1
|
Gabarin A, Yarmolinsky L, Budovsky A, Khalfin B, Ben-Shabat S. Cannabis as a Source of Approved Drugs: A New Look at an Old Problem. Molecules 2023; 28:7686. [PMID: 38067416 PMCID: PMC10707504 DOI: 10.3390/molecules28237686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabis plants have been used in medicine since ancient times. They are well known for their anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, anti-oxidative, anti-microbial, anti-viral, and anti-fungal activities. A growing body of evidence indicates that targeting the endocannabinoid system and various other receptors with cannabinoid compounds holds great promise for addressing multiple medical conditions. There are two distinct avenues in the development of cannabinoid-based drugs. The first involves creating treatments directly based on the components of the cannabis plant. The second involves a singular molecule strategy, in which specific phytocannabinoids or newly discovered cannabinoids with therapeutic promise are pinpointed and synthesized for future pharmaceutical development and validation. Although the therapeutic potential of cannabis is enormous, few cannabis-related approved drugs exist, and this avenue warrants further investigation. With this in mind, we review here the medicinal properties of cannabis, its phytochemicals, approved drugs of natural and synthetic origin, pitfalls on the way to the widespread clinical use of cannabis, and additional applications of cannabis-related products.
Collapse
Affiliation(s)
- Adi Gabarin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Ludmila Yarmolinsky
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Arie Budovsky
- Research and Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Boris Khalfin
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- The Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; (A.G.); (L.Y.); (B.K.)
| |
Collapse
|
2
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
3
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
4
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
5
|
Gargano A, Beins E, Zimmer A, Bilkei-Gorzo A. Lack of Cannabinoid Receptor Type-1 Leads to Enhanced Age-Related Neuronal Loss in the Locus Coeruleus. Int J Mol Sci 2020; 22:ijms22010005. [PMID: 33374940 PMCID: PMC7792602 DOI: 10.3390/ijms22010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
Our laboratory and others have previously shown that cannabinoid receptor type-1 (CB1r) activity is neuroprotective and a modulator of brain ageing; a genetic disruption of CB1r signaling accelerates brain ageing, whereas the pharmacological stimulation of CB1r activity had the opposite effect. In this study, we have investigated if the lack of CB1r affects noradrenergic neurons in the locus coeruleus (LC), which are vulnerable to age-related changes; their numbers are reduced in patients with neurodegenerative diseases and probably also in healthy aged individuals. Thus, we compared LC neuronal numbers between cannabinoid 1 receptor knockout (Cnr1−/−) mice and their wild-type littermates. Our results reveal that old Cnr1−/− mice have less noradrenergic neurons compared to their age-matched wild-type controls. This result was also confirmed by the analysis of the density of noradrenergic terminals which proved that Cnr1−/− mice had less compared to the wild-type controls. Additionally, we assessed pro-inflammatory glial activity in the LC. Although the density of microglia in Cnr1−/− mice was enhanced, they did not show enhanced inflammatory profile. We hypothesize that CB1r activity is necessary for the protection of noradrenergic neurons, but its anti-inflammatory effect probably only plays a minor role in it.
Collapse
Affiliation(s)
- Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
6
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
7
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
8
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
9
|
Tarragon E, Moreno JJ. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders. Chem Senses 2019; 43:3-16. [PMID: 29293950 DOI: 10.1093/chemse/bjx062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Germany
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| |
Collapse
|
10
|
Drori A, Permyakova A, Hadar R, Udi S, Nemirovski A, Tam J. Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes Metab 2019; 21:146-159. [PMID: 30091204 PMCID: PMC6586028 DOI: 10.1111/dom.13497] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the specific role of the endocannabinoid/cannabinoid type-1 (CB1 R) system in modulating mitochondrial dynamics in the metabolically active renal proximal tubular cells (RPTCs). MATERIALS AND METHODS We utilized mitochondrially-targeted GFP in live cells (wild-type and null for the CB1 R) and electron microscopy in kidney sections of RPTC-CB1 R-/- mice and their littermate controls. In both in vitro and in vivo conditions, we assessed the ability of CB1 R agonism or fatty acid flux to modulate mitochondrial architecture and function. RESULTS Direct stimulation of CB1 R resulted in mitochondrial fragmentation in RPTCs. This process was mediated, at least in part, by modulating the phosphorylation levels of the canonical fission protein dynamin-related protein 1 on both S637 and S616 residues. CB1 R-induced mitochondrial fission was associated with mitochondrial dysfunction, as documented by reduced oxygen consumption and ATP production, increased reactive oxygen species and cellular lactate levels, as well as a decline in mitochondrial biogenesis. Likewise, we documented that exposure of RPTCs to a fatty acid flux induced CB1 R-dependent mitochondrial fission, lipotoxicity and cellular dysfunction. CONCLUSIONS CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
