N, in expression-plasmid-transfected cells. Additionally, the NAD248N protein was frequently recruited within lipid rafts, indirectly affecting the RNA-binding ability of NP as well as viral release. Altogether, our data indicate that the covarying NPV100I-NAD248N pair obtained from 2009 pH1N1 IAV sequence information function together to synergistically augment viral assembly and release, which may explain the observed enhanced viral pathogenicity.
Collapse
|
11
|
Park M, Lim JW, Kim H. Docoxahexaenoic Acid Induces Apoptosis of Pancreatic Cancer Cells by Suppressing Activation of STAT3 and NF-κB. Nutrients 2018; 10:nu10111621. [PMID: 30400136 PMCID: PMC6267441 DOI: 10.3390/nu10111621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The ω3-polyunsaturated fatty acid docosahexenoic acid (DHA) is known to induce apoptosis of cancer cells. In this study, DHA was shown to reduce viability of pancreatic cancer cells (PANC-1) by inducing DNA fragmentation, activating caspase-3, and increasing the ratio of Bax/Bcl-2. To determine the DHA mechanism of action, the impact of DHA on the activation of the key signaling proteins epidermal growth factor receptor (EGFR), signal transducer and activator of transcription factor 3 (STAT3), nuclear transcription factor-κB (NF-κB), and IκBα in PANC-1 cells was probed. The observed DHA suppression of NF-κB DNA-binding activity was found to result from reduced IκBα phosphorylation. The observed DHA-induced suppression of STAT3 activation was found to be the result of suppressed EGFR activation, which derives from the inhibitory effect of DHA on the integrity of localization of EGFR to cell membrane lipid rafts. Since the activation of STAT3 and NF-κB mediates the expression of survival genes cyclin D1 and survivin, DHA induced apoptosis by suppressing the STAT3/NF-κB-cyclin D1/survivin axis. These results support the proposal that DHA-induced apoptosis of pancreatic cells occurs via disruption of key pro-cell survival signaling pathways. We suggest that the consumption of DHA-enriched foods could decrease the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Mirae Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
12
|
Sousa IP, Carvalho CAM, Mendes YS, Weissmuller G, Oliveira AC, Gomes AMO. Fusion of a New World Alphavirus with Membrane Microdomains Involving Partially Reversible Conformational Changes in the Viral Spike Proteins. Biochemistry 2017; 56:5823-5830. [PMID: 28956592 DOI: 10.1021/acs.biochem.7b00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alphaviruses are enveloped arboviruses mainly proposed to infect host cells by receptor-mediated endocytosis followed by fusion between the viral envelope and the endosomal membrane. The fusion reaction is triggered by low pH and requires the presence of both cholesterol and sphingolipids in the target membrane, suggesting the involvement of lipid rafts in the cell entry mechanism. In this study, we show for the first time the interaction of an enveloped virus with membrane microdomains isolated from living cells. Using Mayaro virus (MAYV), a New World alphavirus, we verified that virus fusion to these domains occurred to a significant extent upon acidification, although its kinetics was quite slow when compared to that of fusion with artificial liposomes demonstrated in a previous work. Surprisingly, when virus was previously exposed to acidic pH, a condition previously shown to inhibit alphavirus binding and fusion to target membranes as well as infectivity, and then reneutralized, its ability to fuse with membrane microdomains at low pH was retained. Interestingly, this observation correlated with a partial reversion of low pH-induced conformational changes in viral proteins and retention of virus infectivity upon reneutralization. Our results suggest that MAYV entry into host cells could alternatively involve internalization via lipid rafts and that the conformational changes triggered by low pH in the viral spike proteins during the entry process are partially reversible.
Collapse
Affiliation(s)
- Ivanildo P Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Carlos A M Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygara S Mendes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto Weissmuller
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andréa C Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andre M O Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde and ‡Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
13
|
Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. Placenta 2017. [PMID: 28623970 DOI: 10.1016/j.placenta.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. METHODS BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). RESULTS AND DISCUSSION BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts.
