1
|
Mishan MA, Choo YM, Winkler J, Hamann MT, Karan D. Manzamine A: A promising marine-derived cancer therapeutic for multi-targeted interactions with E2F8, SIX1, AR, GSK-3β, and V-ATPase - A systematic review. Eur J Pharmacol 2025; 990:177295. [PMID: 39863145 DOI: 10.1016/j.ejphar.2025.177295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, v-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeffery Winkler
- Department of Chemistry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA.
| |
Collapse
|
2
|
Wang J, Yang Z, Bai H, Zhao L, Ji J, Bin Y, Liu Y, Zhang S, Hou H, Li Q. High-expressed ACAT2 predicted the poor prognosis of platinum-resistant epithelial ovarian cancer. Diagn Pathol 2024; 19:7. [PMID: 38178203 PMCID: PMC10768435 DOI: 10.1186/s13000-023-01435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Acetyl-CoA acetyltransferase 2 (ACAT2) is a lipid metabolism enzyme and rarely was researched in epithelial ovarian cancer (EOC). METHODS ACAT2 expressions were confirmed in two pairs of cell lines (A2780 and A2780/DDP, OVCAR8 and OVCAR8/DDP) from Gene Expression Omnibus database by bioinformatics analysis, and in A2780 and A2780/DDP cell lines by quantitative real-time polymerase chain reaction and western blotting. Tissue samples were stained by immunohistochemistry and scored for ACAT2 expression. The relationships between ACAT2 expression and clinicopathological characteristics were analyzed by χ2 test. The prognosis of ACAT2 was analyzed by the log-rank tests and Cox regression models. RESULTS ACAT2 was remarkably upregulated in the above drug-resistant cell lines by mRNA (all P < 0.05) and protein expression (P = 0.026) than those in sensitive ones. Patients were classified as ACAT2-high (n = 51) and ACAT2-low (n = 26) according to immunohistochemical score. ACAT2 expression had a significantly inverse correlation with FIGO stage (P = 0.030) and chemo-response (P = 0.041). A marginal statistical significance existed in ACAT2 expression and ascites volume (P = 0.092). Univariate analysis suggested that high-expressed ACAT2 was associated with decreased platinum-free interval (PFI) (8.57 vs. 14.13 months, P = 0.044), progression-free survival (PFS) (14.12 vs. 19.79 months, P = 0.039) and overall survival (OS) (36.89 vs. 52.40 months, P = 0.044). Multivariate analysis demonstrated that ACAT2 expression (hazard ratio = 2.18, 95% confidence interval: 1.15-4.11, P = 0.017) affected OS independently, rather than PFI and PFS. CONCLUSION The expression of ACAT2 in A2780/DDP and OVCAR8/DDP was higher than the corresponding A2780 and OVCAR8. High-expressed ACAT2 was associated with advanced FIGO stage, chemo-resistance, and decreased PFI, PFS and OS. It was an independent prognostic factor of OS in EOC.
Collapse
Affiliation(s)
- Jinfeng Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zhe Yang
- Department of Pathology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an, 710000, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jing Ji
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yadi Bin
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yu Liu
- Department of Pathology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Siyi Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Huilian Hou
- Department of Pathology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Lin LC, Chang HY, Kuo TT, Chen HY, Liu WS, Lo YJ, Hsia SM, Huang TC. Oxidative stress mediates the inhibitory effects of Manzamine A on uterine leiomyoma cell proliferation and extracellular matrix deposition via SOAT inhibition. Redox Biol 2023; 66:102861. [PMID: 37666118 PMCID: PMC10491796 DOI: 10.1016/j.redox.2023.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
Uterine fibroids, the most common benign tumors of the myometrium in women, are characterized by abnormal extracellular matrix deposition and uterine smooth muscle cell neoplasia, with high recurrence rates. Here, we investigated the potential of the marine natural product manzamine A (Manz A), which has potent anti-cancer effects, as a treatment for uterine fibroids. Manz A inhibited leiomyoma cell proliferation in vitro and in vivo by arresting cell cycle progression and inducing caspase-mediated apoptosis. We performed target prediction analysis and identified sterol o-acyltransferases (SOATs) as potential targets of Manz A. Cholesterol esterification and lipid droplet formation were reduced by Manz A, in line with reduced SOAT expression. As a downstream target of SOAT, Manz A also prevented extracellular matrix deposition by inhibiting the β-catenin/fibronectin/metalloproteinases axis and enhanced autophagy turnover. Excessive free fatty acid accumulation by SOAT inhibition led to reactive oxygen species to impair mitochondrial oxidative phosphorylation and trigger endoplasmic reticulum stress via PERK/eIF2α/CHOP signaling. The inhibitory effect of ManzA on cell proliferation was partially restored by PERK knockdown and eliminated by tauroursodeoxycholic acid, suggesting oxidative stress plays a critical role in the mechanism of action of Manz A. These findings suggest that targeting SOATs by Manz A may be a promising therapeutic approach for uterine fibroids.
Collapse
Affiliation(s)
- Li-Chun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11031, Taiwan; Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Ting Kuo
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wen-Shan Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yii-Jwu Lo
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsui-Chin Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Cheng Y, Yu H, Li K, Lv J, Zhuang J, Bai K, Wu Q, Yang X, Yang H, Lu Q. Hsa_circ_0003098 promotes bladder cancer progression via miR-377-5p/ACAT2 axis. Genomics 2023; 115:110692. [PMID: 37532090 DOI: 10.1016/j.ygeno.2023.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Accumulating evidence has proven that circRNAs play vital roles in tumor progression. Nevertheless, the mechanisms underlying circRNAs in bladder cancer (BCa) remain largely unknown. The purpose of this study was to identify the role and investigate the potential molecular mechanisms of hsa_circ_0003098 in BCa. We confirmed that hsa_circ_0003098 expression was significantly upregulated in BCa tissues, of which expression was remarkably associated with poor prognosis. Functionally, overexpression of hsa_circ_0003098 promoted BCa cell proliferation, migration, and invasion in vitro as well as tumor growth in vivo. Mechanistically, hsa_circ_0003098 promoted upregulation of ACAT2 expression and induced cholesteryl ester accumulation via acting as a sponge for miR-377-5p. Thus, hsa_circ_0003098 plays an oncogenic role in BCa and may serve as a potential biomarker and therapeutic target for BCa.
