1
|
Yu HC, Tseng HYH, Huang HB, Lu MC. Circ-CAMTA1 regulated by Ca 2+ influx inhibited pyruvate carboxylase activity and modulate T cell function in patients with systemic lupus erythematosus. Arthritis Res Ther 2024; 26:185. [PMID: 39473004 PMCID: PMC11520813 DOI: 10.1186/s13075-024-03422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVES To investigate the roles of Ca2+ influx-regulated circular RNAs (circRNAs) in T cells from patients with systemic lupus erythematosus (SLE). METHODS The expression profile of circRNAs in Jurkat cells, co-cultured with and without ionomycin, was analyzed by next-generation sequencing and validated using real-time polymerase chain reaction. The identified Ca2+ influx-regulated circRNAs were further examined in T cells from 42 patients with SLE and 23 healthy controls. The biological function of specific circRNA was investigated using transfection and RNA pull-down assay. RESULTS After validation, we confirmed that the expression levels of circ-ERCC4, circ-NFATC2, circ-MYH10, circ-CAMTA1, circ-ASH1L, circ-SOCS7, and circ-ASAP1 were consistently increased in Jurkat cells following Ca2+ influx. The expression levels of circ-CAMTA1, circ-ASH1L, and circ-ASAP1 were significantly lower in T cells from patients with SLE, with even lower levels observed in those with higher disease activity. Interferon (IFN)-α was found to suppress the expression of circ-CAMTA1. Circ-CAMTA1 bound to pyruvate carboxylase and inhibited its biological activity. Overexpression of circ-CAMTA1, but not its linear form, significantly decreased extracellular glucose levels. Furthermore, increased expression of circ-CAMTA1, but not its linear form, decreased miR-181c-5p expression, resulting increased IL-2 secretion. CONCLUSION Three Ca2+ influx-regulated circ-RNAs-circ-CAMTA1, circ-ASH1L, and circ-ASAP1 -were significantly reduced in T cells from patients with SLE and associated with disease activity. IFN-α suppressed the expression of circ-CAMTA1, which interacted with pyruvate carboxylase, inhibited its activity, affected glucose metabolism, and increased IL-2 secretion. These findings suggest that circ-CAMTA1 regulated by Ca²⁺ influx modulated T cell function in patients with SLE.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Hsien-Yu Huang Tseng
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science, Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.
- School of Medicine, Tzu Chi University, Hualien City, Taiwan.
| |
Collapse
|
2
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024:10.1038/s44321-024-00155-6. [PMID: 39468303 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Liu JY, Kuna RS, Pinheiro LV, Nguyen PTT, Welles JE, Drummond JM, Murali N, Sharma PV, Supplee JG, Shiue M, Zhao S, Farria AT, Kumar A, Ruchhoeft ML, Demetriadou C, Kantner DS, Chatoff A, Megill E, Titchenell PM, Snyder NW, Metallo CM, Wellen KE. Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase. Cell Metab 2024:S1550-4131(24)00410-8. [PMID: 39471816 DOI: 10.1016/j.cmet.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramya S Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn E Welles
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prateek V Sharma
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mauren L Ruchhoeft
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniel S Kantner
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily Megill
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Paul M Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christian M Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Mutlu B, Sharabi K, Sohn JH, Yuan B, Latorre-Muro P, Qin X, Yook JS, Lin H, Yu D, Camporez JPG, Kajimura S, Shulman GI, Hui S, Kamenecka TM, Griffin PR, Puigserver P. Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem Biol 2024; 31:1772-1786.e5. [PMID: 39341205 PMCID: PMC11500315 DOI: 10.1016/j.chembiol.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xin Qin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Lin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - João Paulo G Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Parente AD, Bolland DE, Huisinga KL, Provost JJ. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays Biochem 2024; 68:121-134. [PMID: 38962852 DOI: 10.1042/ebc20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Malate dehydrogenase (MDH) is pivotal in mammalian tissue metabolism, participating in various pathways beyond its classical roles and highlighting its adaptability to cellular demands. This enzyme is involved in maintaining redox balance, lipid synthesis, and glutamine metabolism and supports rapidly proliferating cells' energetic and biosynthetic needs. The involvement of MDH in glutamine metabolism underlines its significance in cell physiology. In contrast, its contribution to lipid metabolism highlights its role in essential biosynthetic processes necessary for cell maintenance and proliferation. The enzyme's regulatory mechanisms, such as post-translational modifications, underscore its complexity and importance in metabolic regulation, positioning MDH as a potential target in metabolic dysregulation. Furthermore, the association of MDH with various pathologies, including cancer and neurological disorders, suggests its involvement in disease progression. The overexpression of MDH isoforms MDH1 and MDH2 in cancers like breast, prostate, and pancreatic ductal adenocarcinoma, alongside structural modifications, implies their critical role in the metabolic adaptation of tumor cells. Additionally, mutations in MDH2 linked to pheochromocytomas, paragangliomas, and other metabolic diseases emphasize MDH's role in metabolic homeostasis. This review spotlights MDH's potential as a biomarker and therapeutic target, advocating for further research into its multifunctional roles and regulatory mechanisms in health and disease.
Collapse
Affiliation(s)
- Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Danielle E Bolland
- Department of Biology, University of Minnesota Morris, Morris, MN 56267, U.S.A
| | - Kathryn L Huisinga
- Department of Chemistry and Biochemistry, Malone University, Canton, OH 44709, U.S.A
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
6
|
Toshniwal AG, Lam G, Bott AJ, Cluntun AA, Skabelund R, Nam HJ, Wisidagama DR, Thummel CS, Rutter J. The fate of pyruvate dictates cell growth by modulating cellular redox potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614588. [PMID: 39386652 PMCID: PMC11463453 DOI: 10.1101/2024.09.23.614588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyruvate occupies a central node in carbohydrate metabolism such that how it is produced and consumed can optimize a cell for energy production or biosynthetic capacity. This has been primarily studied in proliferating cells, but observations from the post-mitotic Drosophila fat body led us to hypothesize that pyruvate fate might dictate the rapid cell growth observed in this organ during development. Indeed, we demonstrate that augmented mitochondrial pyruvate import prevented cell growth in fat body cells in vivo as well as in cultured mammalian hepatocytes and human hepatocyte-derived cells in vitro. This effect on cell size was caused by an increase in the NADH/NAD+ ratio, which rewired metabolism toward gluconeogenesis and suppressed the biomass-supporting glycolytic pathway. Amino acid synthesis was decreased, and the resulting loss of protein synthesis prevented cell growth. Surprisingly, this all occurred in the face of activated pro-growth signaling pathways, including mTORC1, Myc, and PI3K/Akt. These observations highlight the evolutionarily conserved role of pyruvate metabolism in setting the balance between energy extraction and biomass production in specialized post-mitotic cells.