Collapse
Affiliation(s)
- John T Szilagyi
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Anna M Vetrano
- Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Gajate C, Mollinedo F. Isolation of Lipid Rafts Through Discontinuous Sucrose Gradient Centrifugation and Fas/CD95 Death Receptor Localization in Raft Fractions. Methods Mol Biol 2017; 1557:125-138. [PMID: 28078589 DOI: 10.1007/978-1-4939-6780-3_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid raft domains, enriched in sphingolipids and cholesterol, serve as sorting platforms and hubs for signal transduction proteins, and show resistance to detergent solubilization. Despite rafts have been involved in survival processes, these membrane domains have also been shown to play a major role in the modulation of death receptor signaling. Here, we describe a detailed protocol for isolating lipid rafts from whole cells by taking advantage of the lipid raft resistance to Triton X-100 solubilization at 4 °C, followed by sucrose gradient centrifugation, with subsequent analysis of Fas/CD95 death receptor localization in the raft fractions by immunoblotting. This method is also useful to localize additional proteins in membrane rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), C/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Diociaiuti M, Giordani C, Kamel GS, Brasili F, Sennato S, Bombelli C, Meneses KY, Giraldo MA, Bordi F. Monosialoganglioside-GM1 triggers binding of the amyloid-protein salmon calcitonin to a Langmuir membrane model mimicking the occurrence of lipid-rafts. Biochem Biophys Rep 2016; 8:365-375. [PMID: 28955978 PMCID: PMC5614544 DOI: 10.1016/j.bbrep.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
GM1 ganglioside is known to be involved in the amyloid-associated diseases and it is a crucial factor for the assembly of amyloid proteins on lipid-rafts, which are lipid structures located on the synaptic plasma membranes. Due to its slow aggregation rate, we employed salmon calcitonin (sCT) as a suitable probe representative of amyloid proteins, to study the interaction between this class of proteins and a membrane model. Here, we prepared a neuronal membrane model by depositing onto mica two Langmuir-Blodgett films in liquid-condensed phase: the outer monolayer was characterized by high content of GM1 (50%) and minority parts of cholesterol and POPC (25-25%), while the inner one by plain POPC. To deeply investigate the interaction of sCT with this model and the role-played by GM1, we prepared the outer leaflet adding sCT at a concentration such that the number of proteins equals that of GM1. Atomic Force Microscopy revealed the occurrence of two distinct kinds of flat surfaces, with globular aggregates localized exclusively on top of the highest one. To unravel the nature of the interaction, we studied by ζ-potential technique liposomes composed as the outer leaflet of the model. Results demonstrated that an electrostatic interaction sCT-GM1 occurred. Finally, to investigate the interaction thermodynamics between sCT and the outer leaflet, Langmuir films as the outer monolayer and containing increasing content of sCT were studied by compression isotherms and Brewster Angle Microscopy experiments. Based on the all body of results we propose an interaction model where GM1 plays a pivotal role.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, I-00161 Roma, Italy
- Correspondence to: Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Roma, Italy.
| | - Cristiano Giordani
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, I-00161 Roma, Italy
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Gihan S. Kamel
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Francesco Brasili
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Simona Sennato
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Cecilia Bombelli
- CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma “Sapienza”, I-00185 Roma, Italy
| | - Karen Y. Meneses
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Marco A. Giraldo
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Federico Bordi
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
16
|
van Gestel RA, Brouwers JF, Ultee A, Helms JB, Gadella BM. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res 2015; 363:129-145. [PMID: 26378009 PMCID: PMC4700079 DOI: 10.1007/s00441-015-2272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
Abstract
Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein–cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Anton Ultee
- Department of Pathology, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Ferraro M, Masetti M, Recanatini M, Cavalli A, Bottegoni G. Modeling lipid raft domains containing a mono-unsaturated phosphatidylethanolamine species. RSC Adv 2015. [DOI: 10.1039/c5ra02196k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An advanced coarse-grained model for “atypical” lipid rafts was built and validated to be employed in studies of membrane-protein interactions.
Collapse
Affiliation(s)
- M. Ferraro
- D3 Compunet
- Istituto Italiano di Tecnologia
- Genova
- Italy
| | - M. Masetti
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
| | - M. Recanatini
- Department of Pharmacy and Biotechnology
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
| | - A. Cavalli
- D3 Compunet
- Istituto Italiano di Tecnologia
- Genova
- Italy
- Department of Pharmacy and Biotechnology
| | - G. Bottegoni
- D3 Compunet
- Istituto Italiano di Tecnologia
- Genova
- Italy
| |
Collapse
|
18
|
Bandyopadhyay D, Sanchez JL, Guerrero AM, Chang FM, Granados JC, Short JD, Banik BK. Design, synthesis and biological evaluation of novel pyrenyl derivatives as anticancer agents. Eur J Med Chem 2015; 89:851-62. [DOI: 10.1016/j.ejmech.2014.09.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
|
19
|
Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes. Pflugers Arch 2014; 467:299-309. [DOI: 10.1007/s00424-014-1521-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
|
20
|
Rose SL, Fulton JM, Brown CM, Natale F, Van Mooy BAS, Bidle KD. Isolation and characterization of lipid rafts inEmiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environ Microbiol 2014; 16:1150-66. [DOI: 10.1111/1462-2920.12357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/05/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Suzanne L. Rose
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - James M. Fulton
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Christopher M. Brown
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Frank Natale
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Kay D. Bidle
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| |
Collapse
|
21
|
Abstract
The transforming growth factor beta (TGFβ) signaling pathway is important for normal cell homeostasis and has critical roles in apoptosis, cell-cycle arrest, and cellular differentiation (reviewed in Massague, 2008). In the classical TGFβ pathway, the endosomal trafficking of receptors has a direct outcome on signal transduction-receptors internalized via clathrin-mediated endocytosis enter the early endosome and propagate signaling, while those internalized via membrane rafts are targeted for degradation. Recently, there have been a number of articles that have identified TGFβ receptor-binding proteins that direct receptor endocytosis and/or intracellular trafficking and affect signal output (Atfi et al., 2007; Bauge, Girard, Leclercq, Galera, & Boumediene, 2012; Bizet et al., 2011, 2012; Chen et al., 2007; Gunaratne, Benchabane, & Di Guglielmo, 2012; Hao et al., 2011; McLean, Bhattacharya, & Di Guglielmo, 2013; Zhao et al., 2012). Given the importance of TGFβ receptor trafficking to signaling outcome, this chapter will focus on strategies to isolate membrane rafts and techniques to follow the trafficking of cell-surface TGFβ receptors and provide examples of functional readouts to assess TGFβ signal transduction.