Collapse
Affiliation(s)
- Yidong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China; Department of Urology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 21000, Jiangsu Province, PR China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Kai Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Juntao Zhuang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Kexin Bai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
6
|
Zhu Y, Kim SQ, Zhang Y, Liu Q, Kim KH. Pharmacological inhibition of acyl-coenzyme A:cholesterol acyltransferase alleviates obesity and insulin resistance in diet-induced obese mice by regulating food intake. Metabolism 2021; 123:154861. [PMID: 34371065 DOI: 10.1016/j.metabol.2021.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyze the formation of cholesteryl ester (CE) from free cholesterol to regulate intracellular cholesterol homeostasis. Despite the well-documented role of ACATs in hypercholesterolemia and their emerging role in cancer and Alzheimer's disease, the role of ACATs in adipose lipid metabolism and obesity is poorly understood. Herein, we investigated the therapeutic potential of pharmacological inhibition of ACATs in obesity. METHODS We administrated avasimibe, an ACAT inhibitor, or vehicle to high-fat diet-induced obese (DIO) mice via intraperitoneal injection and evaluated adiposity, food intake, energy expenditure, and glucose homeostasis. Moreover, we examined the effect of avasimibe on the expressions of the genes in adipogenesis, lipogenesis, inflammation and adipose pathology in adipose tissue by real-time PCR. We also performed a pair feeding study to determine the mechanism for body weight lowering effect of avasimibe. RESULTS Avasimibe treatment markedly decreased body weight, body fat content and food intake with increased energy expenditure in DIO mice. Avasimibe treatment significantly lowered blood levels of glucose and insulin, and improved glucose tolerance in obese mice. The beneficial effects of avasimibe were associated with lower levels of adipocyte-specific genes in adipose tissue and the suppression of food intake. Using a pair-feeding study, we further demonstrated that avasimibe-promoted weight loss is attributed mainly to the reduction of food intake. CONCLUSIONS These results indicate that avasimibe ameliorates obesity and its-related insulin resistance in DIO mice through, at least in part, suppression of food intake.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Sora Q Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qing Liu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Websdale A, Kiew Y, Chalmers P, Chen X, Cioccoloni G, Hughes TA, Luo X, Mwarzi R, Poirot M, Røberg-Larsen H, Wu R, Xu M, Zulyniak MA, Thorne JL. Pharmacologic and genetic inhibition of cholesterol esterification enzymes reduces tumour burden: A systematic review and meta-analysis of preclinical models. Biochem Pharmacol 2021; 196:114731. [PMID: 34407453 DOI: 10.1016/j.bcp.2021.114731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/09/2022]
Abstract
Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p < 0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p ≤ 0.002). SOAT inhibition increased tumour apoptosis (p = 0.007), CD8 + lymphocyte infiltration and cytotoxicity (p ≤ 0.05), and reduced proliferation (p = 0.0003) and metastasis (p < 0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.
Collapse
Affiliation(s)
- Alex Websdale
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yi Kiew
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Philip Chalmers
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Xinyu Chen
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Giorgia Cioccoloni
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - Xinyu Luo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Rufaro Mwarzi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Marc Poirot
- Cancer Research Center of Toulouse, Inserm, CNRS, University of Toulouse, Toulouse, France
| | | | - Ruoying Wu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Mengfan Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Zulyniak
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
8
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Xu J, Zhou Y, Yang Y, Lv C, Liu X, Wang Y. Involvement of ABC-transporters and acyltransferase 1 in intracellular cholesterol-mediated autophagy in bovine alveolar macrophages in response to the Bacillus Calmette-Guerin (BCG) infection. BMC Immunol 2020; 21:26. [PMID: 32397995 PMCID: PMC7216371 DOI: 10.1186/s12865-020-00356-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Understanding pathogenic mechanisms is imperative for developing novel treatment to the tuberculosis, an important public health burden worldwide. Recent studies demonstrated that host cholesterol levels have implications in the establishment of Mycobacterium tuberculosis (M. tuberculosis, Mtb) infection in host cells, in which the intracellular cholesterol-mediated ATP-binding cassette transporters (ABC-transporters) and cholesterol acyltransferase1 (ACAT1) exhibited abilities to regulate macrophage autophagy induced by Mycobacterium bovis bacillus Calmette–Guérin (BCG). Results The results showed that a down-regulated expression of the ABC-transporters and ACAT1 in primary bovine alveolar macrophages (AMs) and murine RAW264.7 cells in response to a BCG infection. The inhibited expression of ABC-transporters and ACAT1 was associated with the reduction of intracellular free cholesterol, which in turn induced autophagy in macrophages upon to the Mycobacterial infection. These results strongly suggest an involvement of ABC-transporters and ACAT1 in intracellular cholesterol-mediated autophagy in AMs in response to BCG infection. Conclusion This study thus provides an insight into into a mechanism by which the cholesterol metabolism regulated the autophagy in macrophages in response to mycobacterial infections.