Collapse
Affiliation(s)
- Ashish G Toshniwal
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Geanette Lam
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Present address: Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Rachel Skabelund
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Dona R Wisidagama
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Lead Contact
| |
Collapse
|
7
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
8
|
Timpani CA, Debrincat D, Kourakis S, Boyer R, Formosa LE, Steele JR, Zhang H, Schittenhelm RB, Russell AP, Rybalka E, Lindsay A. Loss of endogenous estrogen alters mitochondrial metabolism and muscle clock-related protein Rbm20 in female mdx mice. FASEB J 2024; 38:e23718. [PMID: 38847487 DOI: 10.1096/fj.202400329r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 11/01/2024]
Abstract
Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Didier Debrincat
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Rebecca Boyer
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Haijian Zhang
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
9
|
Lv L, Li Q, Wang K, Zhao J, Deng K, Zhang R, Chen Z, Khan IA, Gui C, Feng S, Yang S, Liu Y, Xu Q. Discovery of a New Anti-Inflammatory Agent from Anemoside B4 Derivatives and Its Therapeutic Effect on Colitis by Targeting Pyruvate Carboxylase. J Med Chem 2024; 67:7385-7405. [PMID: 38687956 DOI: 10.1021/acs.jmedchem.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.
Collapse
Affiliation(s)
- Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiurong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ran Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suxiang Feng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450018, China
| | - Shilin Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
Deja S, Fletcher JA, Kim CW, Kucejova B, Fu X, Mizerska M, Villegas M, Pudelko-Malik N, Browder N, Inigo-Vollmer M, Menezes CJ, Mishra P, Berglund ED, Browning JD, Thyfault JP, Young JD, Horton JD, Burgess SC. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. Cell Metab 2024; 36:1088-1104.e12. [PMID: 38447582 PMCID: PMC11081827 DOI: 10.1016/j.cmet.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
Collapse
Affiliation(s)
- Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Blanka Kucejova
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Morgan Villegas
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Natalia Pudelko-Malik
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nicholas Browder
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Eric D Berglund
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Internal Medicine and KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
11
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wu X, Yang C, Zou Y, Jones SE, Zhao X, Zhang L, Han Z, Hao Y, Xiao J, Xiao C, Zhang W, Yan P, Cui H, Tang M, Wang Y, Chen L, Zhang L, Yao Y, Liu Z, Li J, Jiang X, Zhang B. Using human genetics to understand the phenotypic association between chronotype and breast cancer. J Sleep Res 2024; 33:e13973. [PMID: 37380357 DOI: 10.1111/jsr.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Little is known regarding the shared genetic influences underlying the observed phenotypic association between chronotype and breast cancer in women. Leveraging summary statistics from the hitherto largest genome-wide association study conducted in each trait, we investigated the genetic correlation, pleiotropic loci, and causal relationship of chronotype with overall breast cancer, and with its subtypes defined by the status of oestrogen receptor. We identified a negative genomic correlation between chronotype and overall breast cancer (r g = -0.06, p = 3.00 × 10-4), consistent across oestrogen receptor-positive (r g = -0.05, p = 3.30 × 10-3) and oestrogen receptor-negative subtypes (r g = -0.05, p = 1.11 × 10-2). Five specific genomic regions were further identified as contributing a significant local genetic correlation. Cross-trait meta-analysis identified 78 loci shared between chronotype and breast cancer, of which 23 were novel. Transcriptome-wide association study revealed 13 shared genes, targeting tissues of the nervous, cardiovascular, digestive, and exocrine/endocrine systems. Mendelian randomisation demonstrated a significantly reduced risk of overall breast cancer (odds ratio 0.89, 95% confidence interval 0.83-0.94; p = 1.30 × 10-4) for genetically predicted morning chronotype. No reverse causality was found. Our work demonstrates an intrinsic link underlying chronotype and breast cancer, which may provide clues to inform management of sleep habits to improve female health.
Collapse
Affiliation(s)
- Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Samuel E Jones
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhitong Han
- School of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Hao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Malik S, Inamdar S, Acharya J, Goel P, Ghaskadbi S. Characterization of palmitic acid toxicity induced insulin resistance in HepG2 cells. Toxicol In Vitro 2024; 97:105802. [PMID: 38431059 DOI: 10.1016/j.tiv.2024.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND An etiology of palmitic acid (PA) induced insulin resistance (IR) is complex for which two mechanisms are proposed namely ROS induced JNK activation and lipid induced protein kinase-C (PKCε) activation. However, whether these mechanisms act alone or in consortium is not clear. METHODS AND RESULTS In this study, we have characterized PA induced IR in liver cells. These cells were treated with different concentrations of PA for either 8 or 16 h. Insulin responsiveness of cells treated with PA for 8 h was found to be same as that of control. However, cells treated with PA for 16 h, showed increased glucose output both in the presence and in absence of insulin only at higher concentrations, indicating development of IR. In these, both JNK and PKCε were activated in response to increased ROS and lipid accumulation, respectively. Activated JNK and PKCε phosphorylated IRS1 at Ser-307 resulting in inhibition of AKT which in turn inactivated GSK3β, leading to reduced glycogen synthase activity. Inhibition of AKT also reduced insulin suppression of hepatic gluconeogenesis by activating Forkhead box protein O1 (FOXO1) and increased expression of the gluconeogenic enzymes and their transcription factors. CONCLUSION Thus, our data clearly demonstrate that both these mechanisms work simultaneously and more importantly, identified a threshold of HepG2 cells, which when crossed led to the pathological state of IR in response to PA.
