1
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Nencini F, Bettiol A, Argento FR, Borghi S, Giurranna E, Emmi G, Prisco D, Taddei N, Fiorillo C, Becatti M. Post-translational modifications of fibrinogen: implications for clotting, fibrin structure and degradation. MOLECULAR BIOMEDICINE 2024; 5:45. [PMID: 39477884 PMCID: PMC11525374 DOI: 10.1186/s43556-024-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Fibrinogen, a blood plasma protein with a key role in hemostasis and thrombosis, is highly susceptible to post-translational modifications (PTMs), that significantly influence clot formation, structure, and stability. These PTMs, which include acetylation, amidation, carbamylation, citrullination, dichlorination, glycation, glycosylation, guanidinylation, hydroxylation, homocysteinylation, malonylation, methylation, nitration, oxidation, phosphorylation and sulphation, can alter fibrinogen biochemical properties and affect its functional behavior in coagulation and fibrinolysis. Oxidation and nitration are notably associated with oxidative stress, impacting fibrin fiber formation and promoting the development of more compact and resistant fibrin networks. Glycosylation and glycation contribute to altered fibrinogen structural properties, often resulting in changes in fibrin clot density and susceptibility to lysis, particularly in metabolic disorders like diabetes. Acetylation and phosphorylation, influenced by medications such as aspirin, modulate clot architecture by affecting fiber thickness and clot permeability. Citrullination and homocysteinylation, although less studied, are linked to autoimmune conditions and cardiovascular diseases, respectively, affecting fibrin formation and stability. Understanding these modifications provides insights into the pathophysiology of thrombotic disorders and highlights potential therapeutic targets. This review comprehensively examines the current literature on fibrinogen PTMs, their specific sites, biochemical pathways, and their consequences on fibrin clot architecture, clot formation and clot lysis.
Collapse
Affiliation(s)
- Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy.
| |
Collapse
|
3
|
Giurranna E, Nencini F, Bettiol A, Borghi S, Argento FR, Emmi G, Silvestri E, Taddei N, Fiorillo C, Becatti M. Dietary Antioxidants and Natural Compounds in Preventing Thrombosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:11457. [PMID: 39519009 PMCID: PMC11546393 DOI: 10.3390/ijms252111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive oxygen species (ROS) contribute to endothelial dysfunction, platelet activation, and coagulation abnormalities, promoting thrombus formation. Given the growing interest in non-pharmacological approaches to modulate oxidative stress, we examine the potential of various dietary interventions and antioxidant supplementation in reducing oxidative damage and preventing thrombotic events. Key dietary patterns, such as the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and ketogenic diets, as well as antioxidant-rich supplements like curcumin, selenium, and polyphenols, demonstrate promising effects in improving oxidative stress markers, lipid profiles, and inflammatory responses. This review highlights recent advances in the field, drawing from in vitro, ex vivo, and clinical studies, and underscores the importance of integrating dietary strategies into preventive and therapeutic approaches for managing thrombosis and cardiovascular health. Further research is needed to better understand long-term effects and personalize these interventions for optimizing patient outcomes.
Collapse
Affiliation(s)
- Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Giacomo Emmi
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| |
Collapse
|
4
|
Pezzotti G, Adachi T, Imamura H, Ikegami S, Kitahara R, Yamamoto T, Kanamura N, Zhu W, Ishibashi KI, Okuma K, Mazda O, Komori A, Komatsuzawa H, Makimura K. Raman Spectroscopic Algorithms for Assessing Virulence in Oral Candidiasis: The Fight-or-Flight Response. Int J Mol Sci 2024; 25:11410. [PMID: 39518963 PMCID: PMC11545699 DOI: 10.3390/ijms252111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to test the effectiveness of Raman spectroscopy in the characterization of the degrees of physiological stress and virulence in clinical swab samples collected from patients affected by oral candidiasis. Raman experiments were conducted on a series of eight isolates, both in an as-collected state and after biofilm purification followed by 3 days of culture. The outputs were matched to optical microscopy observations and the results of conventional chromogenic medium assays. A statistically significant series of ten Raman spectra were collected for each clinical sample, and their averages were examined and interpreted as multiomic snapshots for albicans and non-albicans species. Spectroscopic analyses based on selected Raman parameters previously developed for standard Candida samples revealed an extreme structural complexity for all of the clinical samples, which arose from the concurrent presence of a variety of biofilms and commensal bacteria in the samples, as well as a number of other biochemical circumstances affecting the cells in their physiological stress state. However, three Raman algorithms survived such complexity, which enabled insightful classifications of Candida cells from clinical samples, in terms of their physiological stress and morphogenic state, membrane permeability, and virulence. These three characteristics, in turn, converged into a seemingly "fight or flight" response of the Candida cells. Although yet preliminary, the present study points out criticalities and proposes solutions regarding the potential utility of Raman spectroscopy in fast bedside analyses of surveillance samples.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
- Department of Dentistry, Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Joyo, Kyoto 610-0113, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Ryo Kitahara
- Structural Biology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Kusatsu 525-8577, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Ken-ichi Ishibashi
- Laboratory of Host Defense and Responses, Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Saitama, Sakado, Saitama 350-0288, Japan;
| | - Kazu Okuma
- Department of Microbiology, Graduate School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (T.A.); (O.M.)
| | - Aya Komori
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (A.K.); (K.M.)
- Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Hachijoji, Tokyo 192-0395, Japan
| |
Collapse
|
5
|
Durojaye OA. Delineation of the CENP-LN sub-complex dissociation mechanism upon multisite phosphorylation during mitosis. J Biomol Struct Dyn 2024; 42:8983-9001. [PMID: 37605944 DOI: 10.1080/07391102.2023.2249101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Phosphorylation is the most prevalent form of regulation in cells, organizing virtually all cellular functions, including survival, motility, differentiation, proliferation, and metabolism. This regulatory function has been largely conserved from the primitive single-cell to the more complex multicellular organisms. More than a third of proteins in eukaryotes are phosphorylated, and essentially every class of protein undergoes regulation by phosphorylation. A decline in the cellular level of CENP-L and CENP-N (components of the constitutive centromere associated network) has earlier been reported and linked to cyclin-dependent kinase (CDK) phosphorylation upon transition into mitosis. Given the importance of posttranslational modifications in cell cycle regulation, mechanistic comprehension of the impact of phosphorylation on both proteins (CENP-L and CENP-N) is of high significance. Through the application of diverse computational analytical techniques, including atomistic molecular dynamics simulations, the mechanism of kinetochore mis-localization and dissociation of the CENP-LN sub-complex in mitosis was delineated. We showed that the phosphorylation of both components of the sub-complex induces global conformational destabilizing effects on the proteins, combined with changes in the electrostatic potential and increase in steric clashes around the protein-protein interaction interface. This, consistent with earlier experimental reports, suggest that the multisite phosphorylation of the CENP-LN sub-complex plays a crucial role in the regulation of cell division.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| |
Collapse
|
6
|
Jeong HJ, Picou C, Jeong K, Chung JK. Oxidation Kinetics of Fluorescent Membrane Lipid Peroxidation Indicators. ACS Chem Biol 2024; 19:1786-1793. [PMID: 39037001 DOI: 10.1021/acschembio.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The oxidation of the cellular membrane through lipid peroxidation (LPO) is linked to aging and disease. Despite the physiological importance, the chemical mechanisms underlying LPO and oxidative reactions in membranes in general remain incompletely understood, and challenges exist in translating LPO inhibitor efficacies from in vitro to in vivo. The complexity of LPO, including multiple oxidation reactions in complex membrane environments and the difficulty in quantifying reaction kinetics, underlies these difficulties. In this work, we developed a robust and straightforward method for quantifying the oxidation rate kinetics of fluorescent molecules and determined the oxidation kinetics of widely fluorophores used as indicators of membrane LPO, diphenylhexatriene (DPH), BODIPY-C11, and Liperfluo. The measurement is initiated by lipoxygenase, which provides chemical specificity and enables a straightforward interpretation of oxidation kinetics. Our results reveal that the membrane composition significantly impacts the observed kinetics oxidation in DPH and BODIPY-C11 but not Liperfluo. Reaction mechanisms for their lipid peroxide-induced oxidation are proposed. This work provides a foundation for the quantitative analysis of LPO with fluorescence and extricating the complexity of oxidation reactions within membranes.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Cyrus Picou