Collapse
Affiliation(s)
- Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yanbing Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Cuiping Lv
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China. .,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, China. .,College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
10
|
Jiang X, Pan D, Zhang T, Liu C, Zhang J, Su M, Wu Z, Zeng X, Sun Y, Guo Y. Novel milk casein–derived peptides decrease cholesterol micellar solubility and cholesterol intestinal absorption in Caco-2 cells. J Dairy Sci 2020; 103:3924-3936. [DOI: 10.3168/jds.2019-17586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
11
|
Weng M, Zhang H, Hou W, Sun Z, Zhong J, Miao C. ACAT2 Promotes Cell Proliferation and Associates with Malignant Progression in Colorectal Cancer. Onco Targets Ther 2020; 13:3477-3488. [PMID: 32425549 PMCID: PMC7187938 DOI: 10.2147/ott.s238973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Colorectal cancer (CRC) is a major disease that threatens human health. It has been reported that the acyl-coenzyme A (CoA): cholesterol acyltransferase 2 (ACAT2) gene can promote the progression of hepatocellular carcinoma, but its function in CRC is still unclear. In this study, we aimed to elucidate the function of ACAT2 in CRC. Methods Western blot and qPCR were used to detect the relative level of ACAT2 in CRC tissue and adjacent non-cancerous tissues, and then the association between ACAT2 expression and the clinicopathological features and survival of CRC patients were assessed. The expression of ACAT2 in CT26 and DLD1 cells was down-regulated by siRNA, and the effects of ACAT2 knockdown on cell proliferation were examined. The inhibitory effects of ACAT2 knockdown were further confirmed by tumor growth assays in vivo. Results Our data showed that the expression of ACAT2 in CRC tissues was markedly higher than in adjacent non-cancerous tissues. The high expression of ACAT2 was significantly associated with tumor size, lymph node metastasis and clinical stage. The increased expression of ACAT2 was also significantly associated with worse 5-year overall survival of CRC patients. siRNA-mediated ACAT2 knockdown strongly inhibited CT26 and DLD1 cells proliferation and induced G0/G1 phase cell cycle arrest and apoptosis in these cells. Knockdown of ACAT2 expression suppressed the growth of CRC and inhibited the expression of Ki67 in vivo. Conclusion Our study demonstrated that ACAT2 played a positive role in regulating the proliferation of CRC and may be useful as a potential biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhirong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
12
|
Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, Zhang J, Zhang JP, Song YL, Ma D, Zhang XP, Miao CH. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun 2020; 11:1869. [PMID: 32313017 PMCID: PMC7170903 DOI: 10.1038/s41467-020-15795-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that fasting exerts extensive antitumor effects in various cancers, including colorectal cancer (CRC). However, the mechanism behind this response is unclear. We investigate the effect of fasting on glucose metabolism and malignancy in CRC. We find that fasting upregulates the expression of a cholesterogenic gene, Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), during the inhibition of CRC cell aerobic glycolysis and proliferation. In addition, the downregulation of FDFT1 is correlated with malignant progression and poor prognosis in CRC. Moreover, FDFT1 acts as a critical tumor suppressor in CRC. Mechanistically, FDFT1 performs its tumor-inhibitory function by negatively regulating AKT/mTOR/HIF1α signaling. Furthermore, mTOR inhibitor can synergize with fasting in inhibiting the proliferation of CRC. These results indicate that FDFT1 is a key downstream target of the fasting response and may be involved in CRC cell glucose metabolism. Our results suggest therapeutic implications in CRC and potential crosstalk between a cholesterogenic gene and glycolysis. The molecular mechanisms underpinning how fasting inhibits tumourigenesis are not completely elucidated. Here, the authors show that fasting upregulates the cholesterogenic gene FDFT1 which leads to decreased AKT/mTOR/HIF1a signalling and glycolysis reduction in colorectal cancer.
Collapse
Affiliation(s)
- Mei-Lin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wan-Kun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Rong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng-Fei Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ya-Jun Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Min Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jian-Ping Zhang
- Institute of Modern Physics, Fudan University; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China. .,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China. .,Children's Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiao-Ping Zhang
- The Institute of Intervention Vessel, Tongji University School of Medicine, Shanghai, 200092, China. .,Shanghai Center of Thyroid Diseases, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
14
|
Darvishi M, Mashati P, Khosravi A. The clinical significance of CDX2 in leukemia: A new perspective for leukemia research. Leuk Res 2018; 72:45-51. [PMID: 30096576 DOI: 10.1016/j.leukres.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
CDX2 gene encodes a transcription factor involved in primary embryogenesis and hematopoietic development; however, the expression of CDX2 in adults is restricted to intestine and is not observed in blood tissues. The ectopic expression of CDX2 has been frequently observed in acute myeloid and lymphoid leukemia which in most cases is concomitant with poor prognosis. Induction of CDX2 in mice leads to hematologic complications, showing the leukemogenic origin of this gene. CDX2 plays significant role in the most critical pathways as the regulator of important transcription factors targeting cell proliferation, multi-drug resistance and survival. On the whole, the results indicate that CDX2 has the potential to be suggested as the diagnostic marker in hematologic malignancies. This review discusses the role of aberrant expression of CDX2 in the prognosis and the response to treatment in patients with different leukemia in clinical reports in the recent decades. The improvement in this regard could be of high importance in diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Shah SS, Wu TT, Torbenson MS, Chandan VS. Aberrant CDX2 expression in hepatocellular carcinomas: an important diagnostic pitfall. Hum Pathol 2017; 64:13-18. [PMID: 28089540 DOI: 10.1016/j.humpath.2016.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/17/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
CDX2 is a sensitive and specific marker of intestinal differentiation. It is routinely used in surgical pathology, as its expression within a tumor favors an origin within the gastrointestinal tract. We had anecdotally encountered occasional hepatocellular carcinomas (HCCs) that were CDX2 positive. CDX2 expression in HCC has not yet been reported, but it has also not been examined in detail. Therefore, we evaluated CDX2 expression in a large number of resected HCCs. Full tumor sections from 172 resected HCCs and 6 resected fibrolamellar carcinomas (FLCs) were stained for CDX2. Nine (5.2%) of 172 HCCs were positive for CDX2, whereas all 6 FLCs were negative. CDX2 expression in HCCs was more commonly seen in poorly differentiated tumors (5 of 16 cases, 31%) than well and moderately differentiated tumors (4 of 156 cases, 2.5%), P = .0004. No other statistically significant correlations were observed (P>.05). Results of our study show that a small subset (5%) of HCCs can be CDX2 positive. Awareness of this phenomenon is important because CDX2 expression in a liver tumor does not completely exclude a diagnosis of HCC.