Collapse
Affiliation(s)
- Sajad Malik
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Shrirang Inamdar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Jhankar Acharya
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Goel
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
14
|
Chade AR, Sitz R, Kelty TJ, McCarthy E, Tharp DL, Rector RS, Eirin A. Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine. Transl Res 2024; 267:67-78. [PMID: 38262578 PMCID: PMC11001533 DOI: 10.1016/j.trsl.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
Cardiovascular disease and heart failure doubles in patients with chronic kidney disease (CKD), but the underlying mechanisms remain obscure. Mitochondria are central to maintaining cellular respiration and modulating cardiomyocyte function. We took advantage of our novel swine model of CKD and left ventricular diastolic dysfunction (CKD-LVDD) to investigate the expression of mitochondria-related genes and potential mechanisms regulating their expression. CKD-LVDD and normal control pigs (n=6/group, 3 males/3 females) were studied for 14 weeks. Renal and cardiac hemodynamics were quantified by multidetector-CT, echocardiography, and pressure-volume loop studies, respectively. Mitochondrial morphology (electron microscopy) and function (Oroboros) were assessed ex vivo. In randomly selected pigs (n=3/group), cardiac mRNA-, MeDIP-, and miRNA-sequencing (seq) were performed to identify mitochondria-related genes and study their pre- and post -transcriptional regulation. CKD-LVDD exhibited cardiac mitochondrial structural abnormalities and elevated mitochondrial H2O2 emission but preserved mitochondrial function. Cardiac mRNA-seq identified 862 mitochondria-related genes, of which 69 were upregulated and 33 downregulated (fold-change ≥2, false discovery rate≤0.05). Functional analysis showed that upregulated genes were primarily implicated in processes associated with oxidative stress, whereas those downregulated mainly participated in respiration and ATP synthesis. Integrated mRNA/miRNA/MeDIP-seq analysis showed that upregulated genes were modulated predominantly by miRNAs, whereas those downregulated were by miRNA and epigenetic mechanisms. CKD-LVDD alters cardiac expression of mitochondria-related genes, associated with mitochondrial structural damage but preserved respiratory function, possibly reflecting intrinsic compensatory mechanisms. Our findings may guide the development of early interventions at stages of cardiac dysfunction in which mitochondrial injury could be prevented, and the development of LVDD ameliorated.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; Department of Medicine, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA.
| | - Rhys Sitz
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Taylor J Kelty
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA
| | - Elizabeth McCarthy
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Darla L Tharp
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Biomedical Sciences, University of Missouri, Columbia, USA
| | - R Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA; Research Service, Harry S Truman Memorial Veterans Medical Center, University of Missouri, Columbia, USA; Division of Gastroenterology and Hepatology, University of Missouri, Columbia, USA
| | - Alfonso Eirin
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Su X, Zhang L, Meng H, Wang H, Zhao J, Sun X, Song X, Zhang X, Mao L. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO 2 fixation pathways in coastal saline soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120743. [PMID: 38626484 DOI: 10.1016/j.jenvman.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.
Collapse
Affiliation(s)
- Xunya Su
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Le Zhang
- China Agricultural University, Agronomy College, Beijing, 100193, China.
| | - Hao Meng
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Han Wang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Jiaxue Zhao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xuezhen Sun
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xianliang Song
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xiaopei Zhang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Lili Mao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| |
Collapse
|
16
|
Trimarco A, Audano M, Marca RL, Cariello M, Falco M, Pedretti S, Imperato G, Cestaro A, Podini P, Dina G, Quattrini A, Massimino L, Caruso D, Mitro N, Taveggia C. Prostaglandin D2 synthase controls Schwann cells metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582775. [PMID: 38496560 PMCID: PMC10942270 DOI: 10.1101/2024.02.29.582775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.
Collapse
|
17
|
Liang QH, Li QR, Chen Z, Lv LJ, Lin Y, Jiang HL, Wang KX, Xiao MY, Kang NX, Tu PF, Ji SL, Deng KJ, Gao HW, Zhang L, Li K, Ge F, Xu GQ, Yang SL, Liu YL, Xu QM. Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function. Inflamm Res 2024; 73:345-362. [PMID: 38157008 DOI: 10.1007/s00011-023-01840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.
Collapse
Affiliation(s)
- Qing-Hua Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qiu-Rong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Li-Juan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong-Lv Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ke-Xin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Yue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nai-Xin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shi-Liang Ji
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215163, Jiangsu, China
| | - Ke-Jun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Li
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Fei Ge
- Hai'an Traditional Chinese Medicine Hospital, Nantong, 226600, Jiangsu, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shi-Lin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, Guangxi, China
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China
| | - Yan-Li Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Guangxi Xinhai Pharmaceutical Technology Co.,Ltd, , Liuzhou, 545025, Guangxi, China.
| |
Collapse
|
18
|
Milhem F, Komarnytsky S. Progression to Obesity: Variations in Patterns of Metabolic Fluxes, Fat Accumulation, and Gastrointestinal Responses. Metabolites 2023; 13:1016. [PMID: 37755296 PMCID: PMC10535155 DOI: 10.3390/metabo13091016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Obesity is a multifactorial disorder that is remarkably heterogeneous. It presents itself in a variety of phenotypes that can be metabolically unhealthy or healthy, associate with no or multiple metabolic risk factors, gain extreme body weight (super-responders), as well as resist obesity despite the obesogenic environment (non-responders). Progression to obesity is ultimately linked to the overall net energy balance and activity of different metabolic fluxes. This is particularly evident from variations in fatty acids oxidation, metabolic fluxes through the pyruvate-phosphoenolpyruvate-oxaloacetate node, and extracellular accumulation of Krebs cycle metabolites, such as citrate. Patterns of fat accumulation with a focus on visceral and ectopic adipose tissue, microbiome composition, and the immune status of the gastrointestinal tract have emerged as the most promising targets that allow personalization of obesity and warrant further investigations into the critical issue of a wider and long-term weight control. Advances in understanding the biochemistry mechanisms underlying the heterogenous obesity phenotypes are critical to the development of targeted strategies to maintain healthy weight.
Collapse
Affiliation(s)
- Fadia Milhem
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition, University of Petra, 317 Airport Road, Amman 11196, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
20
|
Gondáš E, Kráľová Trančíková A, Šofranko J, Majerová P, Lučanský V, Dohál M, Kováč A, Murín R. The presence of pyruvate carboxylase in the human brain and its role in the survival of cultured human astrocytes. Physiol Res 2023; 72:403-414. [PMID: 37449752 PMCID: PMC10669001 DOI: 10.33549/physiolres.935026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Pyruvate carboxylase (PC) is a mitochondrial, biotin-containing enzyme catalyzing the ATP-dependent synthesis of oxaloacetate from pyruvate and bicarbonate, with a critical anaplerotic role in sustaining the brain metabolism. Based on the studies performed on animal models, PC expression was assigned to be glia-specific. To study PC distribution among human neural cells, we probed the cultured human astrocytes and brain sections with antibodies against PC. Additionally, we tested the importance of PC for the viability of cultured human astrocytes by applying the PC inhibitor 3-chloropropane-1,2-diol (CPD). Our results establish the expression of PC in mitochondria of human astrocytes in culture and brain tissue and also into a subpopulation of the neurons in situ. CPD negatively affected the viability of astrocytes in culture, which could be partially reversed by supplementing media with malate, 2-oxoglutarate, citrate, or pyruvate. The provided data estimates PC expression in human astrocytes and neurons in human brain parenchyma. Furthermore, the enzymatic activity of PC is vital for sustaining the viability of cultured astrocytes.