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| | - Jean K Chung
- Department of Chemistry, Colorado State University Fort Collins, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Lee SJ, Heo JD, Kim HW, Seong JK, Kim DI, Park KI, Kim GS. Binding affinity screening of polyphenolic compounds in Stachys affinis extract (SAE) for their potential antioxidant and anti-inflammatory effects. Sci Rep 2024; 14:18095. [PMID: 39103443 PMCID: PMC11300793 DOI: 10.1038/s41598-024-68880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Free radical is a marker in various inflammatory diseases. The antioxidant effect protects us from this damage, which also plays an essential role in preventing inflammation. Inflammation protects the body from biological stimuli, and pro-inflammatory mediators are negatively affected in the immune system. Inflammation caused by LPS is an endotoxin found in the outer membrane of Gram-negative bacteria, which induces immune cells to produce inflammatory cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase. Based on this, the antioxidant and anti-inflammatory effects of plant extracts were investigated. First, the main phenolic compounds for the five peaks obtained from Stachys affinis extract (SAE) were identified. The antioxidant effect of each phenolic compound was confirmed through HPLC analysis before and after the competitive binding reaction between DPPH and the extract. Afterward, the anti-inflammatory effect of each phenolic compound was confirmed through competitive binding between COX2 and the extract in HPLC analysis. Lastly, the anti-inflammatory effect of SAE was confirmed through in vitro experiments and also confirmed in terms of structural binding through molecular docking. This study confirmed that phenolic compounds in SAE extract have potential antioxidant and anti-inflammatory effects, and may provide information for primary screening of medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience and Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Il Kim
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae, Gyeongsangnam-do, 52430, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
8
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
9
|
Xu G, Wang J, Mao X, Xu M. 17β-estradiol Inhibits Oxidative Stress-Induced Apoptosis in Endometrial Cancer Cells by Promoting FOXM1 Expression. Cell Biochem Biophys 2024; 82:1243-1251. [PMID: 38724756 DOI: 10.1007/s12013-024-01277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
The steroid hormone 17β-estradiol (E2) has a significant impact on the development and progression of tumors. E2 stimulates tumor cell growth and metabolism, leading to an increase in reactive oxygen species (ROS) production. However, the rise in ROS levels is not sufficient to cause severe harm to cancer cells. and the mechanisms that regulate ROS are not well understood. Since FOXM1 plays a crucial role in the production of ROS, we aimed to investigate the impact of E2 on oxidative stress and the involvement of FOXM1 in the Ishikawa endometrial cancer cell line. Our research revealed that E2 controls the levels of ROS inside cells and safeguards them from apoptosis by promoting the expression of FOXM1. We observed a decrease in the expression of FOXM1 alongside an increase in oxidative damage. Moreover, cells demonstrated elevated levels of FOXM1 and ERα upon E2 treatment. Overall, our findings suggest that E2 prevents apoptosis induced by oxidative stress in endometrial cancer cells by encouraging the expression of FOXM1, potentially affecting ERα.
Collapse
Affiliation(s)
- Ge Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Jiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xiaojie Mao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Maohong Xu
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
10
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
11
|
Sandhya S, Talukdar J, Gogoi G, Dey KS, Das B, Baishya D. Impact of coconut kernel extract on carcinogen-induced skin cancer model: Oxidative stress, C-MYC proto-oncogene and tumor formation. Heliyon 2024; 10:e29385. [PMID: 38665592 PMCID: PMC11043960 DOI: 10.1016/j.heliyon.2024.e29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.
Collapse
Affiliation(s)
- Sorra Sandhya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Joyeeta Talukdar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College and Hospital (AMCH), Assam, India
| | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
- Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, MA, USA
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
12
|
Mao L, Quan Z, Liu ZS, Huang CH, Wang ZH, Tang TS, Li PL, Shao J, Liu YJ, Zhu BZ. Molecular mechanism of the metal-independent production of hydroxyl radicals by thiourea dioxide and H 2O 2. Proc Natl Acad Sci U S A 2024; 121:e2302967120. [PMID: 38547063 PMCID: PMC10998598 DOI: 10.1073/pnas.2302967120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 04/08/2024] Open
Abstract
It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.
Collapse
Affiliation(s)
- Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zhuo Quan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Pei-Lin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China
- Center for Advanced Materials Research, College of Chemistry, Beijing Normal University, Zhuhai519087, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Chemical Resource Engineering, Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
13
|
Madrid Mendoza MF, Almeida Mota J, de Cassia Evangelista de Oliveira F, Cavalcanti BC, Fabio Turco J, Reyes Torres Y, Ferreira PMP, Barros-Nepomuceno FWA, Rocha DD, Pessoa C, de Moraes Filho MO. Ethanolic extract from leaves of tithonia diversifolia induces apoptosis in HCT-116 cells through oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:275-293. [PMID: 38285019 DOI: 10.1080/15287394.2024.2308256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Tithonia diversifolia is a perennial bushy plant found in South America with significant ethnopharmacological importance as an antimalarial, antidiabetic, antibacterial, and anticancer agent. The aim of the present study was to determine the cytotoxicity of the ethanolic extract from leaves of T. diversifolia (TdE) on human cancer cell lines (HCT-116, SNB-19, NCIH-460 and MCF-7), as well as the mechanism of action involved in cell death and cellular modulation of oxidative stress. The TdE exhibited significant activity with IC50 values ranging from 7.12 to 38.41 μg/ml, with HCT-116 being the most sensitive cell line. Subsequent experiments were conducted with HCT-116 cell line. TdE decreased the number of viable cells, followed by induction of apoptotic events, increase in mitochondrial membrane permeabilization, and enhanced G2/M phase of the cell cycle. Pro-oxidative effects including elevated acidic vesicular organelle formation, lipid peroxidation, and nitric oxide by-products, as well as reduced levels of intracellular glutathione and reactive oxygen species production were also observed following incubation with TdE, which may lead to DNA damage followed by apoptotic cell death. These results demonstrate the potential of TdE ethanolic leaf extraction for biological activity and enhance the importance of continuing to study natural sources of plants for the development of anticancer agents.
Collapse
Affiliation(s)
| | - Jessica Almeida Mota
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - João Fabio Turco
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Yohandra Reyes Torres
- Department of Chemistry, Midwestern State University of Guarapuava, Guarapuava, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
14
|
Honey O, Nihad SAI, Rahman MA, Rahman MM, Islam M, Chowdhury MZR. Exploring the antioxidant and antimicrobial potential of three common seaweeds of Saint Martin's Island of Bangladesh. Heliyon 2024; 10:e26096. [PMID: 38404817 PMCID: PMC10884863 DOI: 10.1016/j.heliyon.2024.e26096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Antioxidants, which have long been deemed an indispensable guardian of human health, play a pivotal role in bolstering the body's defense against a plethora of diseases. Three well-recognized seaweeds in Bangladesh, including Caulerpa racemosa, Padina tetrastromatica, and Hypnea musciformis, were subjected to meticulous analysis to reveal their phytochemical composition, antioxidant activity, and antimicrobial efficacy using advanced spectroscopic and disc diffusion methods. Intriguingly, we observed that C. racemosa emerges as frontrunners, possessing a substantial arsenal of phenol (143.08 ± 18.51 mg gallic acid equivalent g─1) and flavonoid (63.79 ± 2.16 mg rutin equivalent g─1). More fundamentally, C. racemosa exhibits a notable enrichment in the content of tannin (73.58 mg RE g─1) and chlorophyll (13.50 mg g─1), as well as, antioxidant capacity (4457.67 μg g─1). P. tetrastromatica, on the other hand, displayed commendable effectiveness in scavenging the DPPH radical, with percentages ranging from 53.98 to 62.17%. In terms of hydroxyl radical (OH•) scavenging activity, C. racemosa exhibited the highest efficacy at 400 g mL─1. Fascinatingly, C. racemosa exhibited an impressive antioxidant potential, as evidenced by its exceptionally low IC50 value of 5.58 μg mL-1 for OH• scavenging, whereas P. tetrastromatica showed impressively low value of 0.96 μg mL-1 for DPPH scavenging. Although the three seaweeds demonstrated limited efficacy against a spectrum of five human pathogenic bacteria, their potential as abundant sources of antioxidants remains unscathed. Notably, heatmap and PCA analysis revealed that C. racemosa and P. tetrastromatica emerge as the leading contender for studied antioxidant compounds, demonstrating their proclivity for antioxidant extraction, a trait that could be exploited for large-scale production of these valuable compounds.