11
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
12
|
MAPK activation patterns of AT1R and CB1R in SHR versus Wistar astrocytes: Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R. Cell Signal 2017; 40:81-90. [PMID: 28887229 DOI: 10.1016/j.cellsig.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin (Ang) II and cannabinoids regulate physiologically relevant astroglial functions via receptor-mediated activation of Mitogen-activated protein kinases (MAPKs). In this study, we investigated the consequences of astroglial Ang II type 1 receptor (AT1R) and Cannabinoid type 1 receptor (CB1R) activation, alone and in combination, on MAPK activation in the presence and absence of hypertensive states. In addition, we also investigated a novel unidirectional crosstalk mechanism between AT1R and CB1R, that involves PKC-mediated phosphorylation of CB1R. METHODS Astrocytes were isolated from the brainstem and cerebellum of Spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The cells were treated with either 100nM Ang II or 10nM Arachidonyl-2'-chloroethylamide (ACEA), both alone and in combination, for varying time periods, and the extent of phosphorylation of MAPKs, ERK and p38, and the phosphorylated forms of CB1R (p-CB1R), were measured using western blotting. RESULTS Ang II treatment resulted in a greater activation of MAPKs in SHR brainstem astrocytes, but not SHR cerebellar astrocytes when compared to Wistar rats. ACEA-mediated MAPK activation was significantly lower in brainstem astrocytes of SHRs when compared to Wistar rats. ACEA negatively modulates AT1R-mediated MAPK activation in both cerebellar and brainstem astrocytes of both models. The effect however was diminished in brainstem astrocytes. Ang II caused a significant increase in phosphorylation of CB1R in cerebellar astrocytes, while its effect was diminished in brainstem astrocytes of both models. CONCLUSION Both Ang II and ACEA-induced MAPK activation were significantly altered in SHR astrocytes when compared to Wistar astrocytes. A possible reduction in CB1R functionality, coupled with a hyperfunctional AT1R in the brainstem, could well be significant factors in the development of hypertensive states. AT1R-mediated phosphorylation of CB1R could be critical for impaired cerebellar development characterized by a hyperactive RAS.
Collapse
|
13
|
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. Int J Mol Sci 2017; 18:ijms18081669. [PMID: 28788104 PMCID: PMC5578059 DOI: 10.3390/ijms18081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.
Collapse
|
14
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
15
|
Lipina C, Hundal HS. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol 2016; 6:150276. [PMID: 27248801 PMCID: PMC4852457 DOI: 10.1098/rsob.150276] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
16
|
Airhart S, Cade WT, Jiang H, Coggan AR, Racette SB, Korenblat K, Spearie CA, Waller S, O'Connor R, Bashir A, Ory DS, Schaffer JE, Novak E, Farmer M, Waggoner AD, Dávila-Román VG, Javidan-Nejad C, Peterson LR. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. J Clin Endocrinol Metab 2016; 101:504-12. [PMID: 26652763 PMCID: PMC4880128 DOI: 10.1210/jc.2015-3292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart. OBJECTIVE Our objective was to test the effects of an MCFA-rich diet vs an LCFA-rich diet on plasma lipids, cardiac steatosis, and function in patients with type 2 diabetes. DESIGN This was a double-blind, randomized, 2-week matched-feeding study. SETTING The study included ambulatory patients in the general community. PATIENTS Sixteen patients, ages 37-65 years, with type 2 diabetes, an ejection fraction greater than 45%, and no other systemic disease were included. INTERVENTION Fourteen days of a diet rich in MCFAs or LCFAs, containing 38% as fat in total, was undertaken. MAIN OUTCOME MEASURES Cardiac steatosis and function were the main outcome measures, with lipidomic changes considered a secondary outcome. RESULTS The relatively load-independent measure of cardiac contractility, S', improved in the MCFA group (P < .05). Weight-adjusted stroke volume and cardiac output decreased in the LCFA group (both P < .05). The MCFA, but not the LCFA, diet decreased several plasma sphingolipids, ceramide, and acylcarnitines implicated in diabetic cardiomyopathy, and changes in several sphingolipids correlated with improved fasting insulins. CONCLUSIONS Although a diet high in MCFAs does not change cardiac steatosis, our findings suggest that the MCFA-rich diet alters the plasma lipidome and may benefit or at least not harm cardiac function and fasting insulin levels in humans with type 2 diabetes. Larger, long-term studies are needed to further evaluate these effects in less-controlled settings.