Collapse
Affiliation(s)
- E Gondáš
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jeong JH, Lee HL, Park HJ, Yoon YE, Shin J, Jeong MY, Park SH, Kim DH, Han SW, Kang CG, Hong KJ, Lee SJ. Effects of tomato ketchup and tomato paste extract on hepatic lipid accumulation and adipogenesis. Food Sci Biotechnol 2023; 32:1111-1122. [PMID: 37215254 PMCID: PMC10195947 DOI: 10.1007/s10068-023-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
Tomatoes include high levels of lycopene, which is a potent antioxidative, hypolipidemic, and antidiabetic phytochemical. The intake of lycopene is associated with a reduced risk of insulin resistance and metabolic syndrome. The aim of this study was to investigate whether tomato ketchup and tomato paste, major dietary sources for tomato and lycopene, could regulate hepatic lipid metabolism and adipogenesis. To investigate the regulatory effects of tomato ketchup and tomato paste, we prepared a tomato ketchup extract (TKE) and a tomato paste extract (TPE) in 80% (v/v) ethyl acetate for the experiment. TKE and TPE reduced lipid accumulation and key markers for gluconeogenesis and induced a higher rate of fatty acid oxidation in HepG2 hepatocytes. In 3T3-L1 adipocytes, TKE and TPE increased adipogenesis and intracellular triglyceride accumulation, and stimulated glucose uptake. Peroxisome proliferator-activated receptor alpha and gamma expression levels were increased by TKE and TPE treatment. A single oral dose of tomato ketchup and tomato paste (9.28 g/kg) significantly improved glucose and insulin tolerance in mice. These findings suggest that lycopene-containing tomato ketchup and tomato paste may have beneficial regulatory effects in terms of energy metabolism in hepatocytes and adipocytes, and thus may improve blood glucose metabolism.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Lim Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyun Ji Park
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jaeeun Shin
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hoon Park
- Department of Food & Nutrition, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Da-hye Kim
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Seung-Woo Han
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Choon-Gil Kang
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Ki-Ju Hong
- R&D Center, Ottogi Corporation, Anyang-Si, 14060 Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841 Republic of Korea
- Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul, South Korea
| |
Collapse
|
22
|
Fan TWM, Winnike J, Al-Attar A, Belshoff AC, Lorkiewicz PK, Tan JL, Wu M, Higashi RM, Lane AN. Differential Inhibition of Anaplerotic Pyruvate Carboxylation and Glutaminolysis-Fueled Anabolism Underlies Distinct Toxicity of Selenium Agents in Human Lung Cancer. Metabolites 2023; 13:774. [PMID: 37512481 PMCID: PMC10383978 DOI: 10.3390/metabo13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.
Collapse
Affiliation(s)
- Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Jason Winnike
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Alexander C. Belshoff
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Pawel K. Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Jin Lian Tan
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Min Wu
- Seahorse Bioscience, Billerica, MA 01862, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| |
Collapse
|
23
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
24
|
Abstract
Traditional views of cellular metabolism imply that it is passively adapted to meet the demands of the cell. It is becoming increasingly clear, however, that metabolites do more than simply supply the substrates for biological processes; they also provide critical signals, either through effects on metabolic pathways or via modulation of other regulatory proteins. Recent investigation has also uncovered novel roles for several metabolites that expand their signalling influence to processes outside metabolism, including nutrient sensing and storage, embryonic development, cell survival and differentiation, and immune activation and cytokine secretion. Together, these studies suggest that, in contrast to the prevailing notion, the biochemistry of a cell is frequently governed by its underlying metabolism rather than vice versa. This important shift in perspective places common metabolites as key regulators of cell phenotype and behaviour. Yet the signalling metabolites, and the cognate targets and transducers through which they signal, are only beginning to be uncovered. In this Review, we discuss the emerging links between metabolism and cellular behaviour. We hope this will inspire further dissection of the mechanisms through which metabolic pathways and intermediates modulate cell function and will suggest possible drug targets for diseases linked to metabolic deregulation.
Collapse
Affiliation(s)
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Franco R, Serrano-Marín J. The unbroken Krebs cycle. Hormonal-like regulation and mitochondrial signaling to control mitophagy and prevent cell death. Bioessays 2023; 45:e2200194. [PMID: 36549872 DOI: 10.1002/bies.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Chaves-Filho AB, Peixoto AS, Castro É, Oliveira TE, Perandini LA, Moreira RJ, da Silva RP, da Silva BP, Moretti EH, Steiner AA, Miyamoto S, Yoshinaga MY, Festuccia WT. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159264. [PMID: 36535597 DOI: 10.1016/j.bbalip.2022.159264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid β-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil; Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil
| | - Railmara P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Beatriz P da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes 1524, São Paulo 05508000, Brazil.
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof Lineu Prestes 748, São Paulo 05508900, Brazil.
| |
Collapse
|
27
|
Immunodetection of Pyruvate Carboxylase Expression in Human Astrocytomas, Glioblastomas, Oligodendrogliomas, and Meningiomas. Neurochem Res 2023; 48:1728-1736. [PMID: 36662405 PMCID: PMC10119210 DOI: 10.1007/s11064-023-03856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Pyruvate carboxylase (PC) is an enzyme catalyzing the carboxylation of pyruvate to oxaloacetate. The enzymatic generation of oxaloacetate, an intermediate of the Krebs cycle, could provide the cancer cells with the additional anaplerotic capacity and promote their anabolic metabolism. Recent studies revealed that several types of cancer cells express PC. The gained anaplerotic capability of cells mediated by PC correlates with their expedited growth, higher aggressiveness, and increased metastatic potential. By immunohistochemical staining and immunoblotting analysis, we investigated PC expression among samples of different types of human brain tumors. Our results show that PC is expressed by the cells in glioblastoma, astrocytoma, oligodendroglioma, and meningioma tumors. The presence of PC in these tumors suppose that PC could support the anabolic metabolism of their cellular constituents by its anaplerotic capability.
Collapse
|
28
|
Hubbard BT, LaMoia TE, Goedeke L, Gaspar RC, Galsgaard KD, Kahn M, Mason GF, Shulman GI. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metab 2023; 35:212-226.e4. [PMID: 36516861 PMCID: PMC9887731 DOI: 10.1016/j.cmet.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.