Collapse
Affiliation(s)
- Omma Honey
- Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
| | | | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Bangladesh
| | - Md. Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mahibul Islam
- Department of Marine Sciences, University of Gothenburg, Sweden
| | | |
Collapse
|
15
|
Avola R, Graziano ACE, Madrid A, Clericuzio M, Cardile V, Russo A. Pholiotic acid promotes apoptosis in human metastatic melanoma cells. Chem Biol Interact 2024; 390:110894. [PMID: 38301881 DOI: 10.1016/j.cbi.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Mushrooms produce a great variety of secondary metabolites that can be successful in both prevention and treatment of various cancers. In particular, higher Basidiomycete mushrooms contain various types of biologically active low-molecular compounds in fruiting bodies with suggested anticarcinogenic effects. The polyamine analogue {(2R)-2-[(S)-3-hydroxy-3-methylglutaryloxy] putrescine dicinnamamide} indicated with the name pholiotic acid, isolated for the first time by us from the fruiting bodies of the Basidiomycete Pholiota spumosa (Fr.) Sing. (Strophariaceae), inhibited the viability of human prostate cancer cells, such as other polyamine synthetic analogues that have shown antitumor activity in several types of cancer, including melanoma. Melanoma is an aggressive skin cancer that can metastasize to other organs and presents a high resistance to conventional therapies. In light of these considerations, the present study was therefore designed to assess whether this putrescine derivative could inhibit the growth of human metastatic melanoma cell lines, M14 and A2058. The results obtained demonstrate that this natural compound, at 12.5-50 μM concentration, was able to reduce cell viability of both cancer cells inducing cell death by intrinsic apoptotic pathway that probably involves PTEN activity, inhibition of Hsp70 expression and reactive oxygen species production. On the other hand, the increased expression of enzymes involved in polyamine catabolism trigger apoptotic cell death leading to polyamine depletion and generation of reactive oxygen species as by-products. In conclusion, these findings, starting point for further investigation, implement available our data to support pholiotic acid as an attractive potential chemopreventive agent, and provide a basis for further research into the use of this polyamine derivative as potential anticancer agent for melanoma in combination with existing therapies to improve treatment efficacy and overcome the obstacle of drug resistance.
Collapse
Affiliation(s)
- R Avola
- Faculty of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - A C E Graziano
- Faculty of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - A Madrid
- Dept. de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, 2340000, Chile
| | - M Clericuzio
- Dept. of Science and Technological Innovation, University of Piemonte Orientale, V.le T. Michel 11, 15121, Alessandria, Italy
| | - V Cardile
- Dept. of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123, Catania, Italy
| | - A Russo
- Dept. of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
16
|
Cui Y, Wang D, Nobile CJ, Dong D, Ni Q, Su T, Jiang C, Peng Y. Systematic identification and characterization of five transcription factors mediating the oxidative stress response in Candida albicans. Microb Pathog 2024; 187:106507. [PMID: 38145792 PMCID: PMC10872297 DOI: 10.1016/j.micpath.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes superficial and systemic infections, particularly in immunocompromised individuals. In response to C. albicans infection, innate immune cells of the host produce and accumulate reactive oxygen species (ROS), which can lead to irreversible damage and apoptosis of fungal cells. Several transcription factors involved in this oxidative stress response have been identified; however, a systematic study to identify the transcription factors that mediate the oxidative stress response has not yet been conducted. Here, we screened a comprehensive transcription factor mutant library consisting of 211 transcription factor deletion mutant strains in the presence and absence of hydrogen peroxide (H2O2), a potent ROS inducer, and identified five transcription factors (Skn7, Dpb4, Cap1, Dal81, and Stp2) that are sensitive to H2O2. Genome-wide transcriptional profiling revealed that H2O2 induces a discrete set of differentially regulated genes among the five identified transcription factor mutant strains. Functional enrichment analysis identified KEGG pathways pertaining to glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, and ribosome synthesis as the most enriched pathways. GO term analysis of the top common differentially expressed genes among the transcription factor mutant strains identified hexose catabolism and iron transport as the most enriched GO terms upon exposure to H2O2. This study is the first to systematically identify and characterise the transcription factors involved in the response to H2O2. Based on our transcriptional profiling results, we found that exposure to H2O2 modulates several downstream genes involved in fungal virulence. Overall, this study sheds new light on the metabolism, physiological functions, and cellular processes involved in the H2O2-induced oxidative stress response in C. albicans.
Collapse
Affiliation(s)
- Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Shukla A, Khan MGM, Cayarga AA, Namvarpour M, Chowdhury MMH, Levesque D, Lucier JF, Boisvert FM, Ramanathan S, Ilangumaran S. The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:292. [PMID: 38254783 PMCID: PMC10814246 DOI: 10.3390/cancers16020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Md Gulam Musawwir Khan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mohammad Mobarak H. Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
18
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Ghorbani F, Mazidimoradi A, Biyabani A, Allahqoli L, Salehiniya H. Role of NADPH Quinone Reductase 1 (NQO1) Polymorphism in Prevention, Diagnosis, and Treatment of Gastrointestinal Cancers. Curr Cancer Drug Targets 2024; 24:1213-1221. [PMID: 38318828 DOI: 10.2174/0115680096283149240109094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
Most cancer deaths are related to gastrointestinal (GI) cancers. Several environmental and genetic factors are effective in the occurrence of GI cancers, such as esophageal, stomach, colorectal, liver, and pancreatic cancers. In addition to risk factors related to lifestyle, reactive oxygen species (ROS) also play a role in GI cancers, and an increase in the amount of free radicals can lead to oxidative stress and increase the probability of malignancies. NQO1 is part of the body's antioxidant defense system that protects cells against mutagenesis and carcinogenesis. NQO1 is responsible for reducing quinones to hydroquinone and preventing the generation of ROS by catalyzing the reaction. The existence of single nucleotide polymorphisms (SNPs) of NADPH Quinone Reductase 1 (NQO1), such as 609C>T NQO1, leads to a decrease in NQO1 enzyme activity. Some NQO1 polymorphisms may increase the risk of gastrointestinal cancer. So, the C609T polymorphism in the NQO1 gene has been found to be effective in causing gastrointestinal cancers. On the other hand, it is very important to know the role of biomarkers in the prognosis and management of cancer treatment. Therefore, this study investigated the role of NQO1 as a biomarker in the management of gastrointestinal cancers (prevention, diagnosis and treatment).