Collapse
Affiliation(s)
- Sejal S Shah
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905
| | - Tsung-Teh Wu
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905
| | | | - Vishal S Chandan
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
16
|
Guo D, Lu M, Hu X, Xu J, Hu G, Zhu M, Zhang X, Li Q, Chang CCY, Chang T, Song B, Xiong Y, Li B. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors. Acta Biochim Biophys Sin (Shanghai) 2016; 48:980-989. [PMID: 27688151 PMCID: PMC5091289 DOI: 10.1093/abbs/gmw091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/18/2016] [Accepted: 07/15/2016] [Indexed: 01/15/2023] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Guo D, Zhang X, Li Q, Qian L, Xu J, Lu M, Hu X, Zhu M, Chang CCY, Song B, Chang T, Xiong Y, Li B. The ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters. Acta Biochim Biophys Sin (Shanghai) 2016; 48:990-997. [PMID: 27688150 PMCID: PMC5091290 DOI: 10.1093/abbs/gmw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/24/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
Acyl-coenzymeA:cholesterol acyltransferase 2 (ACAT2) is abundantly expressed in intestine and fetal liver of healthy human. Our previous studies have shown that in monocytic cells the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the CCAAT/enhancer binding protein (C/EBP) transcription factors. In this study, we further report that the ACAT2 gene expression is attributable to the C/EBPs in the human leukocytes and correlated with the excretion of fluorescent lipoproteins containing the ACAT2-catalyzed NBD22-steryl esters. Moreover, this lipoprotein excretion can be inhibited by the ACAT2 isoform-selective inhibitor pyripyropene A (PPPA) in a dose-dependent manner, and employed to determine the half maximum inhibitory concentration (IC50) values of PPPA. Significantly, it is found that the differentiation-inducing factor all-trans retinoic acid, but not the proinflammatory cytokine tumor necrosis factor-α, enhances this ACAT2-dependent lipoprotein excretion. These data demonstrate that the ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters (CE/SE), and suggest that the excretion of lipoproteins containing the ACAT2-catalyzed CS/SE may avoid cytotoxicity through decreasing the excess intracellular cholesterols/sterols (especially various oxysterols), which is essential for the action of the human leukocytes.
Collapse
Affiliation(s)
- Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Qian
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Lu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xihan Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats. PLoS One 2016; 11:e0159550. [PMID: 27442011 PMCID: PMC4956224 DOI: 10.1371/journal.pone.0159550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment.
Collapse
|
19
|
Zhu M, Zhao X, Chen J, Xu J, Hu G, Guo D, Li Q, Zhang X, Chang CCY, Song B, Xiong Y, Chang T, Li B. ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochim Biophys Sin (Shanghai) 2015; 47:951-9. [PMID: 26474739 DOI: 10.1093/abbs/gmv101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.
Collapse
Affiliation(s)
- Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaonan Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
New insight into the intracellular roles of class II phosphoinositide 3-kinases. Biochem Soc Trans 2015; 42:1378-82. [PMID: 25233418 DOI: 10.1042/bst20140140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the last few years, an increased attention to class II isoforms of phosphoinositide 3-kinase (PI3K) has emerged, mainly fuelled by evidence suggesting a distinct non-redundant role for these enzymes compared with other PI3Ks. Despite this renewed interest, many questions remain on the specific functions regulated by these isoforms and their mechanism of activation and action. In the present review, we discuss results from recent studies that have provided some answers to these questions.
Collapse
|
21
|
Pramfalk C, Melhuish TA, Wotton D, Jiang ZY, Eriksson M, Parini P. TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2. J Lipid Res 2014; 55:709-17. [PMID: 24478032 PMCID: PMC3966704 DOI: 10.1194/jlr.m045922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/26/2014] [Indexed: 11/20/2022] Open
Abstract
Acat2 [gene name: sterol O-acyltransferase 2 (SOAT2)] esterifies cholesterol in enterocytes and hepatocytes. This study aims to identify repressor elements in the human SOAT2 promoter and evaluate their in vivo relevance. We identified TG-interacting factor 1 (Tgif1) to function as an important repressor of SOAT2. Tgif1 could also block the induction of the SOAT2 promoter activity by hepatocyte nuclear factor 1α and 4α. Women have ∼ 30% higher hepatic TGIF1 mRNA compared with men. Depletion of Tgif1 in mice increased the hepatic Soat2 expression and resulted in higher hepatic lipid accumulation and plasma cholesterol levels. Tgif1 is a new player in human cholesterol metabolism.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, and Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tiffany A. Melhuish
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, VA
| | - Zhao-Yan Jiang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Mats Eriksson
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, and Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Molecular Nutrition Unit, Department of Biosciences and Nutrition, Centre for Nutrition and Toxicology, NOVUM, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
22
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
23
|
Yap CS, Sinha RA, Ota S, Katsuki M, Yen PM. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem Biophys Res Commun 2013; 440:635-9. [PMID: 24103759 DOI: 10.1016/j.bbrc.2013.09.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022]
Abstract
Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.