Collapse
Affiliation(s)
- Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katrine D Galsgaard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graeme F Mason
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry & Biomedical Engineering, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Synthesis of novel tetrazolic derivatives and evaluation of their antimicrobial activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Diehl C, Gerlinger PD, Paczia N, Erb TJ. Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO 2. Nat Chem Biol 2023; 19:168-175. [PMID: 36470994 PMCID: PMC9889269 DOI: 10.1038/s41589-022-01179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/22/2022] [Indexed: 12/12/2022]
Abstract
Anaplerosis is an essential feature of metabolism that allows the continuous operation of natural metabolic networks, such as the citric acid cycle, by constantly replenishing drained intermediates. However, this concept has not been applied to synthetic in vitro metabolic networks, thus far. Here we used anaplerotic strategies to directly access the core sequence of the CETCH cycle, a new-to-nature in vitro CO2-fixation pathway that features several C3-C5 biosynthetic precursors. We drafted four different anaplerotic modules that use CO2 to replenish the CETCH cycle's intermediates and validated our designs by producing 6-deoxyerythronolide B (6-DEB), the C21-macrolide backbone of erythromycin. Our best design allowed the carbon-positive synthesis of 6-DEB via 54 enzymatic reactions in vitro at yields comparable to those with isolated 6-DEB polyketide synthase (DEBS). Our work showcases how new-to-nature anaplerotic modules can be designed and tailored to enhance and expand the synthetic capabilities of complex catalytic in vitro reaction networks.
Collapse
Affiliation(s)
- Christoph Diehl
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Patrick D. Gerlinger
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- grid.419554.80000 0004 0491 8361Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.452532.7SYNMIKRO Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
32
|
Tian K, Yu Y, Qiu Q, Sun X, Meng F, Bi Y, Gu J, Wang Y, Zhang F, Huo H. Mechanisms of BPA Degradation and Toxicity Resistance in Rhodococcus equi. Microorganisms 2022; 11:microorganisms11010067. [PMID: 36677360 PMCID: PMC9862853 DOI: 10.3390/microorganisms11010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) pollution poses an increasingly serious problem. BPA has been detected in a variety of environmental media and human tissues. Microbial degradation is an effective method of environmental BPA remediation. However, BPA is also biotoxic to microorganisms. In this study, Rhodococcus equi DSSKP-R-001 (R-001) was used to degrade BPA, and the effects of BPA on the growth metabolism, gene expression patterns, and toxicity-resistance mechanisms of Rhodococcus equi were analyzed. The results showed that R-001 degraded 51.2% of 5 mg/L BPA and that 40 mg/L BPA was the maximum BPA concentration tolerated by strain R-001. Cytochrome P450 monooxygenase and multicopper oxidases played key roles in BPA degradation. However, BPA was toxic to strain R-001, exhibiting nonlinear inhibitory effects on the growth and metabolism of this bacterium. R-001 bacterial biomass, total protein content, and ATP content exhibited V-shaped trends as BPA concentration increased. The toxic effects of BPA included the downregulation of R-001 genes related to glycolysis/gluconeogenesis, pentose phosphate metabolism, and glyoxylate and dicarboxylate metabolism. Genes involved in aspects of the BPA-resistance response, such as base excision repair, osmoprotectant transport, iron-complex transport, and some energy metabolisms, were upregulated to mitigate the loss of energy associated with BPA exposure. This study helped to clarify the bacterial mechanisms involved in BPA biodegradation and toxicity resistance, and our results provide a theoretical basis for the application of strain R-001 in BPA pollution treatments.
Collapse
Affiliation(s)
- Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fanxing Meng
- Jilin Province Water Resources and Hydropower Consultative Company of P.R. China, Changchun 130021, China
| | - Yuanping Bi
- School of Life Sciences, Northeast Normal University, No. 5268, Renmin Main Street, Changchun 130024, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun 130117, China
- Jilin Province Laboratory of Water Pollution Treatment and Resource Engineering, Changchun 130117, China
- Northeast China Low Carbon Water Pollution Treatment and Green Development Engineering Research Center, Changchun 130117, China
- Correspondence:
| |
Collapse
|
33
|
Meneses JAM, Nascimento KB, Galvão MC, Ramírez-Zamudio GD, Gionbelli TRS, Ladeira MM, Duarte MDS, Casagrande DR, Gionbelli MP. Protein Supplementation during Mid-Gestation Alters the Amino Acid Patterns, Hepatic Metabolism, and Maternal Skeletal Muscle Turnover of Pregnant Zebu Beef Cows. Animals (Basel) 2022; 12:ani12243567. [PMID: 36552487 PMCID: PMC9774392 DOI: 10.3390/ani12243567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
From 100 to 200 days of gestation, 52 cows carrying male (n = 30) or female (n = 22) fetuses were assigned to CON (basal diet-5.5% of CP, n = 26) or SUP (basal diet + protein supplement [40% CP, 3.5 g/kg BW]-12% of CP, n = 26) treatments. Glucose concentrations decreased at 200 (p ≤ 0.01; CON = 46.9 and SUP = 54.7 mg/dL) and 270 days (p ≤ 0.05; CON = 48.4 and SUP = 53.3 mg/dL) for CON compared to SUP. The same pattern occurred for insulin (p ≤ 0.01). At parturition, the NEFA concentration was greater (p = 0.01, 0.10 vs. 0.08 mmol/L) for CON than for SUP. Total AA increased in SUP (p ≤ 0.03) at mid- and late-gestation compared to CON. At 200 days, CON dams carrying females had less essential AA (p = 0.01) than cows carrying males. The SUP dams had greater expressions of protein synthesis markers, namely eIf4E and GSK3β (p ≤ 0.04), at day 200 and of MuFR1 (protein degradation marker, p ≤ 0.04) at parturition. Supplemented cows had higher hepatic pyruvate carboxylase expressions (p = 0.02). Therefore, PS alleviates the restriction overload on maternal metabolism.