Collapse
Affiliation(s)
- Fereshte Ghorbani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
20
|
Kumar N, Thorat ST, Gite A, Patole PB. Synergistic effect of nickel and temperature on gene expression, multiple stress markers, and depuration: an acute toxicity in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123729-123750. [PMID: 37991621 DOI: 10.1007/s11356-023-30996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Aquatic animals are prone to extinction due to metal pollution and global climate change. Even though the fish and their products are also unsafe for human consumption, their exports have been rejected due to inorganic and organic contaminants. Nickel (Ni) is a metal that induces toxicity and accumulates in the aquatic ecosystem, posing health threats to humans, animals, and fish. In light of the above, our present investigation aimed to determine the median lethal concentration (96 h-LC50) of nickel alone and concurrent with high temperature (34 °C) (Ni + T) using static non-renewable bioassay toxicity test in Pangasianodon hypophthalmus. The groups treated under exposure to Ni reared under control condition (25-28.9 °C) and Ni + T exposure group reread under 34 °C. In this study, chose the definitive dose of Ni and Ni + T as 17, 18, 19, and 20 mg L-1 after the range finding test. The median lethal concentration of Ni and Ni + T was determined as 19.38 and 18.75 mg L-1, respectively at 96 h. Oxidative stress viz. catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferase (GST), and glutathione peroxidase (GPx) in the liver, gill, and kidney were noticeably elevated with Ni and Ni + T during 96 h. Whereas, the CAT, GPx, and SOD gene expressions were significantly upregulated with Ni and Ni + T. Trilox equivalent anti-oxidant capacity (TEAC), cupric reducing anti-oxidant capacity (CUPRIC), ferric reducing ability of plasma (FRAP), ethoxy resorufin-O-deethylase (EROD), and acetylcholine esterase (AChE) were reduced due to exposure to Ni and Ni + T. Cellular metabolic stress and lipid peroxidation were highly affected due to Ni and Ni + T exposure. The immunological status, as indicated by total protein, albumin, globulin, A:G ratio, and nitro blue tetrazolium chloride (NBT), was severely affected by the toxicity of Ni and Ni + T. Moreover, the gene expression of interleukin (IL), tumor necrosis factor (TNFα), toll-like receptor (TLR), and total immunoglobulin (Ig) was remarkably downregulated following exposure to Ni and Ni + T. HSP 70, iNOS expression, ATPase, Na + /K + -ATPase, cortisol, and blood glucose was significantly elevated with Ni and Ni + T in P. hypophthalmus. The bioaccumulation of Ni in fish tissues and experimental water was determined. The kidney and liver tissues were highly accumulated with Ni, whereas DNA damage was reported in gill tissue. Interestingly, depuration study revealed that at the 28th day, the Ni bioaccumulation was below the maximum residue limit (MRL) level. Therefore, the present study revealed that Ni and Ni + T led to dysfunctional gene and metabolic regulation affecting physiology and genotoxicity. The bioaccumulation and depuration results also indicate higher residual occurrence of Ni in water and aquatic organisms for longer periods.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
| | - Supriya T Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| | - Pooja B Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| |
Collapse
|
21
|
Jiang Y, Clavaguéra C, Indrajith S, Houée-Levin C, Berden G, Oomens J, Scuderi D. OH Radical-Induced Oxidation in Nucleosides and Nucleotides Unraveled by Tandem Mass Spectrometry and Infrared Multiple Photon Dissociation Spectroscopy. Chemphyschem 2023; 24:e202300534. [PMID: 37713246 DOI: 10.1002/cphc.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
OH⋅-induced oxidation products of DNA nucleosides and nucleotides have been structurally characterized by collision-induced dissociation tandem mass spectrometry (CID-MS2 ) and Infrared Multiple Photon Dissociation (IRMPD) spectroscopy. CID-MS2 results have shown that the addition of one oxygen atom occurs on the nucleobase moiety. The gas-phase geometries of +16 mass increment products of 2'-deoxyadenosine (dA(O)H+ ), 2'-deoxyadenosine 5'-monophosphate (dAMP(O)H+ ), 2'-deoxycytidine (dC(O)H+ ), and 2'-deoxycytidine 5'-monophosphate (dCMP(O)H+ ) are extensively investigated by IRMPD spectroscopy and quantum-chemical calculations. We show that a carbonyl group is formed at the C8 position after oxidation of 2'-deoxyadenosine and its monophosphate derivative. For 2'-deoxycytidine and its monophosphate derivative, the oxygen atom is added to the C5 position to form a C-OH group. IRMPD spectroscopy has been employed for the first time to provide direct structural information on oxidative lesions in DNA model systems.
Collapse
Affiliation(s)
- Yining Jiang
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Suvasthika Indrajith
- Stockholm University, Roslagstullsbacken 21 C, plan 4, Albano, Fysikum, 106 91, Stockholm, Sweden
| | - Chantal Houée-Levin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box, 94157, Amsterdam, 1090 GD, The Netherlands
| | - Debora Scuderi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| |
Collapse
|
22
|
Zou M, Liang Q, Zhang W, Zhu Y, Xu Y. Causal association between dietary factors and esophageal diseases: A Mendelian randomization study. PLoS One 2023; 18:e0292113. [PMID: 38019753 PMCID: PMC10686502 DOI: 10.1371/journal.pone.0292113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Using Mendelian randomization (MR) approach, our objective was to determine whether there was a causal association between dietary factors and gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), or esophageal cancer (EC). METHODS Genome-wide association study (GWAS) data for eighteen types of dietary intake were obtained from the UK Biobank. GWAS data for GERD, BE, and EC were sourced from the FinnGen consortium. We performed univariable and multivariable MR analysis to assess the cause effect between dietary factors and esophageal diseases. MR results were expressed as odds ratios (OR) with 95% confidence intervals (CI). RESULTS Raw vegetable intake was associated with a lower risk of GERD (OR = 0.478; P = 0.011). On the contrary, cooked vegetable intake increased the risk of GERD (OR = 1.911; P = 0.024). Bread intake was associated with increased odds of BE (OR = 6.754; P = 0.007), while processed meat intake was associated with reduced risk of BE (OR = 0.210; P = 0.035). We also observed evidence that increased consumption of dried fruit (OR = 0.087; P = 0.022) and salt added to food (OR = 0.346; P = 0.045) could prevent EC. The results of multivariable MR showed that the protective effect of consumption of salt added to food on EC was no longer significant after adjusting for the consumption of dried fruit. CONCLUSION Vegetable consumption was associated with GERD, whereas consumption of bread and processed meat was associated with BE. Dried fruit intake was associated with a lower risk of EC, and the protective effect of consumption of salt added food on EC may also be mediated by consumption of dried fruit. Future research should be performed to investigate the mechanisms behind these cause-and-effect relationships to reduce the burden of disease caused by dietary habits.
Collapse
Affiliation(s)
- Menglong Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiaoli Liang
- Zhuhai Second Hospital of Chinese Medicine, Zhuhai, Guangdong, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
García-Santos WH, Mayorquín-Torres MC, Maldonado-Domínguez M, Medina-Campos ON, Pedraza-Chaverri J, Iglesias-Arteaga MA. Mechanistic Insights on Pd-Catalyzed Three-Component Reactions of Alkynols, Methyl Orthoformate, and Salicylaldehyde Derivatives. Application to the Synthesis of Steroid Chroman Ketals and Spiroketals with Antioxidant Activity. J Org Chem 2023; 88:14860-14873. [PMID: 37877558 DOI: 10.1021/acs.joc.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Contrary to our previous report in which a Pd-catalyzed three-component reaction of a steroid alkynol, trimethyl orthoformate, and salicylaldehyde exclusively produced chroman ketals, the same reaction employing 2,5-dihydroxysalicylaldehyde led to a mixture of a chroman ketal and a spiroketal. Provided that both courses of the reaction imply a 4 + 2 inverse demand cycloaddition between an o-quinone methide and an enol ether, density functional theory calculations revealed that the chroman ketal/spiroketal selectivity is governed by both, the rate of the formation of the o-quinone methide and the isomerization of the initially produced exocyclic enol ether─that led to the spiroketal─to its endocyclic partner that produces the chroman ketal. Remarkably, Lewis catalysis is central to the observed reactivity, and the availability of plausible catalytic species controls the overall chemoselectivity. The methodology herein applied and scrutinized enriches the palette of reactions, leading to increased molecular complexity, as demonstrated in the obtained products, whose antioxidant activity and detailed NMR characterization are presented.