Collapse
Affiliation(s)
- Sophia Airhart
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - W Todd Cade
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hui Jiang
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew R Coggan
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Susan B Racette
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Korenblat
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine Anderson Spearie
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne Waller
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Robert O'Connor
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Adil Bashir
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel S Ory
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jean E Schaffer
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Novak
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Marsha Farmer
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alan D Waggoner
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Víctor G Dávila-Román
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Cylen Javidan-Nejad
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Department of Medicine (S.A.), Program in Physical Therapy (W.T.C., S.B.R.), Diabetic Cardiovascular Disease Center (H.J., D.S.O., J.E.S., M.F.), Mallinckrodt Institute of Radiology (A.R.C., R.O'C., A.B., C.J.-N.), Gastroenterology Division (K.K., C.A.S., S.W.), Lifestyle Intervention Research Core, Cardiology Division (A.D.W., V.G.D.-R., L.R.P.), Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Paniagua-Torija B, Arevalo-Martin A, Ferrer I, Molina-Holgado E, Garcia-Ovejero D. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord. Sci Rep 2015; 5:17745. [PMID: 26634814 PMCID: PMC4669459 DOI: 10.1038/srep17745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.
Collapse
Affiliation(s)
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
18
|
Manuel I, Barreda-Gómez G, González de San Román E, Veloso A, Fernández JA, Giralt MT, Rodríguez-Puertas R. Neurotransmitter receptor localization: from autoradiography to imaging mass spectrometry. ACS Chem Neurosci 2015; 6:362-73. [PMID: 25648777 DOI: 10.1021/cn500281t] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autoradiography is used to determine the anatomical distribution of biological molecules in human tissue and experimental animal models. This method is based on the analysis of the specific binding of radiolabeled compounds to locate neurotransmitter receptors or transporters in fresh frozen tissue slices. The anatomical resolution obtained by quantification of the radioligands has allowed the density of receptor proteins to be mapped over the last 40 years. The data yielded by autoradiography identify the receptors at their specific microscopic localization in the tissues and also in their native microenvironment, the intact cell membrane. Furthermore, in functional autoradiography, the effects of small molecules on the activity of G protein-coupled receptors are evaluated. More recently, autoradiography has been combined with membrane microarrays to improve the high-throughput screening of compounds. These technical advances have made autoradiography an essential analytical method for the progress of drug discovery. We include the future prospects and some preliminary results for imaging mass spectrometry (IMS) as a useful new method in pharmacodynamic and pharmacokinetic studies, complementing autoradiographic studies. IMS results could also be presented as density maps of molecules, proteins, and metabolites in tissue sections that can be identified, localized, and quantified, with the advantage of avoiding any labeling of marker molecules. The limitations and future developments of these techniques are discussed here.
Collapse
Affiliation(s)
| | - Gabriel Barreda-Gómez
- IMG Pharma Biotech S.L. Parque Tecnológico de Zamudio, Astondo Bidea, ed. Kabi 612, Módulo
5, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Parolaro D, Massi P. Cannabinoids as potential new therapy for the treatment of gliomas. Expert Rev Neurother 2014; 8:37-49. [DOI: 10.1586/14737175.8.1.37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
21
|
Shen WJ, Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ayakannu T, Taylor AH, Marczylo TH, Willets JM, Konje JC. The endocannabinoid system and sex steroid hormone-dependent cancers. Int J Endocrinol 2013; 2013:259676. [PMID: 24369462 PMCID: PMC3863507 DOI: 10.1155/2013/259676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
The "endocannabinoid system (ECS)" comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2), some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
- *Anthony H. Taylor:
| | - Timothy H. Marczylo
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Jonathon M. Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| |
Collapse
|
23
|
Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O. The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 2012; 163:1391-401. [PMID: 21323910 DOI: 10.1111/j.1476-5381.2011.01280.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Extensive in vitro and in vivo studies have shown that cannabinoid drugs have neuroprotective properties and suggested that the endocannabinoid system may be involved in endogenous neuroprotective mechanisms. On the other hand, neurotoxic effects of cannabinoids in vitro and in vivo were also described. Several possible explanations for these dual, opposite effects of cannabinoids on cellular fate were suggested, and it is conceivable that various factors may determine the final outcome of the cannabinoid effect in vivo. In the current review, we focus on one of the possible reasons for the dual neuroprotective/neurotoxic effects of cannabinoids in vivo, namely, the opposite effects of low versus high doses of cannabinoids. While many studies reported neuroprotective effects of the conventional doses of cannabinoids in various experimental models for acute brain injuries, we have shown that a single administration of an extremely low dose of Δ(9) -tetrahydrocannabinol (THC) (3-4 orders of magnitude lower than the conventional doses) to mice induced long-lasting mild cognitive deficits that affected various aspects of memory and learning. These findings led to the idea that this low dose of THC, which induces minor damage to the brain, may activate preconditioning and/or postconditioning mechanisms and thus will protect the brain from more severe insults. Indeed, our recent findings support this assumption and show that a pre- or a postconditioning treatment with extremely low doses of THC, several days before or after brain injury, provides effective long-term cognitive neuroprotection. The future therapeutical potential of these findings is discussed.