Collapse
Affiliation(s)
- Javier Andrés Moreno Meneses
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil
- Department of Veterinary Medicine and Animal Science, Universidad de Ciencias Aplicadas y Ambientales, Cartagena 130001, Bolivar, Colombia
| | | | | | | | | | - Marcio Machado Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil
| | | | - Daniel Rume Casagrande
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil
- Correspondence: ; Tel.: +55-(35)-3829-4618
| |
Collapse
|
34
|
Ma X, Fatima M, Li J, Zhou P, Zaynab M, Ming R. Post-pollination sepal longevity of female flower co-regulated by energy-associated multiple pathways in dioecious spinach. FRONTIERS IN PLANT SCIENCE 2022; 13:1010149. [PMID: 36589106 PMCID: PMC9795224 DOI: 10.3389/fpls.2022.1010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Reproductive growth is a bioenergetic process with high energy consumption. Pollination induces female flower longevity in spinach by accelerating sepal retention and development. Cellular bioenergetics involved in cellular growth is at the foundation of all developmental activities. By contrast, how pollination alter the sepal cells bioenergetics to support energy requirement and anabolic biomass accumulation for development is less well understood. To investigate pollination-induced energy-associated pathway changes in sepal tissues after pollination, we utilized RNA-sequencing to identify transcripts that were differentially expressed between unpollinated (UNP) and pollinated flower sepals at 12, 48, and 96HAP. In total, over 6756 non-redundant DEGs were identified followed by pairwise comparisons (i.e. UNP vs 12HAP, UNP vs 48HAP, and UNP vs 96HAP). KEGG enrichment showed that the central carbon metabolic pathway was significantly activated after pollination and governed by pivotal energy-associated regulation pathways such as glycolysis, the citric acid cycle, oxidative phosphorylation, photosynthesis, and pentose phosphate pathways. Co-expression networks confirmed the synergistically regulation interactions among these pathways. Gene expression changes in these pathways were not observed after fertilization at 12HAP, but started after fertilization at 48HAP, and significant changes in gene expression occurred at 96HAP when there is considerable sepal development. These results were also supported by qPCR validation. Our results suggest that multiple energy-associated pathways may play a pivotal regulatory role in post-pollination sepal longevity for developing the seed coat, and proposed an energy pathway model regulating sepal retention in spinach.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zhou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
35
|
Chai P, Lan P, Li S, Yao D, Chang C, Cao M, Shen Y, Ge S, Wu J, Lei M, Fan X. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell 2022; 82:4116-4130.e6. [DOI: 10.1016/j.molcel.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
36
|
Selen ES, Rodriguez S, Cavagnini KS, Kim HB, Na CH, Wolfgang MJ. Requirement of hepatic pyruvate carboxylase during fasting, high fat, and ketogenic diet. J Biol Chem 2022; 298:102648. [PMID: 36441025 PMCID: PMC9694104 DOI: 10.1016/j.jbc.2022.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pyruvate has two major fates upon entry into mitochondria, the oxidative decarboxylation to acetyl-CoA via the pyruvate decarboxylase complex or the biotin-dependent carboxylation to oxaloacetate via pyruvate carboxylase (Pcx). Here, we have generated mice with a liver-specific KO of pyruvate carboxylase (PcxL-/-) to understand the role of Pcx in hepatic mitochondrial metabolism under disparate physiological states. PcxL-/- mice exhibited a deficit in hepatic gluconeogenesis and enhanced ketogenesis as expected but were able to maintain systemic euglycemia following a 24 h fast. Feeding a high-fat diet to PcxL-/- mice resulted in animals that were resistant to glucose intolerance without affecting body weight. However, we found that PcxL-/- mice fed a ketogenic diet for 1 week became severely hypoglycemic, demonstrating a requirement for hepatic Pcx for long-term glycemia under carbohydrate-limited diets. Additionally, we determined that loss of Pcx was associated with an induction in the abundance of lysine-acetylated proteins in PcxL-/- mice regardless of physiologic state. Furthermore, liver acetyl-proteomics revealed a biased induction in mitochondrial lysine-acetylated proteins. These data show that Pcx is important for maintaining the proper balance of pyruvate metabolism between oxidative and anaplerotic pathways.
Collapse
Affiliation(s)
- Ebru S. Selen
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susana Rodriguez
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyle S. Cavagnini
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Byeol Kim
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,For correspondence: Michael J. Wolfgang
| |
Collapse
|
37
|
CryoEM structural exploration of catalytically active enzyme pyruvate carboxylase. Nat Commun 2022; 13:6185. [PMID: 36261450 PMCID: PMC9581989 DOI: 10.1038/s41467-022-33987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Pyruvate carboxylase (PC) is a tetrameric enzyme that contains two active sites per subunit that catalyze two consecutive reactions. A mobile domain with an attached prosthetic biotin links both reactions, an initial biotin carboxylation and the subsequent carboxyl transfer to pyruvate substrate to produce oxaloacetate. Reaction sites are at long distance, and there are several co-factors that play as allosteric regulators. Here, using cryoEM we explore the structure of active PC tetramers focusing on active sites and on the conformational space of the oligomers. The results capture the mobile domain at both active sites and expose catalytic steps of both reactions at high resolution, allowing the identification of substrates and products. The analysis of catalytically active PC tetramers reveals the role of certain motions during enzyme functioning, and the structural changes in the presence of additional cofactors expose the mechanism for allosteric regulation.
Collapse
|
38
|
Sharif S, Velumula PK, Boddu PK, Altinok D, Fernandes N. A Rare Case of Type B Neonatal Pyruvate Carboxylase Enzyme Deficiency Presenting With Refractory Lactic Acidosis in the Early Neonatal Period. Cureus 2022; 14:e29903. [PMID: 36348915 PMCID: PMC9632676 DOI: 10.7759/cureus.29903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 06/16/2023] Open
Abstract
Pyruvate carboxylase (PC) enzyme deficiency is a rare genetic disorder inherited in an autosomal recessive (AR) manner. PC, a mitochondrial enzyme, converts pyruvate to oxaloacetate (OAA), which enters the tricarboxylic acid (TCA) cycle. Based on the tissue type, intermediate metabolites of the TCA cycle play a vital role in gluconeogenesis, lipogenesis, synthesis of nicotinamide adenine dinucleotide phosphate (NADPH), and neurotransmitter glutamate in the astrocytes. The severity of clinical presentation depends on the type of PC deficiency and on the residual enzyme activity. We present a term female infant admitted with refractory lactic acidosis that developed soon after birth. On biochemical evaluation, serum ammonia was 125 µmol/L; plasma amino acid analysis showed elevated citrulline, lysine, proline, decreased glutamine, and aspartic acid; urine organic acid analysis showed markedly increased lactic acid, and moderately elevated 3-hydroxy-butyric and acetoacetic acid. MRI brain demonstrated abnormal diffuse white matter edema, loculated and septate large cysts along the caudothalamic notch as well as lateral aspect of the frontal horn bilaterally. Magnetic resonance (MR) spectroscopy showed large amounts of lactate peak. Molecular genetic analysis showed two pathogenic variants in the PC gene confirming the diagnosis of PC enzyme deficiency. The infant was discharged home on palliative and hospice care, and she died on the 22nd day after birth.