Collapse
Affiliation(s)
- William H García-Santos
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510 Mexico City, Mexico
| | | | | | - Omar N Medina-Campos
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510 Mexico City, Mexico
| | - Jose Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510 Mexico City, Mexico
| | | |
Collapse
|
24
|
Marques MB, Andrade FRT, Silva EFE, Oliveira BR, Almeida DV, de Souza Votto AP, Marins LF. Effects of chemotherapeutic drugs on the antioxidant capacity of human erythroleukemia cells with MDR phenotype. Mol Cell Biochem 2023; 478:2489-2496. [PMID: 36862256 DOI: 10.1007/s11010-023-04678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
In this work, we identified that different chemotherapeutic drugs may select cells with different antioxidant capacities. For this, we evaluated the sensitivity of two multidrug-resistant (MDR) erythroleukemia cell lines: Lucena (resistant to vincristine, VCR) and FEPS (resistant to daunorubicin, DNR) derived from the same sensitive cell K562 (non-MDR) to hydrogen peroxide. In addition, we evaluated how the cell lines respond to the oxidizing agent in the absence of VCR/DNR. In absence of VCR, Lucena drastically decreases cell viability when exposed to hydrogen peroxide, while FEPS is not affected even without DNR. To analyze whether selection by different chemotherapeutic agents may generate altered energetic demands, we analyzed the production of reactive oxygen species (ROS) and the relative expression of the glucose transporter 1 gene (glut1). We observed that the selection through DNR apparently generates a higher energy demand than VCR. High levels of transcription factors genes expression (nrf2, hif-1α, and oct4) were kept even when the DNR is withdrawn from the FEPS culture for one month. Together, these results indicate that DNR selects cells with greater ability to express the major transcription factors related to the antioxidant defense system and the main extrusion pump (ABCB1) related to the MDR phenotype. Taking into account that the antioxidant capacity of tumor cells is closely related to resistance to multiple drugs, it is evident that endogenous antioxidant molecules may be targets for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Maiara Bernardes Marques
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
- Laboratory of Cell Culture, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Filipe Reis Teodoro Andrade
- Laboratory of Experimental Psychology, Neuroscience and Behavior, Institute of Psychology, Federal University of Rio Grande Do Sul -UFRGS, Rua Ramiro Barcelos, 2600 Sala 206, Porto Alegre, RS, CEP 90035003, Brazil.
| | - Estela Fernandes E Silva
- Laboratory of Cell Culture, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Bruno Rodrigues Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Daniela Volcan Almeida
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Ana Paula de Souza Votto
- Laboratory of Cell Culture, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| |
Collapse
|
25
|
Huang K, Xu B. Critical review of the phytochemical profiles and health-promoting effects of the edible mushroom Armillaria mellea. Food Funct 2023; 14:9518-9533. [PMID: 37850245 DOI: 10.1039/d3fo02334f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Research on the nutritional and medicinal properties of wild edible mushrooms has witnessed a significant surge in recent years. Among these mushrooms, Armillaria mellea (AM) stands out due to its abundant biologically active components. The presence of biological compounds in AM, including carbohydrates, sterols, fatty acids, sesquiterpenes, non-hallucinogenic indole compounds and adenosine derivatives, has been demonstrated in previous studies. Notably, specific bioactive substances isolated from AM, such as armillarikin, have exhibited promising anticancer effects. In vitro studies have elucidated the mechanisms behind these effects, further emphasizing the potential of AM in cancer treatment. Consequently, the objective of this study is to provide a comprehensive overview of the phytochemical profiles of AM while thoroughly investigating its therapeutic benefits. Moreover, this research has uncovered novel and effective treatments, including the utilization of ultrasonic disruption extraction in food processing. These findings highlight the potential of AM as a functional food with possible medical applications. By exploring AM's phytochemical composition and therapeutic effects, this study aims to contribute to a deeper understanding of its potential as a valuable natural resource.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Zhuhai Guangdong-Hong Kong Food Safety Testing Co., Ltd, Zhuhai 519087, China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
26
|
de Assis E, Azevedo V, de Lima M, Costa F, Paulino L, Barroso P, Matos M, do Monte A, Donato M, Peixoto C, Godinho A, Freire J, Souza A, Silva J, Silva A. Extract of Cimicifuga racemosa (L.) Nutt protects ovarian follicle reserve of mice against in vitro deleterious effects of dexamethasone. Braz J Med Biol Res 2023; 56:e12811. [PMID: 37792779 PMCID: PMC10515502 DOI: 10.1590/1414-431x2023e12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
The present study aims to investigate if Cimicifuga racemosa (L.) Nutt extract (CIMI) reduces deleterious effects of dexamethasone (DEXA) in ovaries cultured in vitro. Mouse ovaries were collected and cultured in DMEM+ only or supplemented with 5 ng/mL of CIMI, or 4 ng/mL DEXA, or both CIMI and DEXA. The ovaries were cultured at 37.5°C in 5% CO2 for 6 days. Ovarian morphology, follicular ultrastructure, and the levels of mRNA for Bax, Bcl-2, and Caspase-3 were evaluated. The results showed that DEXA reduced the percentage of morphologically normal follicles, while CIMI prevented the deleterious effects caused by DEXA. In addition, DEXA negatively affected the stromal cellular density, while CIMI prevented these adverse effects. Ovaries cultured with DEXA and CIMI showed similar levels of mRNA for Bax, Bcl-2, and Caspase-3 compared to those cultured in control medium, while ovaries cultured with DEXA had increased expression of the above genes. Additionally, the ultrastructure of the ovaries cultured with CIMI was well preserved. Thus, the extract of CIMI was able to prevent the deleterious effects caused by DEXA on cultured mouse ovaries.
Collapse
Affiliation(s)
- E.I.T. de Assis
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - V.A.N. Azevedo
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.F. de Lima
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - F.C. Costa
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - L.R.F.M. Paulino
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - P.A.A. Barroso
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.H.T. Matos
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - A.P.O. do Monte
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - M.A.M. Donato
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - C.A. Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - A.N. Godinho
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.M.O. Freire
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.L.P. Souza
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.R.V. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.W.B. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| |
Collapse
|
27
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
28
|
Tan I, Xu S, Huo J, Huang Y, Lim HH, Lam KP. Identification of a novel mitochondria-localized LKB1 variant required for the regulation of the oxidative stress response. J Biol Chem 2023; 299:104906. [PMID: 37302555 PMCID: PMC10404683 DOI: 10.1016/j.jbc.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
The tumor suppressor Liver Kinase B1 (LKB1) is a multifunctional serine/threonine protein kinase that regulates cell metabolism, polarity, and growth and is associated with Peutz-Jeghers Syndrome and cancer predisposition. The LKB1 gene comprises 10 exons and 9 introns. Three spliced LKB1 variants have been documented, and they reside mainly in the cytoplasm, although two possess a nuclear-localization sequence (NLS) and are able to shuttle into the nucleus. Here, we report the identification of a fourth and novel LKB1 isoform that is, interestingly, targeted to the mitochondria. We show that this mitochondria-localized LKB1 (mLKB1) is generated from alternative splicing in the 5' region of the transcript and translated from an alternative initiation codon encoded by a previously unknown exon 1b (131 bp) hidden within the long intron 1 of LKB1 gene. We found by replacing the N-terminal NLS of the canonical LKB1 isoform, the N-terminus of the alternatively spliced mLKB1 variant encodes a mitochondrial transit peptide that allows it to localize to the mitochondria. We further demonstrate that mLKB1 colocalizes histologically with mitochondria-resident ATP Synthase and NAD-dependent deacetylase sirtuin-3, mitochondrial (SIRT3) and that its expression is rapidly and transiently upregulated by oxidative stress. We conclude that this novel LKB1 isoform, mLKB1, plays a critical role in regulating mitochondrial metabolic activity and oxidative stress response.