Collapse
Affiliation(s)
- Chui Sun Yap
- Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857, Singapore
| | | | | | | | | |
Collapse
|
24
|
Lu M, Hu XH, Li Q, Xiong Y, Hu GJ, Xu JJ, Zhao XN, Wei XX, Chang CCY, Liu YK, Nan FJ, Li J, Chang TY, Song BL, Li BL. A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. J Mol Cell Biol 2013; 5:404-15. [PMID: 24163426 DOI: 10.1093/jmcb/mjt039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The liver plays a central role in cholesterol homeostasis. It exclusively receives and metabolizes oxysterols, which are important metabolites of cholesterol and are more cytotoxic than free cholesterol, from all extrahepatic tissues. Hepatocellular carcinomas (HCCs) impair certain liver functions and cause pathological alterations in many processes including cholesterol metabolism. However, the link between an altered cholesterol metabolism and HCC development is unclear. Human ACAT2 is abundantly expressed in intestine and fetal liver. Our previous studies have shown that ACAT2 is induced in certain HCC tissues. Here, by investigating tissue samples from HCC patients and HCC cell lines, we report that a specific cholesterol metabolic pathway, involving induction of ACAT2 and esterification of excess oxysterols for secretion to avoid cytotoxicity, is established in a subset of HCCs for tumor growth. Inhibiting ACAT2 leads to the intracellular accumulation of unesterified oxysterols and suppresses the growth of both HCC cell lines and their xenograft tumors. Further mechanistic studies reveal that HCC-linked promoter hypomethylation is essential for the induction of ACAT2 gene expression. We postulate that specifically blocking this HCC-established cholesterol metabolic pathway may have potential therapeutic applications for HCC patients.
Collapse
Affiliation(s)
- Ming Lu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie 谢畅 C, Zhou 周章森 ZS, Li 李钠 N, Bian 卞艳 Y, Wang 王永建 YJ, Wang 王丽娟 LJ, Li 李伯良 BL, Song 宋保亮 BL. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res 2012; 53:2092-2101. [PMID: 22811412 PMCID: PMC3435542 DOI: 10.1194/jlr.m027359] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
The multiple transmembrane protein Niemann-Pick C1 like1 (NPC1L1) is essential for intestinal cholesterol absorption. Ezetimibe binds to NPC1L1 and is a clinically used cholesterol absorption inhibitor. Recent studies in cultured cells have shown that NPC1L1 mediates cholesterol uptake through vesicular endocytosis that can be blocked by ezetimibe. However, how NPC1L1 and ezetimibe work in the small intestine is unknown. In this study, we found that NPC1L1 distributed in enterocytes of villi and transit-amplifying cells of crypts. Acyl-CoA cholesterol acyltransferase 2 (ACAT2), another important protein for cholesterol absorption by providing cholesteryl esters to chylomicrons, was mainly presented in the apical cytoplasm of enterocytes. NPC1L1 and ACAT2 were highly expressed in jejunum and ileum. ACAT1 presented in the Paneth cells of crypts and mesenchymal cells of villi. In the absence of cholesterol, NPC1L1 was localized on the brush border of enterocytes. Dietary cholesterol induced the internalization of NPC1L1 to the subapical layer beneath the brush border and became partially colocalized with the endosome marker Rab11. Ezetimibe blocked the internalization of NPC1L1 and cholesterol and caused their retention in the plasma membrane. This study demonstrates that NPC1L1 mediates cholesterol entering enterocytes through vesicular endocytosis and that ezetimibe blocks this step in vivo.
Collapse
Affiliation(s)
- Chang Xie 谢畅
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhang-Sen Zhou 周章森
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Li 李钠
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Bian 卞艳
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Jian Wang 王永建
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Juan Wang 王丽娟
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo-Liang Li 李伯良
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Bao-Liang Song 宋保亮
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
26
|
|
27
|
Zhang Z, Liu J, Xi Y, Yang R, Chen H, Li Z, Liu D, Liang C. Two novel cis-elements involved in hepatocyte nuclear factor 4α regulation of acyl-coenzyme A:cholesterol acyltransferase 2 expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:162-71. [PMID: 22155889 DOI: 10.1093/abbs/gmr102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is important for cholesterol ester synthesis and secretion. A previous study revealed that ACAT2 gene promoter activity was upregulated by hepatocyte nuclear factor 4α (HNF4α) through two sites around -247 and -311 of ACAT2 gene promoter. Here, we identified two novel cis-elements, site I (-1006 to -898) and site II (-38 to -29), which are important for HNF4α effect. In HepG2 cells, mutation of site I decreased ACAT2 gene promoter activity to one-fifth of that of the wild type, while mutation of site II reduced promoter activity to less than one-tenth of that of the wild type. In 293T cells, mutation of these two cis-elements profoundly impaired the HNF4α induction effect. When either of these two elements was inserted into pGL3-promoter, HNF4α induced promoter activity through the inserted element, while mutation of the element impaired HNF4α induction effect. In electrophoretic mobility shift assay and chromatin immunoprecipitation experiment, HNF4α bound to these two elements. Thus, the two cis-elements are important for HNF4α effect on ACAT2 gene transcription. We also showed that HNF4α positively regulates ACAT2 gene expression at mRNA level. Overexpression of HNF4α increased ACAT2 expression, whereas knockdown of HNF4α decreased ACAT2 expression. Peroxisome proliferator-activated receptor gamma coactivator 1α (PCG1α), a coactivator of HNF4α, increased ACAT2 expression, while small heterodimer partner (SHP), a corepressor of HNF4α, decreased ACAT2 expression. These results provide more insights into transcriptional regulation of ACAT2 expression.