Collapse
Affiliation(s)
- Saima Sharif
- Pediatrics, Neonatal-Perinatal Medicine, Children's Hospital of Michigan/Central Michigan University College of Medicine, Detroit, USA
| | - Pradeep Kumar Velumula
- Pediatrics, Neonatal-Perinatal Medicine, MercyOne Waterloo Medical Center, Waterloo, USA
| | - Praveen Kumar Boddu
- Pediatrics, Neonatal-Perinatal Medicine, Children's Hospital of Michigan/Central Michigan University College of Medicine, Detroit, USA
| | - Deniz Altinok
- Radiology, Children's Hospital of Michigan, Detroit, USA
| | - Nithi Fernandes
- Pediatrics, Neonatal-Perinatal Medicine, Children's Hospital of Michigan/Central Michigan University College of Medicine, Detroit, USA
| |
Collapse
|
39
|
Hakala JH, Laseke AJ, Koza AL, St. Maurice M. Conformational Selection Governs Carrier Domain Positioning in Staphylococcus aureus Pyruvate Carboxylase. Biochemistry 2022; 61:1824-1835. [PMID: 35943735 PMCID: PMC11451948 DOI: 10.1021/acs.biochem.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin-dependent enzymes employ a carrier domain to efficiently transport reaction intermediates between distant active sites. The translocation of this carrier domain is critical to the interpretation of kinetic and structural studies, but there have been few direct attempts to investigate the dynamic interplay between ligand binding and carrier domain positioning in biotin-dependent enzymes. Pyruvate carboxylase (PC) catalyzes the MgATP-dependent carboxylation of pyruvate where the biotinylated carrier domain must translocate ∼70 Å from the biotin carboxylase domain to the carboxyltransferase domain. Many prior studies have assumed that carrier domain movement is governed by ligand-induced conformational changes, but the mechanism underlying this movement has not been confirmed. Here, we have developed a system to directly observe PC carrier domain positioning in both the presence and absence of ligands, independent of catalytic turnover. We have incorporated a cross-linking trap that reports on the interdomain conformation of the carrier domain when it is positioned in proximity to a neighboring carboxyltransferase domain. Cross-linking was monitored by gel electrophoresis, inactivation kinetics, and intrinsic tryptophan fluorescence. We demonstrate that the carrier domain positioning equilibrium is sensitive to substrate analogues and the allosteric activator acetyl-CoA. Notably, saturating concentrations of biotin carboxylase ligands do not prevent carrier domain trapping proximal to the neighboring carboxyltransferase domain, demonstrating that carrier domain positioning is governed by conformational selection. This model of carrier domain translocation in PC can be applied to other multi-domain enzymes that employ large-scale domain motions to transfer intermediates during catalysis.
Collapse
Affiliation(s)
- Joshua H. Hakala
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | - Amanda J. Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | - Anya Lei Koza
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| | - Martin St. Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
40
|
Dey S, Shahrear S, Afroj Zinnia M, Tajwar A, Islam ABMMK. Functional Annotation of Hypothetical Proteins From the Enterobacter cloacae B13 Strain and Its Association With Pathogenicity. Bioinform Biol Insights 2022; 16:11779322221115535. [PMID: 35958299 PMCID: PMC9358594 DOI: 10.1177/11779322221115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022] Open
Abstract
Enterobacter cloacae B13 strain is a rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. It can cause respiratory and urinary tract infections, and is responsible for several outbreaks in hospitals. E. cloacae has become an important pathogen and an emerging global threat because of its opportunistic and multidrug resistant ability. However, little knowledge is present about a large portion of its proteins and functions. Therefore, functional annotation of the hypothetical proteins (HPs) can provide an improved understanding of this organism and its virulence activity. The workflow in the study included several bioinformatic tools which were utilized to characterize functions, family and domains, subcellular localization, physiochemical properties, and protein-protein interactions. The E. cloacae B13 strain has overall 604 HPs, among which 78 were functionally annotated with high confidence. Several proteins were identified as enzymes, regulatory, binding, and transmembrane proteins with essential functions. Furthermore, 23 HPs were predicted to be virulent factors. These virulent proteins are linked to pathogenesis with their contribution to biofilm formation, quorum sensing, 2-component signal transduction or secretion. Better knowledge about the HPs’ characteristics and functions will provide a greater overview of the proteome. Moreover, it will help against E. cloacae in neonatal intensive care unit (NICU) outbreaks and nosocomial infections.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Ahnaf Tajwar
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
41
|
Cherfi M, Harit T, Idrissi Yahyaoui M, Riahi A, Asehraou A, Malek F. Synthesis, antimicrobial activity and in-silico docking of two macrocycles based on pyrazole-tetrazole subunit. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Granillo-Luna ON, Hernandez-Aguirre LE, Peregrino-Uriarte AB, Duarte-Gutierrez J, Contreras-Vergara CA, Gollas-Galvan T, Yepiz-Plascencia G. The anaplerotic pyruvate carboxylase from white shrimp Litopenaeus vannamei: Gene structure, molecular characterization, protein modelling and expression during hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111212. [PMID: 35417748 DOI: 10.1016/j.cbpa.2022.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Hypoxic zones are spreading worldwide in marine environments affecting many organisms. Shrimp and other marine crustaceans can withstand environmental hypoxia using several strategies, including the regulation of energy producing metabolic pathways. Pyruvate carboxylase (PC) catalyzes the first reaction of gluconeogenesis to produce oxaloacetate from pyruvate. In mammals, PC also participates in lipogenesis, insulin secretion and other processes, but this enzyme has been scarcely studied in marine invertebrates. In this work, we characterized the gene encoding PC in the white shrimp Litopenaeus vannamei, modelled the protein structure and evaluated its gene expression in hepatopancreas during hypoxia, as well as glucose and lactate concentrations. The PC gene codes for a mitochondrial protein and has 21 coding exons and 4 non-coding exons that generate three transcript variants with differences only in the 5'-UTR. Total PC expression is more abundant in hepatopancreas compared to gills or muscle, indicating tissue-specific expression. Under hypoxic conditions of 1.53 mg/L dissolved oxygen, PC expression is maintained in hepatopancreas, indicating its key role even in energy-limited conditions. Finally, both glucose and lactate concentrations were maintained under hypoxia for 24-48 h in hepatopancreas.