Collapse
Affiliation(s)
- Sarah McLean
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
22
|
Zhang H, Liu Y, Xu J, Zhang F, Liang H, Du X, Zhang H. Membrane microdomain determines the specificity of receptor-mediated modulation of Kv7/M potassium currents. Neuroscience 2013; 254:70-9. [PMID: 24036375 DOI: 10.1016/j.neuroscience.2013.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
The Kv7/M current is one of the major mechanisms controlling neuronal excitability, which can be modulated by activation of the G protein-coupled receptor (GPCR) via distinct signaling pathways. Membrane microdomains known as lipid rafts have been implicated in the specificity of various cell signaling pathways. The aim of this study was to understand the role of lipid rafts in the specificity of Kv7/M current modulation by activation of GPCR. Methyl-β-cyclodextrin (MβCD), often used to disrupt the integrity of lipid rafts, significantly reduced the bradykinin receptor (B2R)-induced but not muscarinic receptor (M1R)-induced inhibition of the Kv7/M current. B2R and related signaling molecules but not M1R were found in caveolin-containing raft fractions of the rat superior cervical ganglia. Furthermore, activation of B2R resulted in translocation of additional B2R into the lipid rafts, which was not observed for the activation of M1R. The increase of B2R-induced intracellular Ca(2+) was also greatly reduced after MβCD treatment. Finally, B2R but not M1R was found to interact with the IP3 receptor. In conclusion, the present study implicates an important role for lipid rafts in mediating specificity for GPCR-mediated inhibition of the Kv7/M current.
Collapse
Affiliation(s)
- H Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM. Intestinal caveolin-1 is important for dietary fatty acid absorption. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1311-21. [PMID: 23665238 PMCID: PMC3751415 DOI: 10.1016/j.bbalip.2013.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/16/2022]
Abstract
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound (3)H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the (3)H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the (3)H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with (3)H-oleate or (3)H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed (3)H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Atur Sheth
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Feenalie Patel
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Matthew Barnes
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Charles M. Mansbach
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
- Veterans Affairs Medical Center, Memphis, TN 38104
| |
Collapse
|
24
|
Krishnan G, Chatterjee N. Detergent resistant membrane fractions are involved in calcium signaling in Müller glial cells of retina. Int J Biochem Cell Biol 2013; 45:1758-66. [PMID: 23732110 DOI: 10.1016/j.biocel.2013.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the plasma membrane into lipid microdomains promotes efficient cellular processes by increasing local molecular concentrations. Calcium signaling, either as transients or propagating waves require integration of complex macromolecular machinery. Calcium waves represent a form of intercellular signaling in the central nervous system and the retina. We hypothesized that the mechanism for calcium waves would require effector proteins to aggregate at the plasma membrane in lipid microdomains. The current study shows that in Müller glia of the retina, proteins involved in calcium signaling aggregate in detergent resistant membranes identifying rafts and respond by redistributing on stimulation. We have investigated Purinoreceptor-1 (P2Y1), Ryanodine receptor (RyR), and Phospholipase C (PLC-β1). P2Y1, RyR and PLC-β1, redistribute from caveolin-1 and flotillin-1 positive fractions on stimulation with the agonists, ATP, 2MeS-ATP and Thapsigargin, an inhibitor of sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA). Redistribution is absent on treatment with cyclopiazonic acid, another SERCA inhibitor. Disruption of rafts by removing cholesterol cause proteins involved in this machinery to redistribute and change agonist-induced calcium signaling. Cholesterol depletion from raft lead to increase in time to peak of calcium levels in agonist-evoked calcium signals in all instances, as seen by live imaging. This study emphasizes the necessity of a sub-population of proteins to cluster in specialized lipid domains. The requirement for such an organization at the raft-like microdomains may have implications on intercellular communication in the retina. Such concerted interaction at the rafts can regulate calcium dynamics and could add another layer of complexity to calcium signaling in cells.