Collapse
Affiliation(s)
- Ivan Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianxin Huo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yuhan Huang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Hong-Hwa Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
29
|
Khalil SR, Zheng C, Abou-Zeid SM, Farag MR, Elsabbagh HS, Siddique MS, Azzam MM, Cerbo AD, Elkhadrawey BA. Modulatory effect of thymol on the immune response and susceptibility to Aeromonas hydrophila infection in Nile tilapia fish exposed to zinc oxide nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106523. [PMID: 37058790 DOI: 10.1016/j.aquatox.2023.106523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have many exciting properties that make their use in a continuous increase in various biomedical, industrial, and agricultural applications. This is associated with accumulation in the aquatic ecosystems and fish exposure with consequent deleterious effects. To determine the potential of thymol to counteract the immunotoxic effects of ZnO-NPs, Oreochromis niloticus was exposed to ZnO-NPs (⅕ LC50 =1.14 mg/L, for 28 days) with or without feeding a thymol-incorporated diet (1 or 2 g/kg diet). Our data demonstrated a reduction of aquaria water quality, leukopenia, and lymphopenia with a decrease in serum total protein, albumin, and globulin levels in exposed fish. At the same time, the stress indices (cortisol and glucose) were elevated in response to ZnO-NPs exposure. The exposed fish also revealed a decline in serum immunoglobulins, nitric oxide, and the activities of lysozyme and myeloperoxidase, in addition to reduced resistance to the Aeromonas hydrophila challenge. The RT-PCR analysis showed downregulation of antioxidant (SOD) superoxide dismutase and (CAT) catalase gene expression in the liver tissue with overexpression of the immune-related genes (TNF-α and IL-1β). Importantly, we found that thymol markedly protected against ZnO-NPs-induced immunotoxicity in fish co-supplemented with thymol (1 or 2 g/kg diet) in a dose-dependent manner. Our data confirm the immunoprotective and antibacterial effects of thymol in ZnO-NPs exposed fish, supporting the potential utility of thymol as a possible immunostimulant agent.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| | - Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hesham S Elsabbagh
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mouhamed S Siddique
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | - Basma A Elkhadrawey
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| |
Collapse
|
30
|
Couto-Rodríguez RL, Koh J, Chen S, Maupin-Furlow JA. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants (Basel) 2023; 12:1203. [PMID: 37371933 PMCID: PMC10294847 DOI: 10.3390/antiox12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.
Collapse
Affiliation(s)
- Ricardo L. Couto-Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Jaćević V, Dumanović J, Alomar SY, Resanović R, Milovanović Z, Nepovimova E, Wu Q, Franca TCC, Wu W, Kuča K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023; 492:153549. [PMID: 37209941 DOI: 10.1016/j.tox.2023.153549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Pharmacology and Toxicology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Suliman Y Alomar
- King Saud University, College of Science, Zoology Department, Riyadh, 11451, Saudi Arabia
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023 Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
32
|
Fujii J, Soma Y, Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023; 28:molecules28104085. [PMID: 37241826 DOI: 10.3390/molecules28104085] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Energy transfer to ground state triplet molecular oxygen results in the generation of singlet molecular oxygen (1O2), which has potent oxidizing ability. Irradiation of light, notably ultraviolet A, to a photosensitizing molecule results in the generation of 1O2, which is thought to play a role in causing skin damage and aging. It should also be noted that 1O2 is a dominant tumoricidal component that is generated during the photodynamic therapy (PDT). While type II photodynamic action generates not only 1O2 but also other reactive species, endoperoxides release pure 1O2 upon mild exposure to heat and, hence, are considered to be beneficial compounds for research purposes. Concerning target molecules, 1O2 preferentially reacts with unsaturated fatty acids to produce lipid peroxidation. Enzymes that contain a reactive cysteine group at the catalytic center are vulnerable to 1O2 exposure. Guanine base in nucleic acids is also susceptible to oxidative modification, and cells carrying DNA with oxidized guanine units may experience mutations. Since 1O2 is produced in various physiological reactions in addition to photodynamic reactions, overcoming technical challenges related to its detection and methods used for its generation would allow its potential functions in biological systems to be better understood.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
33
|
Chugunova E, Gibadullina E, Matylitsky K, Bazarbayev B, Neganova M, Volcho K, Rogachev A, Akylbekov N, Nguyen HBT, Voloshina A, Lyubina A, Amerhanova S, Syakaev V, Burilov A, Appazov N, Zhanakov M, Kuhn L, Sinyashin O, Alabugin I. Diverse Biological Activity of Benzofuroxan/Sterically Hindered Phenols Hybrids. Pharmaceuticals (Basel) 2023; 16:ph16040499. [PMID: 37111256 PMCID: PMC10145285 DOI: 10.3390/ph16040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Combining two pharmacophores in a molecule can lead to useful synergistic effects. Herein, we show hybrid systems that combine sterically hindered phenols with dinitrobenzofuroxan fragments exhibit a broad range of biological activities. The modular assembly of such phenol/benzofuroxan hybrids allows variations in the phenol/benzofuroxan ratio. Interestingly, the antimicrobial activity only appears when at least two benzofuroxan moieties are introduced per phenol. The most potent of the synthesized compounds exhibit high cytotoxicity against human duodenal adenocarcinoma (HuTu 80), human breast adenocarcinoma (MCF-7), and human cervical carcinoma cell lines. This toxicity is associated with the induction of apoptosis via the internal mitochondrial pathway and an increase in ROS production. Encouragingly, the index of selectivity relative to healthy tissues exceeds that for the reference drugs Doxorubicin and Sorafenib. The biostability of the leading compounds in whole mice blood is sufficiently high for their future quantification in biological matrices.
Collapse
|
34
|
Usuga A, Rojano BA, Duque JC, Mesa C, Restrepo O, Gomez LM, Restrepo G. Dry food affects the oxidative/antioxidant profile of dogs. Vet Med Sci 2023; 9:687-697. [PMID: 36634249 PMCID: PMC10029885 DOI: 10.1002/vms3.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Including adequate concentrations of antioxidants in dog diets has been recommended to reduce their vulnerability to the action of free radicals and reactive oxygen species (ROS). Oxidative stress in dogs has been associated with a wide range of diseases and disorders, as well as with ageing. There are few reports about the influence of diet on dog's antioxidant profile and oxidative stress. OBJECTIVE The objective of this study was to evaluate the effect of four types of dry dog food on the oxidative/antioxidant profile of dogs. METHODS Six Beagle dog males were used. The study included four experimental diets (dry foods A-D). Each dry food was supplied for 5 weeks to all dogs, for a total of 24 weeks, including an adaptation week between one food and another. For each dry dog food, the total phenolic content (TPC), total antioxidant capacity (TAC) and cytotoxicity were evaluated. Each week, a blood sample was collected to measure ROS and TAC of plasma. A crossover repeated measures design was used. Mixed models were adjusted, and means were compared using the Tukey test. RESULTS Food A had the highest values for TPC and TAC. Food C had the lowest levels of ROS, whereas food B had the highest TAC in the blood plasma. The dog had a significant influence on the redox state of its blood plasma, even when the same dog was fed the different dry foods. CONCLUSION Dry dog food influences the oxidative/antioxidant profile of dog's blood plasma; however, this seems to be unrelated to the antioxidant profile of the food.
Collapse
Affiliation(s)
- Alexandra Usuga
- Faculty of Veterinary Medicine and Animal Science, Universidad CES, Medellín, Antioquia, Colombia
| | | | | | - Carolina Mesa
- Nutri-Solla Research Group, Solla S.A., Itagüí, Antioquia, Colombia
| | - Oliver Restrepo
- Nutri-Solla Research Group, Solla S.A., Itagüí, Antioquia, Colombia
| | | | - Giovanni Restrepo
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
35
|
Tarshish E, Hermoni K. Beauty from within: Improvement of skin health and appearance with Lycomato a tomato-derived oral supplement. J Cosmet Dermatol 2023; 22:1786-1798. [PMID: 36860176 DOI: 10.1111/jocd.15650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
BACKROUND Healthy and a youthful appearance is a common desire of the aging population. "Beauty from within" involves using nutrition and nutraceuticals to support skin function for reducing and reversing signs of aging such as wrinkles, pigmentary changes, skin laxity, and dullness. Carotenoids possess strong antioxidant and anti-inflammatory activities and are effective in improving skin barrier and could thereby stimulate "beauty from within" by providing endogenous support to reduce the expressions of aging. AIM This study was designed to determine whether 3-month supplementation with Lycomato would improve skin condition. METHOD A panel of 50 female subjects used Lycomato capsules as nutritional supplements for 3 months. Skin status was observed via questionnaires for the assessment of skin condition and expert visual grading of facial markers such as wrinkles, tonality, roughness, laxity, and pore size. Skin barrier was assessed using transepidermal water loss (TEWL). Measurements were obtained before treatment and after 4 and 12 weeks of use. RESULTS Results indicated a statistically significant improvement (p < 0.05) in skin barrier as measured by TEWL after 12 weeks of consuming the supplement. There was also a significant improvement in skin tonality, lines and wrinkles, pore size, and skin firmness as observed by expert evaluation as well as subject self-assessment. CONCLUSION Based on the confines and conditions of this study, oral supplementation with Lycomato resulted in significant improvement in skin barrier. Visual appearance of lines and wrinkles, skin tonality, pores, smoothness, and firmness were considerably improved, and these improvements were found to be substantially discernible by the subjects.