Collapse
Affiliation(s)
- Yosef Sarne
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
24
|
Casas A, Di Venosa G, Hasan T, Al Batlle. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011; 18:2486-515. [PMID: 21568910 PMCID: PMC3780570 DOI: 10.2174/092986711795843272] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
Collapse
Affiliation(s)
- A Casas
- Centro de Invesigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clinicas José de San Martin, University of Buenos Aires Córdoba 2351 ler subsuelo, Argentina.
| | | | | | | |
Collapse
|
25
|
Froger N, Orellana JA, Cohen-Salmon M, Ezan P, Amigou E, Sáez JC, Giaume C. Cannabinoids prevent the opposite regulation of astroglial connexin43 hemichannels and gap junction channels induced by pro-inflammatory treatments. J Neurochem 2010; 111:1383-97. [PMID: 20050288 DOI: 10.1111/j.1471-4159.2009.06407.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain injuries as well as neurodegenerative diseases, are associated with neuro-inflammation characterized by astroglial and microglial activation and/or proliferation. Recently, we reported that lipopolysaccharide (LPS)-activation of microglia inhibits junctional channels and promotes hemichannels, two connexin43 functions in astrocytes. This opposite regulation is mediated by two pro-inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, released from activated microglia. Because cannabinoids (CBs) have anti-inflammatory properties and their receptors are expressed by glial cells, we investigated on primary cortical cultures the effects of CB agonists, methanandamide and synthetic CBs on (i) cytokines released from LPS-activated microglia and (ii) connexin43 functions in astrocytes subjected to pro-inflammatory treatments. We observed that CBs inhibited the LPS-induced release of interleukin-1 beta and tumor necrosis factor-alpha from microglia. Moreover, the connexin43 dual regulation evoked by the pro-inflammatory treatments, was prevented by CB treatments. Pharmacological characterizations of CB actions on astrocytic connexin43 channels revealed that these effects were mainly mediated through CB1 receptors activation, although non-CB1/CB2 receptors seemed to mediate the action of the methanandamide. Altogether these data demonstrate that in inflammatory situations CBs exert, through the activation of different sub-types of glial CB receptors, a regulation on two functions of connexin43 channels in astrocytes known to be involved in neuron survival.
Collapse
Affiliation(s)
- Nicolas Froger
- Institut National de la Santé et de la Recherche Médicale, U840, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Oesch S, Gertsch J. Cannabinoid receptor ligands as potential anticancer agents — high hopes for new therapies? J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent years, CB receptor ligands, including Δ9-tetrahydrocannabinol, have been proposed as potential anticancer agents.
Key findings
This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB1 and CB2 receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels.