Collapse
Affiliation(s)
- Gopinath Krishnan
- Department of L & T Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India
| | | |
Collapse
|
25
|
Fajardo VA, McMeekin L, Basic A, Lamb GD, Murphy RM, LeBlanc PJ. Isolation of sarcolemmal plasma membranes by mechanically skinning rat skeletal muscle fibers for phospholipid analysis. Lipids 2013; 48:421-30. [PMID: 23430510 DOI: 10.1007/s11745-013-3770-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Membrane phospholipid (PL) composition has been shown to affect cellular function by altering membrane physical structure. The sarcolemma plasma membrane (SLpm) is integral to skeletal muscle function and health. Previous studies assessing SLpm PL composition have demonstrated contamination from transverse (t)-tubule, sarcoplasmic reticulum, and nuclear membranes. This study assessed the possibility of isolating SL by mechanically skinning skeletal muscle fiber segments for the analysis of SLpm PL composition. Mechanically skinned SLpm from rat extensor digitorum longus (EDL) muscle fibers underwent Western blot analysis to assess contamination from t-tubule, sarcoplasmic reticulum, nuclear and mitochondrial membranes. The results indicate that isolated SLpm had minimal nuclear and mitochondrial membrane contamination and was void of contamination from sarcoplasmic reticulum and t-tubule membranes. After performing both high-performance thin layer chromatography and gas chromatography, we found that the SLpm obtained by mechanical skinning had higher sphingomyelin and total fatty acid saturation and lower phosphatidylcholine when compared to previous literature. Thus, by avoiding the use of various chemical treatments and membrane fractionation, we present data that may truly represent the SLpm and future studies can use this technique to assess potential changes under various perturbations and disease conditions such as insulin resistance and muscular dystrophy.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Faculty of Applied Health Sciences, Centre for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
27
|
Reis AH, Almeida-Coburn KL, Louza MP, Cerqueira DM, Aguiar DP, Silva-Cardoso L, Mendes FA, Andrade LR, Einicker-Lamas M, Atella GC, Brito JM, Abreu JG. Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. Dev Biol 2012; 365:350-62. [PMID: 22426006 DOI: 10.1016/j.ydbio.2012.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/29/2012] [Accepted: 03/04/2012] [Indexed: 02/05/2023]
Abstract
Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-β-cyclodextrin (MβCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MβCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MβCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.
Collapse
Affiliation(s)
- Alice H Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodríguez-Asiain A, Ruiz-Babot G, Romero W, Cubí R, Erazo T, Biondi RM, Bayascas JR, Aguilera J, Gómez N, Gil C, Claro E, Lizcano JM. Brain specific kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1124-35. [PMID: 22020259 DOI: 10.1016/j.bbalip.2011.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Brain specific kinases 1 and 2 (BRSK1/2, also named SAD kinases) are serine-threonine kinases specifically expressed in the brain, and activated by LKB1-mediated phosphorylation of a threonine residue at their T-loop (Thr189/174 in human BRSK1/2). BRSKs are crucial for establishing neuronal polarity, and BRSK1 has also been shown to regulate neurotransmitter release presynaptically. How BRSK1 exerts this latter function is unknown, since its substrates at the synaptic terminal and the mechanisms modulating its activity remain to be described. Key regulators of neurotransmitter release, such as SNARE complex proteins, are located at membrane rafts. Therefore we initially undertook this work to check whether BRSK1 also locates at these membrane microdomains. Here we show that brain BRSK1, but not BRSK2, is palmitoylated, and provide biochemical and pharmacological evidences demonstrating that a pool of BRSK1, but not BRSK2 or LKB1, localizes at membrane lipid rafts. We also show that raft-associated BRSK1 has higher activity than BRSK1 from non-raft environment, based on a higher T-loop phosphorylation at Thr-189. Further, recombinant BRSK1 activity increased 3-fold when assayed with small multilamellar vesicles (SMV) generated with lipids extracted from synaptosomal raft fractions. A similar BRSK1-activating effect was obtained with synthetic SMV made with phosphatidylcholine, cholesterol and sphingomyelin, mixed in the same molar ratio at which these three major lipids are present in rafts. Importantly, SMV also enhanced the activity of a constitutively active BRSK1 (T189E), underpinning that interaction with lipid rafts represents a new mechanism of BRSK1 activity modulation, additional to T-loop phosphorylation.