Collapse
|
36
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
37
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
38
|
Platelet Concentration and Platelet/Lymphocyte Ratio as Prognostic Indicators in Luminal Breast Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2023. [DOI: 10.3390/jmp4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ratios between the blood cells are indirect measures of the imbalance in the pro-inflammatory status observed in carcinogenesis and have been proposed as accessible and feasible biomarkers to predict cancer prognosis. We aim to evaluate the prognostic significance of neutrophil/lymphocyte (NLR), monocyte/lymphocyte (MLR), and platelet/lymphocyte (PLR) ratios in Brazilian patients with luminal breast cancer (LBC) treated with tamoxifen. A retrospective cohort of 72 operable LBC patients. Preoperative leukocyte and platelet absolute values permitted to calculate NLR, MLR, and PLR. Area under curve (ROC) determined the cutoff value associated with relapse and death. Univariate and multivariate analyses were used to assess the relationship of the platelet and PLR to disease-free survival (DFS) and overall survival (OS). Lower DFS was associated with >297 × 103/mm3 (54 vs. 60.9 months in <297, p = 0.04). Platelet > 279 × 103/mm3 are related to higher OS (p = 0.03). Univariate analysis revealed that platelet concentration was associated with DFS (p = 0.04) and OS (p = 0.04), but not as an independent factor (HR = 1.31, 95%CI: 0.42–4.07, p = 0.65) and OS (HR = 1.64, 95%CI: 0.28–9.52, p = 0.58). Both univariate (p = 0.01) and multivariate analysis revealed that PLR < 191.5 was a significant independent predictor of higher OS/better prognosis (HR = 16.16, 95%CI: 2.83–109.25, p = 0.00). Pretreatment platelet indices (absolute count and PLR) are prognosis predictors in LBC patients. Platelet > 279 × 103/mm3 and PRL < 191.5 was associated with a higher OS, with the PRL being an independent predictor of higher OS.
Collapse
|
39
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
40
|
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8373406. [PMID: 36942197 PMCID: PMC10024631 DOI: 10.1155/2023/8373406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/14/2023] [Accepted: 02/08/2023] [Indexed: 03/13/2023]
Abstract
The present study determines the possible protective role of fig fruit extract with olive oil and date palm fruit extract (FOD) in decreasing the oral subchronic blood and cardiovascular toxicity of SiO2NPs, Al2O3NPs, or ZnONPs. The present study used 80 male Wistar rats (8 groups, n = 10) distributed according to the treatment. The FOD treatments were used at their recommended antioxidant doses. All nanoparticles (NPs) were given orally and daily at doses of 100 mg/kg for 75 days. The oral administration of different NPs alone led to dramatic, oxidative stress, inflammatory markers, blood coagulation, endothelial dysfunction markers, myocardial enzymes, hematological parameters, lipid profile, and histopathological features compared with the control group. The FOD-NP-treated groups recorded significantly ameliorated blood and cardiovascular toxicity hazards compared to the groups administered with the NPs alone. In conclusion, the administration of FOD provides considerable chemopreventive and ameliorative effects against NP toxicity.
Collapse
Affiliation(s)
- Riyadh Musaed Naji
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
- 2Department of Zoology, Faculty of Science and Education, Aden University, Yemen
| | - Mohamed A. Bashandy
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Abdallah H. Fathy
- 3Department of Animal House Facility, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
41
|
Fejér J, Gruľová D, Eliašová A, Kron I. Seasonal Variability of Juniperus communis L. Berry Ethanol Extracts: 2. In Vitro Ferric Reducing Ability of Plasma (FRAP) Assay. Molecules 2022; 27:molecules27249027. [PMID: 36558161 PMCID: PMC9787287 DOI: 10.3390/molecules27249027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, the seasonal variability of the in vitro ferric reducing ability of plasma (FRAP), total phenols, and terpene hydrocarbon content in 70% ethanol extracts were evaluated. The samples of crushed (CBs) and non-crushed ripe juniper berries (NCBs) collected at five localities in North-East Slovakia during the years 2012-2014 were compared. The method of preparation of the extract influenced the amount of dry matter (DM) in the extracts. In the CB extracts were statistically higher contents of DM (from 13.91 ± 0.11 g·L-1 to 23.84 ± 0.14 g·L-1) compared to NCB extracts (from 1.39 ± 0.01 g·L-1 to 16.55 ± 0.09 g·L-1). The differences in antioxidant activity between the investigated localities were statistically significant for both types of extract. For example, in 2013 in the locality of Zbojné, the FRAP in NCBs was 76.62 µmol·L-1·g-1 DM and in CBs was 138.27 µmol·L-1·g-1 DM, while in the Miľpoš locality, in NCBs there was 232.66 µmol·L-1·g-1 DM and in CBs there was 1178.98 µmol·L-1·g-1 DM. The differences in the antioxidant activity between the studied years in the case of NCB extracts were not statistically significant. In the case of CB extracts, significant differences between the evaluated years were found. Statistics by ANOVA confirmed that CB extracts prepared from berries in the year 2013 showed significantly higher activity compared to CB extracts from berries from the years 2012 and 2014. Based on the Pearson we found a negative correlation coefficient between the FRAP assay and the content of total polyphenols in NCB extracts (-0.531 in 2012; -0.349 in 2013; and -0.224 in 2014). In contrast, CB extracts showed a positive correlation coefficient (0.843 in 2012; 0.742 in 2013; 0.617 in 2014).
Collapse
Affiliation(s)
- Jozef Fejér
- Faculty of Humanities and Natural Sciences, Department of Ecology, University of Presov, 17. Novembra 1, 08001 Presov, Slovakia
| | - Daniela Gruľová
- Faculty of Humanities and Natural Sciences, Department of Ecology, University of Presov, 17. Novembra 1, 08001 Presov, Slovakia
- Correspondence:
| | - Adriana Eliašová
- Faculty of Humanities and Natural Sciences, Department of Ecology, University of Presov, 17. Novembra 1, 08001 Presov, Slovakia
| | - Ivan Kron
- Training & Consulting Ltd., 01001 Žilina, Slovakia
| |
Collapse
|
42
|
Zhang AB, Jin L, Wang QM, Wang WL, Chen YL. Two smart coumarin-based fluorescent probes with AIE effect for sensing ClO - and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121690. [PMID: 35985228 DOI: 10.1016/j.saa.2022.121690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
It's worth noting that detect effective methods for tracking ClO- could help us uncover the function of ClO- in living systems. Here, two coumarin-based probes, named (E)-3-(1-hydrazonoethyl)-2H-chromen-2-one (1A) and 3-((E)-1-(((E)-(2,3-dihydro-1H-imidazol-4-yl)methylene)-hydrazono)ethyl)- 2H-chromen-2-one (1B) with aggregation-induced emission (AIE) effect in Tris-HCl (pH = 7.2) buffer solution were synthesized and used for sensing ClO- selectivity. 1A and 1B responded to ClO- through the oxidation hydrolysis effect. The mechanism was further verified by HR-MS and DFT calculation. Cell imaging indicated that 1A and 1B were good membrane permeability with low toxicity to HEK293T, and expected to be used to detect ClO- in cells.