Summary
The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB2-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Collapse
Affiliation(s)
- Susanne Oesch
- University Children's Hospital Divisions of Clinical Chemistry and Oncology, University of Zürich, Switzerland
| | - Jürg Gertsch
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| |
Collapse
|
27
|
Pérez-Rial S, García-Gutiérrez MS, Molina JA, Pérez-Nievas BG, Ledent C, Leiva C, Leza JC, Manzanares J. Increased vulnerability to 6-hydroxydopamine lesion and reduced development of dyskinesias in mice lacking CB1 cannabinoid receptors. Neurobiol Aging 2009; 32:631-45. [PMID: 19419794 DOI: 10.1016/j.neurobiolaging.2009.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 03/10/2009] [Accepted: 03/27/2009] [Indexed: 01/04/2023]
Abstract
Motor impairment, dopamine (DA) neuronal activity and proenkephalin (PENK) gene expression in the caudate-putamen (CPu) were measured in 6-OHDA-lesioned and treated (L-DOPA+benserazide) CB1 KO and WT mice. A lesion induced by 6-OHDA produced more severe motor deterioration in CB1 KO mice accompanied by more loss of DA neurons and increased PENK gene expression in the CPu. Oxidative/nitrosative and neuroinflammatory parameters were estimated in the CPu and cingulate cortex (Cg). CB1 KO mice exhibited higher MDA levels and iNOS protein expression in the CPu and Cg compared to WT mice. Treatment with L-DOPA+benserazide (12 weeks) resulted in less severe dyskinesias in CB1 KO than in WT mice. The results revealed that the lack of cannabinoid CB1 receptors increased the severity of motor impairment and DA lesion, and reduced L-DOPA-induced dyskinesias. These results suggest that activation of CB1 receptors offers neuroprotection against dopaminergic lesion and the development of L-DOPA-induced dyskinesias.
Collapse
Affiliation(s)
- Sandra Pérez-Rial
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Apartado de correos 18, 03550 San Juan de Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 2009; 33:57-71. [DOI: 10.1016/j.nbd.2008.09.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/03/2008] [Accepted: 09/09/2008] [Indexed: 01/22/2023] Open
|
29
|
Suppression of sphingomyelin synthase 1 by small interference RNA is associated with enhanced ceramide production and apoptosis after photodamage. Exp Cell Res 2008; 314:1860-8. [PMID: 18374917 DOI: 10.1016/j.yexcr.2008.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 02/07/2023]
Abstract
We have shown that overexpression of SMS1, an enzyme that converts de novo ceramide into sphingomyelin, is accompanied by attenuated ceramide response and apoptotic resistance after photodamage with the photosensitizer Pc 4 (photodynamic therapy; PDT). To test whether SMS1 overexpression-related effects after PDT can be reversed, in this study SMS1 was downregulated in Jurkat T lymphoma/leukemia cells using small inhibitory RNA (siRNA) for SMS1. Compared to scrambled (control) siRNA-transfectants, in SMS1 siRNA-transfected cells the activity of SMS at rest was downregulated with concomitant decrease in sphingomyelin mass. In SMS1 siRNA-transfected cells increases in ceramides were higher than in control siRNA-transfectants after PDT. Similar findings were obtained for dihydroceramides suggesting the involvement of de novo ceramide pathway. PDT-induced DEVDase (caspase-3-like) activation was enhanced in SMS1 siRNA-transfected cells compared to their control counterparts. The data show that RNA interference-dependent downregulation of SMS1 is associated with increased accumulation of ceramide and dihydroceramide with concomitant sensitization of cells to apoptosis after photodamage. Similarly, in SMS2 siRNA-transfected cells, downregulation of SMS activity was accompanied by potentiated DEVDase activation post-photodamage. These findings suggest that SMS is a potential novel molecular target that can augment therapeutic efficacy of PDT.
Collapse
|
30
|
The endocannabinoid system in cancer-potential therapeutic target? Semin Cancer Biol 2007; 18:176-89. [PMID: 18249558 DOI: 10.1016/j.semcancer.2007.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/05/2007] [Indexed: 01/13/2023]
Abstract
Endogenous arachidonic acid metabolites with properties similar to compounds of Cannabis sativa Linnaeus, the so-called endocannabinoids, have effects on various types of cancer. Although endocannabinoids and synthetic cannabinoids may have pro-proliferative effects, predominantly inhibitory effects on tumor growth, angiogenesis, migration and metastasis have been described. Remarkably, these effects may be selective for the cancer cells, while normal cells and tissues are spared. Such apparent tumor cell selectivity makes the endocannabinoid system an attractive potential target for cancer therapy. In this review we discuss various means by which the endocannabinoid system may be targeted in cancer and the current knowledge considering the regulation of the endocannabinoid system in malignancy.