Collapse
Affiliation(s)
- Arantza Rodríguez-Asiain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Morris RJ, Jen A, Warley A. Isolation of nano-meso scale detergent resistant membrane that has properties expected of lipid ‘rafts’. J Neurochem 2011; 116:671-7. [DOI: 10.1111/j.1471-4159.2010.07076.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Kuszczak I, Samson SE, Pande J, Shen DQ, Grover AK. Sodium-calcium exchanger and lipid rafts in pig coronary artery smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:589-96. [PMID: 21130729 DOI: 10.1016/j.bbamem.2010.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/11/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Pig coronary artery smooth muscle expresses, among many other proteins, Na+-Ca²+-exchanger NCX1 and sarcoplasmic reticulum Ca²+ pump SERCA2. NCX1 has been proposed to play a role in refilling the sarcoplasmic reticulum Ca²+ pool suggesting a functional linkage between the two proteins. We hypothesized that this functional linkage may require close apposition of SERCA2 and NCX1 involving regions of plasma membrane like lipid rafts. Lipid rafts are specialized membrane microdomains that appear as platforms to co-localize proteins. To determine the distribution of NCX1, SERCA2 and lipid rafts, we isolated microsomes from the smooth muscle tissue, treated them with non-ionic detergent and obtained fractions of different densities by sucrose density gradient centrifugal flotation. We examined the distribution of NCX1; SERCA2; non-lipid raft plasma membrane marker transferrin receptor protein; lipid raft markers caveolin-1, flotillin-2, prion protein, GM1-gangliosides and cholesterol; and cytoskeletal markers clathrin, actin and myosin. Distribution of markers identified two subsets of lipid rafts that differ in their components. One subset is rich in caveolin-1 and flotillin-2 and the other in GM1-gangliosides, prion protein and cholesterol. NCX1 distribution correlated strongly with SERCA2, caveolin-1 and flotillin-2, less strongly with the other membrane markers and negatively with the cytoskeletal markers. These experiments were repeated with a non-detergent method of treating microsomes with sonication at high pH and similar results were obtained. These observations are consistent with the observed functional linkage between NCX1 and SERCA2 and suggest a role for NCX1 in supplying Ca²+ for refilling the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Iwona Kuszczak
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Williamson R, Thompson AJ, Abu M, Hye A, Usardi A, Lynham S, Anderton BH, Hanger DP. Isolation of detergent resistant microdomains from cultured neurons: detergent dependent alterations in protein composition. BMC Neurosci 2010; 11:120. [PMID: 20858284 PMCID: PMC2955047 DOI: 10.1186/1471-2202-11-120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022] Open
Abstract
Background Membrane rafts are small highly dynamic sterol- and sphingolipid-enriched membrane domains that have received considerable attention due to their role in diverse cellular functions. More recently the involvement of membrane rafts in neuronal processes has been highlighted since these specialized membrane domains have been shown to be involved in synapse formation, neuronal polarity and neurodegeneration. Detergent resistance followed by gradient centrifugation is often used as first step in screening putative membrane raft components. Traditional methods of raft isolation employed the nonionic detergent Triton X100. However successful separation of raft from non-raft domains in cells is dependent on matching the detergent used for raft isolation to the specific tissue under investigation. Results We report here the isolation of membrane rafts from primary neuronal culture using a panel of different detergents that gave rise to membrane fractions that differed in respect to cholesterol and protein content. In addition, proteomic profiling of neuronal membrane rafts isolated with different detergents, Triton X100 and CHAPSO, revealed heterogeneity in their protein content. Conclusions These data demonstrate that appropriate selection of detergent for raft isolation is an important consideration for investigating raft protein composition of cultured neurons.
Collapse
Affiliation(s)
- Ritchie Williamson
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Quinn PJ. A lipid matrix model of membrane raft structure. Prog Lipid Res 2010; 49:390-406. [PMID: 20478335 DOI: 10.1016/j.plipres.2010.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022]
Abstract
Domains in cell membranes are created by lipid-lipid interactions and are referred to as membrane rafts. Reliable isolation methods have been developed which have shown that rafts from the same membranes have different proteins and can be sub-fractionated by immunoaffinity methods. Analysis of these raft subfractions shows that they are also comprised of different molecular species of lipids. The major lipid classes present are phospholipids, glycosphingolipids and cholesterol. Model studies show that mixtures of phospholipids, particularly sphingomyelin, and cholesterol form liquid-ordered phase with properties intermediate between a gel and fluid phase. This type of liquid-ordered phase dominates theories of domain formation and raft structure in biological membranes. Recently it has been shown that sphingolipids with long (22-26C) N-acyl fatty acids form quasi-crystalline bilayer structures with diacylphospholipids that have well-defined stoichiometries. A two tier heuristic model of membrane raft structure is proposed in which liquid-ordered phase created by a molecular complex between sphingolipids with hydrocarbon chains of approximately equal length and cholesterol acts as a primary staging area for selecting raft proteins. Tailoring of the lipid anchors of raft proteins takes place at this site. Assembly of lipid-anchored proteins on a scaffold of sphingolipids with asymmetric hydrocarbon chains and phospholipids arranged in a quasi-crystalline bilayer structure serves to concentrate and orient the proteins in a manner that couples them functionally within the membrane. Specificity is inherent in the quasi-crystalline lipid structure of liquid-ordered matrices formed by both types of complex into which protein lipid anchors are interpolated. An interaction between the sugar residues of the glycolipids and the raft proteins provides an additional level of specificity that distinguishes one raft from another.