Collapse
Affiliation(s)
- Zhuqin Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu R, Wong KF, Lee NPY, Lee KF, Luk JMC. HNF1α and CDX2 transcriptional factors bind to cadherin-17 (CDH17) gene promoter and modulate its expression in hepatocellular carcinoma. J Cell Biochem 2011; 111:618-26. [PMID: 20568120 DOI: 10.1002/jcb.22742] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cadherin-17 (CDH17) belongs to the cell adhesion cadherin family with a prominent role in tumorigenesis. It is highly expressed in human hepatocellular carcinoma (HCC) and is proposed to be a biomarker and therapeutic molecule for liver malignancy. The present study aims to identify the transcription factors which interact and regulate CDH17 promoter activity that might contribute to the up-regulation of CDH17 gene in human HCC. A 1-kb upstream sequence of CDH17 gene was cloned and the promoter activity was studied by luciferase reporter assay. By bioinformatics analysis, deletion and mutation assays, and chromatin immunoprecipitation studies, we identified hepatic nuclear factor 1α (HNF1α) and caudal-related homeobox 2 (CDX2) binding sites at the proximal promoter region which modulate the CDH17 promoter activities in two HCC cell lines (Hep3B and MHCC97L). A consistent down-regulation of CDH17 and the two transcriptional activators (HNF1α and CDX2) expression was found in the liver of mouse during development, as well as in human liver cancer cells with less metastatic potential. Suppression of HNF1α and CDX2 expression by small interfering RNA (siRNA) significantly down-regulated expressions of CDH17 and its downstream target cyclin D1 and the viability of HCC cells in vitro. In summary, we identified the minimal promoter region of CDH17 that is regulated by HNF1α and CDX2 transcriptional factors. The present findings enhance our understanding on the regulatory mechanisms of CDH17 oncogene in HCC, and may shed new insights into targeting CDH17 expression as potential therapeutic intervention for cancer treatment.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Surgery and Center for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
29
|
Sakashita N, Chang CCY, Lei X, Fujiwara Y, Takeya M, Chang TY. Cholesterol loading in macrophages stimulates formation of ER-derived vesicles with elevated ACAT1 activity. J Lipid Res 2010; 51:1263-72. [PMID: 20460577 DOI: 10.1194/jlr.m900288] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ACAT1 is normally a resident enzyme in the endoplasmic reticulum (ER). We previously showed that treating macrophages with denatured LDL causes a large increase in ER-derived, ACAT1-positive vesicles. Here, we isolated ER membranes and ER-derived vesicles to examine their ACAT enzyme activity in vitro. The results showed that when macrophages are grown under normal conditions, ACAT1 is located in high density ER membrane; its enzymatic activity is relatively low. Loading macrophages with cholesterol did not increase the total cellular ACAT1 protein content significantly but caused more ACAT1 to appear in ER-derived vesicles. These vesicles exhibit lower density and are associated with markers of both ER and the trans-Golgi network. When normalized with equal ACAT1 protein mass, the enzymatic activities of ACAT1 in ER-derived vesicles were 3-fold higher than those present in ER membrane. Results using reconstituted ACAT enzyme assay showed that the increase in enzyme activity in ER-derived vesicles is not due to an increase in the cholesterol content associated with these vesicles. Overall, our results show that macrophages cope with cholesterol loading by using a novel mechanism: they produce more ER-derived vesicles with elevated ACAT1 enzyme activity without having to produce more ACAT1 protein.
Collapse
Affiliation(s)
- Naomi Sakashita
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 861-8556, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Chang TY, Chang CCY, Bryleva E, Rogers MA, Murphy SR. Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life 2010; 62:261-7. [PMID: 20101629 DOI: 10.1002/iub.305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol has been implicated in various neurodegenerative diseases. Here we review the connection between cholesterol and Alzheimer's disease (AD), focusing on a recent study that links neuronal cholesterol esterification with biosynthesis of 24(S)-hydroxycholesterol and the fate of human amyloid precursor protein in a mouse model of AD. We also briefly evaluate the potential of ACAT1 as a drug target for AD.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
31
|
Sakashita N, Chang CC, Lei X, Fujiwara Y, Takeya M, Chang TY. Cholesterol loading in macrophages stimulates formation of ER-derived vesicles with elevated ACAT1 activity. J Lipid Res 2010. [DOI: 10.1194/jlr.m900288-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Wang F, Wang J, Liu D, Su Y. Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine. Anal Biochem 2010; 399:211-7. [DOI: 10.1016/j.ab.2009.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
|
33
|
Mechanical stretch-induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal 2009; 22:34-40. [PMID: 19755152 DOI: 10.1016/j.cellsig.2009.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/20/2022]
Abstract
Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis, and can be modelled in vitro by exposing mesangial cells (MC) to cyclic mechanical stretch. We have previously shown that the GTPase RhoA mediates stretch-induced fibronectin production. Here we investigate the role of the RhoGEF Vav2 in the activation of RhoA by stretch. Primary rat MC were exposed to 1 Hz cyclic stretch, previously shown to induce maximal RhoA activation at 1 min. Total Vav2 tyrosine phosphorylation and specific phosphorylation on Y172, required for activation, were increased by 1 min of stretch. Overexpression of dominant-negative Vav2 Y172/159F in COS-1 cells or downregulation of Vav2 by siRNA in MC prevented stretch-induced RhoA activation. Vav2 is known to be activated in response to growth factors, and we have previously shown the epidermal growth factor receptor (EGFR) to be transactivated by stretch in MC. Both Vav2 Y172 phosphorylation and RhoA activation were blocked by the EGFR inhibitor AG1478 and prevented in MC overexpressing kinase inactive EGFR. Stretch led to physical association between the EGFR and Vav2, and this was dependent on EGFR activation. EGFR Y992 phosphorylation, required for growth factor-induced Vav2 phosphorylation, was also induced by stretch. Activation of both Src and PI3K were necessary upstream mediators of stretch-induced Vav2 Y172 phosphorylation and RhoA activation. In summary, stretch-induced RhoA activation is dependent on transactivation of the EGFR and activation of the RhoGEF Vav2. Src and PI3K are both required upstream of Vav2 and RhoA activation.