Collapse
Affiliation(s)
- Ao-Bei Zhang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Lei Jin
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Qing-Ming Wang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Wen-Ling Wang
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Yan-Li Chen
- School of Pharmacy, Yancheng Teachers' University, Yancheng, Jiangsu 224007, People's Republic of China
| |
Collapse
|
43
|
Halliwell B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochem Biophys Res Commun 2022; 633:17-19. [DOI: 10.1016/j.bbrc.2022.08.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
|
44
|
Kizatova MY, Baikenov AO, Baigenzhinov KA, Yessimova ZA, Zhusipov AG. The mathematical model of drying melon pulp by the convective method. POTRAVINARSTVO 2022. [DOI: 10.5219/1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Melon is a dessert loved by many, captivating with its thick aroma and delicate honey taste. The juicy, fragrant pulp is not only delicious but also very useful for dietary purposes, with a therapeutic effect on diseases of the liver and kidneys, anaemia, rheumatism and cardiovascular disorders. This storehouse of vitamins is especially rich in potassium and iron salts, pectins, fibre, easily digestible sugars, proteins, starch and other elements necessary for health. This article presents the results of a study of the Myrzachulskaya melon variety and establishes the optimal parameters for drying the pulp, pre-treating melons with 99.5% ethanol before drying. Twenty drying experiments were carried out, in which the parameters of the operating variables, namely temperature, air velocity and sample size, were varied according to the compiled mathematical processing planning matrix. Drying caused a decrease in biologically active compounds, affecting some antioxidant properties (vitamin C content, total phenol content and antioxidant capacity) of melon pulp. As a result, the optimal parameters were established, at which samples of dried melon pulp showed insignificant losses (up to 1%) in the total content of phenolic compounds, carotenoids and ascorbic acid. The optimal parameters for drying melon fruits are a temperature of 55 °C, a drying time of 11 h and a slice thickness of not more than 0.5 cm.
Collapse
|
45
|
Enrichment, analysis, identification and mechanism of antioxidant components in Toona sinensis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Role of Oxidative Stress in Liver Disorders. LIVERS 2022. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
|
47
|
Cram DL. Oxidative stress and cognition in ecology. J Zool (1987) 2022. [DOI: 10.1111/jzo.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. L. Cram
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
48
|
Tarshish E, Hermoni K, Sharoni Y, Muizzuddin N. Effect of Lumenato oral supplementation on plasma carotenoid levels and improvement of visual and experiential skin attributes. J Cosmet Dermatol 2022; 21:4042-4052. [PMID: 35020247 PMCID: PMC9786813 DOI: 10.1111/jocd.14724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cellular metabolism and exposure to solar irradiation result in generation of free radicals which are destructive and can lead to premature aging. Antioxidants and free radical scavengers such as carotenoids successfully protect from these free radicals by quenching and neutralizing them thereby strengthening skin barrier which leads to improved skin moisturization, desquamation, and a more youthful look. This study was designed to evaluate the consumer-perceived efficacy of an oral supplement (Lumenato™) containing a mix of tomato carotenoids and oil-soluble vitamins in improving skin appearance after 12 weeks of supplement use. MATERIALS AND METHODS Plasma levels of phytoene, phytofluene, zeta-carotene, and lycopene were quantitated before and after 1-, 2-, 3-, and 4-week administration of Lumenato by 24 healthy volunteers. Part II of the study addressed skin visual attributes as assessed by validated tools (questionnaires). A total of 60 females, aged 35 to 55 years, completed part II of the study. The subjects answered questionnaires pertaining to their assessment of skin appearance before and after 12 weeks of taking the supplement. RESULTS There was a significant increase (p < 0.001) in plasma levels of phytoene, phytofluene, and zeta-carotene after 1- to 4-week treatment with Lumenato. After 12 weeks of using the supplement, the score of different skin parameters was reported to significantly improve (p < 0.001). Improvement was recorded in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles. A significant (p < 0.001) improvement in overall skin condition after using the supplement was observed. The subjects noticed statistically significant (p < 0.001) improvement in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles after 12 weeks of using the supplement. The overall skin condition also exhibited a significant improvement (p < 0.001). Self-assessed improvement of the face was identified at the first time point (4 weeks) and improved significantly (p < 0.001) for the 12 weeks of use. Interestingly, these improvements persisted even after treatment was stopped. CONCLUSION Based on the confines and conditions of this study, the use of oral supplement containing a mix of tomato carotenoids significantly increased plasma levels of phytoene, phytofluene, and zeta-carotene, and continuous use resulted in improved facial skin attributes which were palpable by the consumers and continued even after treatment was stopped.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | |
Collapse
|
49
|
Novodvorskyi Y, Lega D, Komarov I, Zhuravel I, Moskalenko O, Demchenko A. Synthesis and antioxidant activity of 3-(2-R-ylidenehydrazinyl)-6-tert-butyl-4H-[1,2,4]triazin-5-ones. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthesis and structure elucidation of several series of new hydrazones containing 1,2,4-triazine-5-one core and their antioxidant activity are presented. The target compounds have been synthesized via interaction of either 4-amino-6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(4H)-one or 6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(2H)-one with a wide range of compounds with a carbonyl group in moderate to high yields. Molecular structures of the synthesized compounds were confirmed by 1H NMR, 13C NMR, and elemental analyses. The antioxidant activity of these compounds against ascorbic acid was screened to determine their potential as promising oxidative stress suppressors. Our data showed that hydrazones derived from 4-amino-6-(tert-butyl)-3-hydrazinyl-1,2,4-triazin-5(4H)-one are the most active antioxidants among all tested compounds. Furthermore, 3 compounds of this series have been proved to be twice as active as ascorbic acid does. The conclusions are substantiated for in-depth investigations of these derivatives as promising agents for the treatment of disorders accompanied by oxidative stress.
Collapse
|
50
|
Biegański P, Kovalski E, Israel N, Dmitrieva E, Trzybiński D, Woźniak K, Vrček V, Godel M, Riganti C, Kopecka J, Lang H, Kowalski K. Electronic Coupling in 1,2,3-Triazole Bridged Ferrocenes and Its Impact on Reactive Oxygen Species Generation and Deleterious Activity in Cancer Cells. Inorg Chem 2022; 61:9650-9666. [PMID: 35699521 PMCID: PMC9490837 DOI: 10.1021/acs.inorgchem.2c01110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Mixed-valence (MV)
binuclear ferrocenyl compounds have long been
studied as models for testing theories of electron transfer and in
attempts to design molecular-scale electronic devices (e.g., molecular wires). In contrary to that, far less attention has
been paid to MV binuclear ferrocenes as anticancer agents. Herein,
we discuss the synthesis of six 1,2,3-triazole ferrocenyl compounds
for combined (spectro)electrochemical, electron paramagnetic resonance
(EPR), computational, and anticancer activity studies. Our synthetic
approach was based on the copper-catalyzed 1,3-dipolar azide–alkyne
cycloaddition reaction and enabled us to obtain in one step compounds
bearing either one, two, or three ferrocenyl entities linked to the
common 1,2,3-triazole core. Thus, two series of complexes were obtained,
which pertain to derivatives of 3′-azido-3′-deoxythymidine
(AZT) and 3-azidopropionylferrocene, respectively. Based on the experimental
and theoretical data, the two mono-oxidized species corresponding
to binuclear AZT and trinuclear 3-azidopropionylferrocene complexes
have been categorized as class II mixed-valence according to the classification
proposed by Robin and Day. Of importance is the observation that these
two compounds are more active against human A549 and H1975 non-small-cell
lung cancer cells than their congeners, which do not show MV characteristics.
Moreover, the anticancer activity of MV species competes or surpasses,
dependent on the cell line, the activity of reference anticancer drugs
such as cisplatin, tamoxifen, and 5-fluorouracil. The most active
from the entire series of compounds was the binuclear thymidine derivative
with the lowest IC50 value of 5 ± 2 μM against
lung H1975 cancer cells. The major mechanism of antiproliferative
activity for the investigated MV compounds is based on reactive oxygen
species generation in cancer cells. This hypothesis was substantiated
by EPR spin-trapping experiments and the observation of decreased
anticancer activity in the presence of N-acetyl cysteine
(NAC) free-radical scavenger. The
1,2,3-triazole bridged bi- and triferrocenyl compounds
were prepared via a “click” reaction.
Their corresponding mono-oxidized forms have been categorized as class
II MV species. The biferrocenyl thymidine derivative showed remarkable
anticancer activity against human A549 and H1975 cancer cells and
negligible activity against nonmalignant human BEAS-2B cells. The
anticancer activity mechanism is mainly due to ROS generation, and
it originates from the combination of electronic coupling and the
thymidine moiety, combined all together in one molecular scaffold.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Eduard Kovalski
- Institut für Chemie, Anorganische Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Valerije Vrček
- Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy
| | - Heinrich Lang
- Institut für Chemie, Anorganische Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany.,MAIN Research Center, Technische Universität Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|