Collapse
Affiliation(s)
- Peter J Quinn
- Biochemistry Department, King's College London, 150 Stamford Street, London, UK.
| |
Collapse
|
34
|
Schengrund CL. Lipid rafts: Keys to neurodegeneration. Brain Res Bull 2010; 82:7-17. [DOI: 10.1016/j.brainresbull.2010.02.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 01/11/2023]
|
35
|
Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 2010; 140:517-28. [PMID: 20178744 DOI: 10.1016/j.cell.2010.01.009] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/06/2009] [Accepted: 01/04/2010] [Indexed: 12/19/2022]
Abstract
Despite its toxicity, H(2)O(2) is produced as a signaling molecule that oxidizes critical cysteine residues of effectors such as protein tyrosine phosphatases in response to activation of cell surface receptors. It has remained unclear, however, how H(2)O(2) concentrations above the threshold required to modify effectors are achieved in the presence of the abundant detoxification enzymes peroxiredoxin (Prx) I and II. We now show that PrxI associated with membranes is transiently phosphorylated on tyrosine-194 and thereby inactivated both in cells stimulated via growth factor or immune receptors in vitro and in those at the margin of healing cutaneous wounds in mice. The localized inactivation of PrxI allows for the transient accumulation of H(2)O(2) around membranes, where signaling components are concentrated, while preventing the toxic accumulation of H(2)O(2) elsewhere. In contrast, PrxII was inactivated not by phosphorylation but rather by hyperoxidation of its catalytic cysteine during sustained oxidative stress.
Collapse
|
36
|
Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon-sensitive virus release through lipid rafts. Proc Natl Acad Sci U S A 2009; 107:1190-5. [PMID: 20080538 DOI: 10.1073/pnas.0908660107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine leukemia viruses encode a unique form of Gag polyprotein, gPr80gag or glyco-gag. Translation of this protein is initiated from full-length viral mRNA at an upstream initiation site in the same reading frame as Pr65(gag), the precursor for internal structural (Gag) proteins. Whereas gPr80gag is evolutionarily conserved among gammaretroviruses, its mechanism of action has been unclear, although it facilitates virus production at a late assembly or release step. Here, it is shown that gPr80gag facilitates release of Moloney murine leukemia virus (M-MuLV) from cells along an IFN-sensitive pathway. In particular, gPr80gag-facilitated release occurs through lipid rafts, because gPr80gag-negative M-MuLV has a lower cholesterol content, is less sensitive to inhibition of release by the cholesterol-depleting agent MbetaCD, and there is less Pr65gag associated with detergent-resistant membranes in mutant-infected cells. gPr80gag can also facilitate the release of HIV-1-based vector particles from human 293T cells.
Collapse
|
37
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
38
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
39
|
Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1877-89. [DOI: 10.1016/j.bbamem.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/24/2009] [Accepted: 07/08/2009] [Indexed: 11/23/2022]
|
40
|
Down-regulating protein kinase C alpha: functional cooperation between the proteasome and the endocytic system. Cell Signal 2009; 21:1607-19. [PMID: 19586612 DOI: 10.1016/j.cellsig.2009.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/31/2009] [Accepted: 06/26/2009] [Indexed: 11/23/2022]
Abstract
Ubiquitination, proteasome, caveolae and endosomes have been implicated in controlling protein kinase C alpha (PKC alpha) down-regulation. However, the molecular mechanism remained obscure. Here we show that endosomes and proteasome cooperate in phorbol ester 12-O-tetradecanoyl phorbol acetate (TPA)-induced down-regulation of PKC alpha. We show that following TPA treatment and translocation to the plasma membrane, PKC alpha undergoes multimonoubiquitination prior to its degradation by the proteasome. However, to reach the proteasome, PKC alpha must travel through the endocytic system from early to late endosomes. This route requires functional endosomes, whereby endosomal alkalinization, or ablation, abrogates completely PKC alpha degradation maintaining the enzyme at the plasma membrane. This route also depends on synaptotagmin (Syt) II and the Rab7 GTPase, whereby Syt II knock-down or expression of the GDP-locked Rab7 inactive mutant prevents PKC alpha degradation. We further show that proteasome plays a dual role, where an active proteasome is required for deubiquitination of PKC alpha, a step crucial to prevent PKC alpha targeting to the endocytic recycling compartment. Finally, we show that the association with rafts-localized cell surface proteins that internalize in a clathrin-independent fashion is necessary to allow the trafficking of PKC alpha from the plasma membrane to the proteasome, its ultimate degradation station.