Collapse
|
31
|
Bari M, Oddi S, De Simone C, Spagnolo P, Gasperi V, Battista N, Centonze D, Maccarrone M. Type-1 cannabinoid receptors colocalize with caveolin-1 in neuronal cells. Neuropharmacology 2007; 54:45-50. [PMID: 17714745 PMCID: PMC2706320 DOI: 10.1016/j.neuropharm.2007.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 11/22/2022]
Abstract
Type-1 (CB1) and type-2 (CB2) cannabinoid receptors belong to the rhodopsin family of G protein-coupled receptors, and are activated by endogenous lipids termed “endocannabinoids”. Recent reports have demonstrated that CB1R, unlike CB2R and other receptors and metabolic enzymes of endocannabinoids, functions in the context of lipid rafts, i.e. plasma membrane microdomains which may be important in modulating signal transduction. Here, we present novel data based on cell subfractionation, immunoprecipitation and confocal microscopy studies, that show that in C6 cells CB1R co-localizes almost entirely with caveolin-1. We also show that trafficking of CB1R in response to the raft disruptor methyl-β-cyclodextrin (MCD) is superimposable on that of caveolin-1, and that MCD treatment increases the accessibility of CB1R to its specific antibodies. These findings may be relevant for the manifold CB1R-dependent activities of endocannabinoids, like the regulation of apoptosis and of neurodegenerative diseases.
Collapse
Affiliation(s)
- Monica Bari
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research (CERC)/IRCCS, S. Lucia Foundation, 00196 Rome, Italy
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | - Chiara De Simone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- European Center for Brain Research (CERC)/IRCCS, S. Lucia Foundation, 00196 Rome, Italy
| | - Paola Spagnolo
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Valeria Gasperi
- European Center for Brain Research (CERC)/IRCCS, S. Lucia Foundation, 00196 Rome, Italy
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | - Diego Centonze
- European Center for Brain Research (CERC)/IRCCS, S. Lucia Foundation, 00196 Rome, Italy
- Neurologic Clinics, Department of Neurosciences, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/IRCCS, S. Lucia Foundation, 00196 Rome, Italy
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
- Corresponding author. Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, 64100 Teramo, Italy. Tel.: +39 0861 266875; fax: +39 0861 266877.
| |
Collapse
|
32
|
|
33
|
Greenhough A, Patsos HA, Williams AC, Paraskeva C. The cannabinoid δ9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer 2007; 121:2172-80. [PMID: 17583570 DOI: 10.1002/ijc.22917] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deregulation of cell survival pathways and resistance to apoptosis are widely accepted to be fundamental aspects of tumorigenesis. As in many tumours, the aberrant growth and survival of colorectal tumour cells is dependent upon a small number of highly activated signalling pathways, the inhibition of which elicits potent growth inhibitory or apoptotic responses in tumour cells. Accordingly, there is considerable interest in therapeutics that can modulate survival signalling pathways and target cancer cells for death. There is emerging evidence that cannabinoids, especially Delta(9)-tetrahydrocannabinol (THC), may represent novel anticancer agents, due to their ability to regulate signalling pathways critical for cell growth and survival. Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells. THC-induced apoptosis was rescued by pharmacological blockade of the CB1, but not CB2, cannabinoid receptor. Importantly, THC treatment resulted in CB1-mediated inhibition of both RAS-MAPK/ERK and PI3K-AKT survival signalling cascades; two key cell survival pathways frequently deregulated in colorectal tumours. The inhibition of ERK and AKT activity by THC was accompanied by activation of the proapoptotic BCL-2 family member BAD. Reduction of BAD protein expression by RNA interference rescued colorectal cancer cells from THC-induced apoptosis. These data suggest an important role for CB1 receptors and BAD in the regulation of apoptosis in colorectal cancer cells. The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Survival/drug effects
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Dronabinol/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Protein Kinases/metabolism
- RNA Interference
- RNA, Messenger/genetics
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- bcl-Associated Death Protein/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Alexander Greenhough
- Department of Cellular and Molecular Medicine, Cancer Research UK, Colorectal Tumour Biology Group, School of Medical Sciences, University of Bristol, University Walk, Bristol, United Kingdom
| | | | | | | |
Collapse
|
34
|
Bifulco M, Laezza C, Pisanti S, Gazzerro P. Cannabinoids and cancer: pros and cons of an antitumour strategy. Br J Pharmacol 2006; 148:123-35. [PMID: 16501583 PMCID: PMC1617062 DOI: 10.1038/sj.bjp.0706632] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called 'endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiproliferative actions of cannabinoid agonists on several tumour cells in vitro and in animal models. In this article, we will review the principal molecular pathways modulated by cannabinoids on cancer and summarize pros and cons evidence on the possible future use of endocannabinoid-based drugs in cancer therapy.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, Fisciano 84084, Salerno, Italy.