Collapse
Affiliation(s)
- Omar N Granillo-Luna
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Laura E Hernandez-Aguirre
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Jorge Duarte-Gutierrez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Carmen A Contreras-Vergara
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Teresa Gollas-Galvan
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C., Carretera Gustavo Enrique Astiazarán Rosas, no. 46, Col. La Victoria, Hermosillo, Sonora, C. P. 83304, Mexico.
| |
Collapse
|
43
|
Kerr AG, Wang Z, Wang N, Kwok KHM, Jalkanen J, Ludzki A, Lecoutre S, Langin D, Bergo MO, Dahlman I, Mim C, Arner P, Gao H. The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nat Commun 2022; 13:2958. [PMID: 35618718 PMCID: PMC9135762 DOI: 10.1038/s41467-022-30620-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pleiotropic function of long noncoding RNAs is well recognized, but their direct role in governing metabolic homeostasis is less understood. Here, we describe a human adipocyte-specific lncRNA, ADIPINT, that regulates pyruvate carboxylase, a pivotal enzyme in energy metabolism. We developed an approach, Targeted RNA-protein identification using Orthogonal Organic Phase Separation, which identifies that ADIPINT binds to pyruvate carboxylase and validated the interaction with electron microscopy. ADIPINT knockdown alters the interactome and decreases the abundance and enzymatic activity of pyruvate carboxylase in the mitochondria. Reduced ADIPINT or pyruvate carboxylase expression lowers adipocyte lipid synthesis, breakdown, and lipid content. In human white adipose tissue, ADIPINT expression is increased in obesity and linked to fat cell size, adipose insulin resistance, and pyruvate carboxylase activity. Thus, we identify ADIPINT as a regulator of lipid metabolism in human white adipocytes, which at least in part is mediated through its interaction with pyruvate carboxylase. Adipocyte-expressed long non-coding RNAs (lncRNAs) have been shown to regulate the transcription of genes involved in lipid metabolism. Here the authors describe a human adipocyte-specific lncRNA, ADIPINT, which regulates lipid metabolism in white adipocytes in part through its interaction with the metabolic enzyme pyruvate carboxylase.
Collapse
Affiliation(s)
- Alastair G Kerr
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Zuoneng Wang
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Na Wang
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Kelvin H M Kwok
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Alison Ludzki
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), Université de Toulouse, UPS, UMR1297, Toulouse, France.,Department of Biochemistry, Toulouse University Hospitals, CHU Toulouse, Toulouse, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 141 86, Sweden.
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 141 83, Sweden.
| |
Collapse
|
44
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Li B, Zhang B, Wang P, Cai X, Chen YY, Yang YF, Liu ZQ, Zheng YG. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in Escherichia coli. ACS Synth Biol 2022; 11:1908-1918. [PMID: 35476404 DOI: 10.1021/acssynbio.2c00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Alanine, with the amino group at the β-position, is an important platform chemical that has been widely applied in pharmaceuticals and feed and food additives. However, the current modest titer and productivity, increased fermentation cost, and complicated operation are the challenges for producing β-alanine by microbial fermentation. In this study, a high-yield β-alanine-producing strain was constructed by combining metabolic engineering, protein engineering, and fed-batch bioprocess optimization strategies. First, an aspartate-α-decarboxylase from Bacillus subtilis was introduced in Escherichia coli W3110 to construct an initial β-alanine-producing strain. Production of β-alanine was obviously increased to 4.36 g/L via improving the metabolic flux and reducing carbon loss by rerouting fluxes of the central carbon metabolism. To further increase β-alanine production, mechanism-based inactivation of aspartate-α-decarboxylase was relieved by rational design to maintain the productivity at a high level in β-alanine fed-batch fermentation. Finally, fed-batch bioprocess optimization strategies were used to improve β-alanine production to 85.18 g/L with 0.24 g/g glucose yield and 1.05 g/L/h productivity in fed-batch fermentation. These strategies can be effectively used in the construction of engineered strains for β-alanine and production of its derivatives, and the final engineered strain was a valuable microbial cell factory that can be used for the industrial production of β-alanine.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Pei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
46
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
47
|
Enhancement of anaerobic glycolysis - a role of PGC-1α4 in resistance exercise. Nat Commun 2022; 13:2324. [PMID: 35484130 PMCID: PMC9050893 DOI: 10.1038/s41467-022-30056-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance exercise training (RET) is an effective countermeasure to sarcopenia, related frailty and metabolic disorders. Here, we show that an RET-induced increase in PGC-1α4 (an isoform of the transcriptional co-activator PGC-1α) expression not only promotes muscle hypertrophy but also enhances glycolysis, providing a rapid supply of ATP for muscle contractions. In human skeletal muscle, PGC-1α4 binds to the nuclear receptor PPARβ following RET, resulting in downstream effects on the expressions of key glycolytic genes. In myotubes, we show that PGC-1α4 overexpression increases anaerobic glycolysis in a PPARβ-dependent manner and promotes muscle glucose uptake and fat oxidation. In contrast, we found that an acute resistance exercise bout activates glycolysis in an AMPK-dependent manner. These results provide a mechanistic link between RET and improved glucose metabolism, offering an important therapeutic target to counteract aging and inactivity-induced metabolic diseases benefitting those who cannot exercise due to many reasons.
Collapse
|
48
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
49
|
Louisa M, Patintingan CGH, Wardhani BWK. Moringa Oleifera Lam. in Cardiometabolic Disorders: A Systematic Review of Recent Studies and Possible Mechanism of Actions. Front Pharmacol 2022; 13:792794. [PMID: 35431967 PMCID: PMC9006177 DOI: 10.3389/fphar.2022.792794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiometabolic disorders (CMD) have become a global emergency and increasing burden on health and economic problems. Due to the increasing need for new drugs for cardiometabolic diseases, many alternative medicines from plants have been considered and studied. Moringa oleifera Lam. (MO), one of the native plants from several Asian countries, has been used empirically by people for various kinds of illnesses. In the present systematic review, we aimed to investigate the recent studies of MO in CMD and its possible mechanism of action. We systematically searched from three databases and summarized the data. This review includes a total of 108 papers in nonclinical studies and clinical trials of MO in cardiometabolic-related disorders. Moringa oleifera, extracts or isolated compound, exerts its effect on CMD through its antioxidative, anti-inflammatory actions resulting in the modulation in glucose and lipid metabolism and the preservation of target organ damage. Several studies supported the beneficial effect of MO in regulating the gut microbiome, which generates the diversity of gut microbiota and reduces the number of harmful bacteria in the caecum. Molecular actions that have been studied include the suppression of NF-kB translocation, upregulation of the Nrf2/Keap1 pathway, stimulation of total antioxidant capacity by reducing PKCζ activation, and inhibiting the Nox4 protein expression and several other proposed mechanisms. The present review found substantial evidence supporting the potential benefits of Moringa oleifera in cardiovascular or metabolic disorders.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bantari W. K. Wardhani
- Department of Pharmacology, Faculty of Military Pharmacy, Indonesia Defense University, West Java, Indonesia
| |
Collapse
|
50
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|