Collapse
|
41
|
Furber KL, Churchward MA, Rogasevskaia TP, Coorssen JR. Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann N Y Acad Sci 2009; 1152:121-34. [PMID: 19161383 DOI: 10.1111/j.1749-6632.2008.03993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ca(2+)-triggered membrane fusion is the defining step of exocytosis. Despite realization that the fusion machinery must include lipids and proteins working in concert, only of late has work in the field focused more equally on both these components. Here we use isolated sea urchin egg cortical vesicles (CV), a stage-specific preparation of Ca(2+)-sensitive release-ready vesicles that enables the tight coupling of molecular and functional analyses necessary to dissect molecular mechanisms. The stalk-pore hypothesis proposes that bilayer merger proceeds rapidly via transient, high-negative curvature, intermediate membrane structures. Consistent with this, cholesterol, a major component of the CV membrane, contributes to a critical local negative curvature that supports formation of lipidic fusion intermediates. Following cholesterol depletion, structurally dissimilar lipids having intrinsic negative curvature greater than or equal to cholesterol recover the ability of CV to fuse but do not recover fusion efficiency (Ca(2+) sensitivity and kinetics). Conversely, cholesterol- and sphingomyelin-enriched microdomains regulate the efficiency of the fusion mechanism, presumably by contributing spatial and functional organization of other critical lipids and proteins at the fusion site. Critical proteins are thought to participate in Ca(2+) sensing, initiating membrane deformations, and facilitating fusion pore expansion. Capitalizing on a novel effect of the thiol-reactive reagent iodoacetamide (IA), potentiation of the Ca(2+) sensitivity and kinetics, a fluorescently tagged IA has been used to enhance fusion efficiency and simultaneously label the proteins involved. Isolation of cholesterol-enriched CV membrane fractions, using density gradient centrifugation, is being used to narrow the list of protein candidates potentially critical to the mechanism of fast Ca(2+)-triggered membrane fusion.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Canada
| | | | | | | |
Collapse
|
42
|
Garnier-Lhomme M, Byrne RD, Hobday TMC, Gschmeissner S, Woscholski R, Poccia DL, Dufourc EJ, Larijani B. Nuclear envelope remnants: fluid membranes enriched in sterols and polyphosphoinositides. PLoS One 2009; 4:e4255. [PMID: 19165341 PMCID: PMC2626249 DOI: 10.1371/journal.pone.0004255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background The cytoplasm of eukaryotic cells is a highly dynamic compartment where membranes readily undergo fission and fusion to reorganize the cytoplasmic architecture, and to import, export and transport various cargos within the cell. The double membrane of the nuclear envelope that surrounds the nucleus, segregates the chromosomes from cytoplasm and regulates nucleocytoplasmic transport through pores. Many details of its formation are still unclear. At fertilization the sperm devoid of nuclear envelope pores enters the egg. Although most of the sperm nuclear envelope disassembles, remnants of the envelope at the acrosomal and centriolar fossae do not and are subsequently incorporated into the newly forming male pronuclear envelope. Remnants are conserved from annelid to mammalian sperm. Methodology/Principal Findings Using lipid mass spectrometry and a new application of deuterium solid-state NMR spectroscopy we have characterized the lipid composition and membrane dynamics of the sperm nuclear envelope remnants in isolated sperm nuclei. Conclusions/Significance We report nuclear envelope remnants are relatively fluid membranes rich in sterols, devoid of sphingomyelin, and highly enriched in polyphosphoinositides and polyunsaturated phospholipids. The localization of the polybasic effector domain of MARCKS illustrates the non-nuclear aspect of the polyphosphoinositides. Based on their atypical biophysical characteristics and phospholipid composition, we suggest a possible role for nuclear envelope remnants in membrane fusion leading to nuclear envelope assembly.
Collapse
Affiliation(s)
- Marie Garnier-Lhomme
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
- UMR 5248 CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France
| | - Richard D. Byrne
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Tina M. C. Hobday
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
| | - Stephen Gschmeissner
- Electron Microscopy Unit, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
| | - Rudiger Woscholski
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Dominic L. Poccia
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Erick J. Dufourc
- UMR 5248 CNRS-Université Bordeaux 1-ENITAB, IECB, Pessac, France
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Lincoln's Inn Fields Laboratories, Cancer Research UK, London, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Musse AA, Gao W, Rangaraj G, Boggs JM, Harauz G. Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neurosci Lett 2009; 450:32-6. [DOI: 10.1016/j.neulet.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
44
|
Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition. Biochem J 2008; 417:525-33. [DOI: 10.1042/bj20081385] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The failure of most non-ionic detergents to release patches of DRM (detergent-resistant membrane) at 37 °C undermines the claim that DRMs consist of lipid nanodomains that exist in an Lo (liquid ordered) phase on the living cell surface. In the present study, we have shown that inclusion of cations (Mg2+, K+) to mimic the intracellular environment stabilizes membranes during solubilization sufficiently to allow the isolation of DRMs at 37 °C, using either Triton X-100 or Brij 96. These DRMs are sensitive to chelation of cholesterol, maintain outside-out orientation of membrane glycoproteins, have prolonged (18 h) stability at 37 °C, and are vesicles or sheets up to 150–200 nm diameter. DRMs containing GPI (glycosylphosphatidylinositol)-anchored proteins PrP (prion protein) and Thy-1 can be separated by immunoaffinity isolation, in keeping with their separate organization and trafficking on the neuronal surface. Thy-1, but not PrP, DRMs are associated with actin. EM (electron microscopy) immunohistochemistry shows most PrP, and some Thy-1, to be clustered on DRMs, again maintaining their organization on the neuronal surface. For DRMs labelled for either protein, the bulk of the surface of the DRM is not labelled, indicating that the GPI-anchored protein is a minor component of its lipid domain. These 37 °C DRMs thus have properties expected of raft membrane, yet pose more questions about how proteins are organized within these nanodomains.