| | | | | | | |
Collapse
|
35
|
Lee SY, Son DJ, Lee YK, Lee JW, Lee HJ, Yun YW, Ha TY, Hong JT. Inhibitory effect of sesaminol glucosides on lipopolysaccharide-induced NF-κB activation and target gene expression in cultured rat astrocytes. Neurosci Res 2006; 56:204-12. [PMID: 16842873 DOI: 10.1016/j.neures.2006.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Accepted: 04/12/2006] [Indexed: 11/24/2022]
Abstract
The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorder including Alzheimer's disease (AD). Sesame lignan compounds such as sesaminol glucosides (SG) exhibit a range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of SG on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in cultured astrocytes. SG (10-100 microg/ml) inhibited LPS-induced generation of nitric oxide (NO) and reactive oxygen species (ROS), as well as inhibited LPS-induced cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression dose-dependently. This inhibitory effect of SG on NO and ROS generation was enforced by addition of glutathione (GSH) in culture. In addition, SG prevented LPS-induced DNA binding and transcriptional activity of nuclear factor KappaB (NF)-kappaB. Consistent with the inhibitory effect on NF-kappaB activity, SG inhibits phosphorylation and degradation of inhibitory KappaB (IkappaB), thereby translocation of p50 of NF-kappaB. These data show that SG has an anti-inflammatory effect through inhibition of NF-kappaB, and may be a useful agent for prevention of inflammatory disease like AD.
Collapse
Affiliation(s)
- Sun Young Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Howlett AC, Mukhopadhyay S, Norford DC. Endocannabinoids and reactive nitrogen and oxygen species in neuropathologies. J Neuroimmune Pharmacol 2006; 1:305-16. [PMID: 18040807 DOI: 10.1007/s11481-006-9022-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/16/2006] [Indexed: 01/25/2023]
Abstract
Neuropathologies that affect our population include ischemic stroke and neurodegenerative diseases of immune origin, including multiple sclerosis. The endocannabinoid system in the brain, including agonists anandamide (arachidonyl ethanolamide) and 2-arachidonoylglycerol, and the CB1 and CB2 cannabinoid receptors, has been implicated in the pathophysiology of these disease states, and can be a target for therapeutic interventions. This review concentrates on cellular signal transduction pathways believed to be involved in the cellular damage.
Collapse
Affiliation(s)
- Allyn C Howlett
- Neuroscience of Drug Abuse Research Program, 208 Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| | | | | |
Collapse
|
37
|
Calatayud CA, Pasquini LA, Pasquini JM, Soto EF. Involvement of the ubiquitin-mediated proteolytic system in the signaling pathway induced by ceramide in primary astrocyte cultures. Dev Neurosci 2006; 27:397-407. [PMID: 16280636 DOI: 10.1159/000088454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/03/2005] [Indexed: 02/04/2023] Open
Abstract
The selective degradation of abnormal or short half-life proteins in eukaryotic cells proceeds through the ubiquitin-mediated proteolytic system (UbPS). The signals that tag the proteins for their ubiquitination are well known. In the present study, our aim was to investigate the relationship between the action of ceramide and the changes in the expression of certain mRNAs of the Ub pathway and in the activation of the UbPS in cultured astrocytes (ASTs). Changes in the expression of components that are known to be substrates of the UbPS and that participate in the regulation of the cell death process were also studied. Addition of different concentrations of C2 ceramide to cultured ASTs produced an increase in the expression of the Ub gene and in the gene that encodes E1, one of the enzymes involved in the ubiquitination process, without any changes on cell viability. Immunocytochemical studies showed an increase in the expression of Bcl-2 with no changes in cytochrome c. Also, there was an increase in the nuclear reactivity of NFkappaB, suggesting a translocation of this factor towards the nucleus. Western blots showed a decrease in IkappaB and its phosphorylated form as well as an increase in Bcl-2 with no changes in cytochrome c. All of these compounds appear to be acting as possible modulators of AST responses to C2 ceramide. Our results suggest that in AST primary cultures, C2 ceramide, at the concentrations used in this study, does not produce apoptosis. However, it induces an activation of the UbPS, probably as a consequence of an activation of phosphatases and kinases, or through the generation of reactive oxygen species, which act as triggering signals of the UbPS. The fundamental role of NFkappaB and Bcl-2 as antiapoptotic factors is discussed.