Collapse
|
34
|
Abstract
The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, 1 Rope Ferry Rd., Hanover, NH 03755-1404, USA.
| | | | | | | |
Collapse
|
35
|
RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Res 2009; 18:921-36. [PMID: 18542101 DOI: 10.1038/cr.2008.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG(1397-1399) and GGC(1274-1276) as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte-derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC(1274-1276) codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop(1255-1268) from chromosome 7 and downstream stem-loop(1286-1342) from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop(1355-1384) from Chromosome 1 was dispensable. The results of experiments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC(1274-1276) codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC(1274-1276) codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.
Collapse
|
36
|
Lei L, Xiong Y, Chen J, Yang JB, Wang Y, Yang XY, Chang CCY, Song BL, Chang TY, Li BL. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. J Lipid Res 2009; 50:1057-67. [PMID: 19189937 DOI: 10.1194/jlr.m800484-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) are present in atherosclerotic lesions. TNF-alpha regulates expression of multiple genes involved in various stages of atherosclerosis, and it exhibits proatherosclerotic and antiatherosclerotic properties. ACAT catalyzes the formation of cholesteryl esters (CE) in monocytes/macrophages, and it promotes the foam cell formation at the early stage of atherosclerosis. We hypothesize that TNF-alpha may be involved in regulating the ACAT gene expression in monocytes/macrophages. In this article, we show that in cultured, differentiating human monocytes, TNF-alpha enhances the expression of the ACAT1 but not ACAT2 gene, increases the cholesteryl ester accumulation, and promotes the lipid-laden cell formation. Several other proinflammatory cytokines tested do not affect the ACAT1 gene expression. The stimulation effect is consistent with a receptor-dependent process, and is blocked by using nuclear factor-kappa B (NF-kappa B) inhibitors. A functional and unique NF-kappa B element located within the human ACAT1 gene proximal promoter is required to mediate the action of TNF-alpha. Our data demonstrate that TNF-alpha, through the NF-kappa B pathway, specifically enhances the expression of human ACAT1 gene to promote the CE-laden cell formation from the differentiating monocytes, and our data support the hypothesis that TNF-alpha is proatherosclerotic during early phase of lesion development.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao X, Chen J, Lei L, Hu G, Xiong Y, Xu J, Li Q, Yang X, Chang CC, Song B, Chang T, Li B. The optional long 5'-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Biochim Biophys Sin (Shanghai) 2009; 41:30-41. [PMID: 19129948 DOI: 10.1093/abbs/gmn004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously reported that human ACAT1 mRNAs produce the 50 kDa protein using the AUG(11397-1399) initiation codon, and also a minor 56 kDa isoform using the upstream in-frame GGC(1274-1276) initiation codon. The GGC(1274-1276) codon is located at the optional long 5'-untranslated region (5'-UTR, nt 1-1396) of the mRNAs. The DNA sequences corresponding to this 5'-UTR are located in two different chromosomes, 7 and 1. In the current work, we report that the optional long 5'-UTR significantly impairs the production of human ACAT1 protein initiated from the AUG(1397-1399)codon, mainly by promoting its mRNA decay. The western blot analyses indicated that the optional long 5'-UTR potently impaired the production of different proteins initiated from the AUG(1397-1399) codon, meaning that this impairing effect was not influenced by the 3'-UTR or the coding sequence of ACAT1 mRNA. The results of reverse transcription-quantitative polymerase chain reaction demonstrated that this 5'- UTR dramatically reduced the contents of its linked mRNAs. Analyses of the protein to mRNA ratios showed that this 5'-UTR mainly decreased its mRNA stability rather than altering its translational efficiency. We next performed the plasmid transfection experiments and used actinomycin D to inhibit transcription. The results showed that this 5'-UTR promoted its mRNA decay. Additional transfection and nucleofection experiments using RNAs prepared in vitro illustrated that, in both the cytoplasm and the nucleus of cells, the optional long 5'-UTR-linked mRNAs decayed faster than those without the link. Overall, our study brings new insight to the regulation of the human ACAT1 gene expression at the post-transcription level.
Collapse
Affiliation(s)
- Xiaonan Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Blomberg LA, Schreier LL, Talbot NC. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol Reprod Dev 2008; 75:450-63. [PMID: 17680630 DOI: 10.1002/mrd.20780] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Limited understanding of the importance of known pluripotency factors in pig embryonic stem cells (ESC) impedes the establishment and validation of porcine ESC lines. This study evaluated the expression of known mouse ESC and human ESC (hESC) pluripotency markers in in vivo inner cell mass (ICM) and in vitro-cultured undifferentiated porcine epiblast cells isolated from 8-day porcine blastocysts, primary cultures of epiblast-derived neuroprogenitor cells, and endoderm cells. The expression profile of common pluripotency markers (POU domain 5 transcript factor 1, SRY-box containing gene 2, and Nanog homeobox), species-specific markers, ESC-associated factors, and differentiation markers was evaluated. The mRNA of uncultured ICMs, cultured epiblast cells, epiblast-derived neuroprogenitor cells, and endoderm cells was amplified prior to expression analysis of candidate genes by real-time RT-PCR. ESC factors whose expression correlated best with the undifferentiated epiblast state were identified by comparative mRNA expression analysis between porcine epiblast-derived somatic cell lines, fetal fibroblasts, and adult tissues. Across tissue types Nanog homeobox exhibited ubiquitous expression, whereas POU domain 5 transcript factor 1, teratocarcinoma-derived growth factor 1, and RNA exonuclease homolog 1 transcript expression was restricted primarily to undifferentiated epiblasts. Our results suggested that expression of pluripotency markers in undifferentiated pig epiblast cells more closely resembled that observed in hESC. Expression alterations of ESC-associated factors in epiblast cells were also observed during in vitro culture. Our data demonstrate the potential use of some pluripotency factors as markers of porcine epiblast stem cells and indicate that the in vitro environment may influence the cultured epiblast's developmental state.