Collapse
|
45
|
Abulrob A, Lu Z, Brunette E, Pulla D, Stanimirovic D, Johnston LJ. Near-field scanning optical microscopy detects nanoscale glycolipid domains in the plasma membrane. J Microsc 2008; 232:225-34. [PMID: 19017221 DOI: 10.1111/j.1365-2818.2008.02093.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The localization of asialo-GM1 in ordered membrane raft domains in HeLa cells has been examined using a combination of membrane fractionation and fluorescence imaging. The glycolipid is enriched in Triton X-100 insoluble membrane fractions that contain high concentrations of cholesterol and caveolin-1 but is also found in detergent soluble membrane fractions. Near-field fluorescence microscopy shows that a fraction of the asialo-GM1 is localized in small nanoscale clusters that have an upper limit for the average diameter of approximately 90 nm and are partially colocalized with caveolae membrane domains. In addition to clusters, a diffuse, non-clustered population of asialo-GM1 is observed and is hypothesized to correspond to glycolipid isolated in detergent soluble membrane fractions.
Collapse
Affiliation(s)
- A Abulrob
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Chen X, Jayne Lawrence M, Barlow DJ, Morris RJ, Heenan RK, Quinn PJ. The structure of detergent-resistant membrane vesicles from rat brain cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:477-83. [PMID: 19118517 DOI: 10.1016/j.bbamem.2008.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/20/2008] [Accepted: 11/25/2008] [Indexed: 11/19/2022]
Abstract
The size and the bilayer thickness of detergent-resistant membranes isolated from rat brain neuronal membranes using Triton X-100 or Brij 96 in buffers with or without the cations, K+/Mg2+ at a temperature of either 4 degrees C or 37 degrees C were determined by dynamic light scattering and small-angle neutron scattering. Regardless of the precise conditions used, isolated membrane preparations consisted of vesicles of approximately 100 to 200 nm diameter as determined by dynamic light scattering methods, equating to an area of the lipid based membrane microdomain size of 200 to 400 nm diameter. By means of small angle neutron scattering it was established that the average thickness of the bilayers of the complete population of detergent-resistant membranes was similar to that of the parental membrane at between 4.6 and 5.0 nm. Detergent-resistant membranes prepared using buffers containing K+/Mg2+ uniquely formed unilamellar vesicles while membranes prepared in the absence of K+/Mg2+ formed a mixture of uni- and oligolamellar structures indicating that the arrangement of the membrane differs from that observed in the presence of cations. Furthermore, the detergent-resistant membranes prepared at 37 degrees C were slightly thicker than those prepared at 4 degrees C, consistent with the presence of a greater proportion of lipids with longer, more saturated fatty acid chains associated with the Lo (liquid-ordered) phase. It was concluded that the preparation of detergent-resistant membranes at 37 degrees C using buffer containing cations abundant in the cytoplasm might more accurately reflect the composition of lipid rafts present in the plasma membrane under physiological conditions.
Collapse
Affiliation(s)
- Xi Chen
- Pharmaceutical Science Division, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|
47
|
Persaud-Sawin DA, Lightcap S, Harry GJ. Isolation of rafts from mouse brain tissue by a detergent-free method. J Lipid Res 2008; 50:759-67. [PMID: 19060326 DOI: 10.1194/jlr.d800037-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane rafts are rich in cholesterol and sphingolipids and have specific proteins associated with them. Due to their small size, their identification and isolation have proved to be problematic. Their insolubility in nonionic detergents, such as Triton-X 100, at 4 degrees C has been the most common means of isolation. However, detergent presence can produce artifacts or interfere with ganglioside distribution. The direction is therefore toward the use of detergent-free protocols. We report an optimized method of raft isolation from lipid-rich brain tissue using a detergent-free method. We compared this to Triton-X 100-based isolation along sucrose or Optiprep gradients using the following endpoints: low protein content, high cholesterol content, presence of Flotillin 1 (Flot1), and absence of transferrin receptor (TfR) proteins. These criteria were met in raft fractions isolated in a detergent-free buffer along a sucrose gradient of 5%/35%/42.5%. The use of optiprep gave less consistent results with respect to protein distribution. We demonstrate that clean raft fractions with minimal myelin contamination can be reproducibly obtained in the top three low-density fractions along a sucrose step gradient.
Collapse
Affiliation(s)
- Dixie-Ann Persaud-Sawin
- Laboratory of Molecular Toxicology/Neurotoxicology Group, National Institute of Environmental Health Sciences, RTP, NC 27709, USA.
| | | | | |
Collapse
|
48
|
Delint-Ramírez I, Salcedo-Tello P, Bermudez-Rattoni F. Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem 2008; 106:1658-68. [DOI: 10.1111/j.1471-4159.2008.05523.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Girouard J, Frenette G, Sullivan R. Seminal Plasma Proteins Regulate the Association of Lipids and Proteins Within Detergent-Resistant Membrane Domains of Bovine Spermatozoa1. Biol Reprod 2008; 78:921-31. [DOI: 10.1095/biolreprod.107.066514] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
50
|
de Diesbach P, Medts T, Carpentier S, D'Auria L, Van Der Smissen P, Platek A, Mettlen M, Caplanusi A, van den Hove MF, Tyteca D, Courtoy PJ. Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res 2008; 314:1465-79. [DOI: 10.1016/j.yexcr.2008.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
|