Collapse
Affiliation(s)
- C A Calatayud
- Departamento de Química Biológica and Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
38
|
Carracedo A, Egia A, Guzmán M, Velasco G. p8 Upregulation sensitizes astrocytes to oxidative stress. FEBS Lett 2006; 580:1571-5. [PMID: 16480983 DOI: 10.1016/j.febslet.2006.01.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/13/2006] [Accepted: 01/26/2006] [Indexed: 01/12/2023]
Abstract
Here we studied the mechanism of cell sensitization to oxidative stress by analyzing the gene expression profile of serum-deprived astrocytes. Exposure to serum-free medium (i) sensitized astrocytes to oxidative stress, (ii) reduced the expression of several genes involved in protection against oxidative stress, including heme oxygenase 1, and (iii) changed the expression of several genes involved in the control of cell survival, including the stress-regulated protein p8. Our results support that serum deprivation sensitizes astrocytes to oxidative stress via a p38 mitogen-activated protein kinase-dependent p8 upregulation that leads in turn to decreased heme oxygenase 1 expression.
Collapse
Affiliation(s)
- Arkaitz Carracedo
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, c/José Antonio Novais s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Velasco G, Galve-Roperh I, Sánchez C, Blázquez C, Haro A, Guzmán M. Cannabinoids and ceramide: two lipids acting hand-by-hand. Life Sci 2006; 77:1723-31. [PMID: 15958274 DOI: 10.1016/j.lfs.2005.05.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoids, the active components of Cannabis sativa (marijuana) and their endogenous counterparts, exert their effects by binding to specific G-protein-coupled receptors that modulate adenylyl cyclase and ion channels. Recent research has shown that the CB1 cannabinoid receptor is also coupled to the generation of the lipid second messenger ceramide via two different pathways: sphingomyelin hydrolysis and ceramide synthesis de novo. Sustained ceramide accumulation in tumor cells mediates cannabinoid-induced apoptosis, as evidenced by in vitro and in vivo studies. This effect seems to be due to the impact of ceramide on key cell signalling systems such as the extracellular signal-regulated kinase cascade and the Akt pathway. These findings provide a new conceptual view on how cannabinoids act, and raise interesting physiological and therapeutic questions.
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Tikhomirov O, Carpenter G. Bax activation and translocation to mitochondria mediate EGF-induced programmed cell death. J Cell Sci 2005; 118:5681-90. [PMID: 16303853 DOI: 10.1242/jcs.02676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ErbB family of receptor tyrosine kinases is involved in the regulation of cell proliferation, differentiation and apoptosis. Previous studies indicate that cells expressing elevated levels of the EGFR and ErbB-2 undergo programmed cell death in response to EGF or other EGFR ligands. However, the detailed mechanisms of EGF-induced apoptosis are unclear. This report demonstrates that in the cells undergoing EGF-dependent apoptosis Bax changes its conformation and forms multimeric aggregates, which accumulate on the mitochondrial membrane. Bax activation and translocation to the mitochondria induces a loss of mitochondrial transmembrane potential and cell death. Also, during EGF-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Expression of Bcl-xL in cells susceptible to EGF-dependent apoptosis prevents cell death. The data indicate that addition of EGF does not result in a significant release of cytochrome c from mitochondria and EGF-induced apoptosis is mainly caspase independent.
Collapse
Affiliation(s)
- Oleg Tikhomirov
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
41
|
Velasco G, Galve-Roperh I, Sánchez C, Blázquez C, Guzmán M. Hypothesis: cannabinoid therapy for the treatment of gliomas? Neuropharmacology 2004; 47:315-23. [PMID: 15275820 DOI: 10.1016/j.neuropharm.2004.04.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/25/2004] [Accepted: 04/22/2004] [Indexed: 11/29/2022]
Abstract
Gliomas, in particular glioblastoma multiforme or grade IV astrocytoma, are the most frequent class of malignant primary brain tumours and one of the most aggressive forms of cancer. Current therapeutic strategies for the treatment of glioblastoma multiforme are usually ineffective or just palliative. During the last few years, several studies have shown that cannabinoids-the active components of the plant Cannabis sativa and their derivatives--slow the growth of different types of tumours, including gliomas, in laboratory animals. Cannabinoids induce apoptosis of glioma cells in culture via sustained ceramide accumulation, extracellular signal-regulated kinase activation and Akt inhibition. In addition, cannabinoid treatment inhibits angiogenesis of gliomas in vivo. Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death. These and other findings reviewed here might set the basis for a potential use of cannabinoids in the management of gliomas.
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Avenida Complutense, sn, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|