Collapse
Affiliation(s)
- Le Ann Blomberg
- Biotechnology and Germplasm Laboratory, USDA Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | | | | |
Collapse
|
39
|
Locke JA, Wasan KM, Nelson CC, Guns ES, Leon CG. Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT). Prostate 2008; 68:20-33. [PMID: 18000807 DOI: 10.1002/pros.20674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The objective of this work was to determine the effect of an androgen agonist, R1881, on intracellular cholesterol synthesis and esterification in androgen-sensitive (AS) prostate cancer (LNCaP) cells. METHODS We investigated the activity and expression of cholesterol metabolism enzymes, HMG-CoA-reductase and ACAT in the LNCaP and PC-3 (androgen-independent control) models. RESULTS Microsomal PC-3 HMG-CoA-reductase activity was increased with R1881 despite having similar cholesterol levels while increased cholesterol levels in microsomes from LNCaPs treated with R1881 (L+) were associated with increased HMG-CoA reductase activity. Increased intracellular cholesteryl esters (CE) found in (L+) were not associated with an increased ACAT1 activity. There was no effect from androgen treatment on ACAT1 protein expression in theses cells; however, ACAT2 expression was induced upon R1881 treatment. In contrast, we found an increase in the in vitro ACAT1 activity in PC-3 cells treated with androgen (P+). Only ACAT1 expression was induced in P+. We further assessed the expression of STAT1 alpha, a transcriptional activator that modulates ACAT1 expression. STAT1 alpha expression and phosphorylation were induced in P+. To determine the role of the AR on ACAT1 expression and esterification, we treated PC-3 cells overexpressing the androgen receptor with R1881 (PAR+). AR expression was decreased in PAR+ cells; ACAT1 protein expression and cholesterol ester levels were also decreased, however, ACAT2 remained unchanged. STAT1 alpha expression was decreased in PAR+. CONCLUSIONS Overall, these findings support the importance of cholesterol metabolism regulation within prostate cancer cells and unravel a novel role for STAT1 alpha in prostate cancer metabolism.
Collapse
Affiliation(s)
- Jennifer A Locke
- Department of Urologic Sciences, University of British Columbia, The Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
40
|
Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 2007; 121:448-61. [PMID: 17614878 PMCID: PMC2265972 DOI: 10.1111/j.1365-2567.2007.02663.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The family of lipid kinases termed phosphoinositide-3-kinase (PI3K) is known to contribute at multiple levels to innate and adaptive immune responses, and is hence an attractive target for drug discovery in inflammatory and autoimmune disease, including respiratory diseases. The development of isoform-selective pharmacological inhibitors, targeted gene manipulation and short interfering RNA (siRNA) target validation have facilitated a better understanding of the role that each member of this family of kinases plays in the physiology and pathology of the respiratory system. In this review, we will evaluate the evidence for the roles of specific PI3K isoforms in the lung and airways, and discuss their potential as targets for novel drug therapies.
Collapse
|
41
|
Chang TY, Chang CCY, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 2006; 22:129-57. [PMID: 16753029 DOI: 10.1146/annurev.cellbio.22.010305.104656] [Citation(s) in RCA: 455] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian cells acquire cholesterol from low-density lipoprotein (LDL) and from endogenous biosynthesis. The roles of the Niemann-Pick type C1 protein in mediating the endosomal transport of LDL-derived cholesterol and endogenously synthesized cholesterol are discussed. Excess cellular cholesterol is converted to cholesteryl esters by the enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) 1 or is removed from a cell by cellular cholesterol efflux at the plasma membrane. A close relationship between the ACAT substrate pool and the cholesterol efflux pool is proposed. Sterol-sensing domains (SSDs) are present in several membrane proteins, including NPC1, HMG-CoA reductase, and the SREBP cleavage-activating protein. The functions of SSDs are described. ACAT1 is an endoplasmic reticulum cholesterol sensor and contains a signature motif characteristic of the membrane-bound acyltransferase family. The nonvesicular cholesterol translocation processes involve the START domain proteins and the oxysterol binding protein-related proteins (ORPs). The properties of these proteins are summarized.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
42
|
Falasca M, Maffucci T. Emerging roles of phosphatidylinositol 3-monophosphate as a dynamic lipid second messenger. Arch Physiol Biochem 2006; 112:274-84. [PMID: 17178602 DOI: 10.1080/13813450601094664] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The lipid products of phosphoinositide 3-kinase (PI3K) are involved in many cellular responses such as proliferation, migration and survival. Disregulation of PI3K-activated pathways is implicated in different disease including diabetes and cancer. Among the different products of PI3Ks, phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) has a well established role in signal transduction whereas the monophosphate phosphatidylinositol-3-phosphate (PtdIns-3-P) has been considered for a long time just a cellular component confined in endosomal structures. Only recently several evidence have indicated that PtdIns-3-P can also act as a dynamic intracellular second messenger. The role of PtdIns-3-P as mediator of crucial intracellular signals is therefore just beginning to be appreciated. Here we review some of the latest evidence showing that pools of PtdIns-3-P can be generated upon cellular stimulation in compartments different from the "classical" endosomal region. We describe several proteins that can be targets in mediating signals deriving from such stimulated PtdIns-3-P pools. In addition we describe the potential mechanism of switching on and off such signals. Taken together all this evidence suggest a novel, key role for PtdIns-3-P in signal transduction.
Collapse
Affiliation(s)
- Marco Falasca
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, 5 University Street, London, WC1E 6JJ, UK.
| | | |
Collapse
|