1
|
Huang W, Zhang Z, Li X, Zheng Q, Wu C, Liu L, Chen Y, Zhang J, Jiang X. CD9 promotes TβR2-TβR1 association driving the transition of human dermal fibroblasts to myofibroblast under hypoxia. Mol Med 2024; 30:162. [PMID: 39333849 PMCID: PMC11428569 DOI: 10.1186/s10020-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND During wound healing, fibroblast to myofibroblast transition is required for wound contraction and remodeling. While hypoxia is an important biophysical factor in wound microenvironment, the exact regulatory mechanism underlying hypoxia and fibroblast-to-myofibroblast transition remains unclear. We previously found that tetraspanin CD9 plays an important role in oxygen sensing and wound healing. Herein, we investigated the effects of physiological hypoxia on fibroblast-to-myofibroblast transition and the biological function and mechanism of CD9 in it. METHODS Human skin fibroblasts (HSF) and mouse dermis wounds model were established under physiological hypoxia (2% O2). The cell viability and contractility of HSF under hypoxia were evaluated by CCK8 and collagen gel retraction, respectively. The expression and distribution of fibroblast-to-myofibroblast transition markers and CD9 in HSF were detected by Western blotting and immunofluorescence. CD9 slicing and overexpressing HSFs were constructed to determine the role of CD9 by small interfering RNA and recombinant adenovirus vector. The association of TβR2 and TβR1 was measured by immunoprecipitation to explore the regulatory mechanism. Additionally, further validation was conducted on mouse dermis wounds model through histological analysis. RESULTS Enhanced fibroblast-to-myofibroblast transition and upregulated CD9 expression was observed under hypoxia in vitro and in vivo. Besides, reversal of fibroblast-to-myofibroblast transition under hypoxia was observed when silencing CD9, suggesting that CD9 played a key role in this hypoxia-induced transition. Moreover, hypoxia increased fibroblast-to-myofibroblast transition by activating TGF-β1/Smad2/3 signaling, especially increased interaction of TβR2 and TβR1. Ultimately, CD9 was determined to directly affect TβR1-TβR2 association in hypoxic fibroblast. CONCLUSION Collectively, these findings suggest that CD9 promotes TβR2-TβR1 association, thus driving the transition of human dermal fibroblasts to myofibroblast under hypoxia.
Collapse
Affiliation(s)
- Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Zheng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Lori A, Pearce BD, Katrinli S, Carter S, Gillespie CF, Bradley B, Wingo AP, Jovanovic T, Michopoulos V, Duncan E, Hinrichs RC, Smith A, Ressler KJ. Genetic risk for hospitalization of African American patients with severe mental illness reveals HLA loci. Front Psychiatry 2024; 15:1140376. [PMID: 38469033 PMCID: PMC10925622 DOI: 10.3389/fpsyt.2024.1140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Background Mood disorders such as major depressive and bipolar disorders, along with posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and other psychotic disorders, constitute serious mental illnesses (SMI) and often lead to inpatient psychiatric care for adults. Risk factors associated with increased hospitalization rate in SMI (H-SMI) are largely unknown but likely involve a combination of genetic, environmental, and socio-behavioral factors. We performed a genome-wide association study in an African American cohort to identify possible genes associated with hospitalization due to SMI (H-SMI). Methods Patients hospitalized for psychiatric disorders (H-SMI; n=690) were compared with demographically matched controls (n=4467). Quality control and imputation of genome-wide data were performed following the Psychiatric Genetic Consortium (PGC)-PTSD guidelines. Imputation of the Human Leukocyte Antigen (HLA) locus was performed using the HIBAG package. Results Genome-wide association analysis revealed a genome-wide significant association at 6p22.1 locus in the ubiquitin D (UBD/FAT10) gene (rs362514, p=9.43x10-9) and around the HLA locus. Heritability of H-SMI (14.6%) was comparable to other psychiatric disorders (4% to 45%). We observed a nominally significant association with 2 HLA alleles: HLA-A*23:01 (OR=1.04, p=2.3x10-3) and HLA-C*06:02 (OR=1.04, p=1.5x10-3). Two other genes (VSP13D and TSPAN9), possibly associated with immune response, were found to be associated with H-SMI using gene-based analyses. Conclusion We observed a strong association between H-SMI and a locus that has been consistently and strongly associated with SCZ in multiple studies (6p21.32-p22.1), possibly indicating an involvement of the immune system and the immune response in the development of severe transdiagnostic SMI.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, United States
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Aliza P. Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Mental Health Service Line, Department of Veterans Affairs Health Care System, Decatur, GA, United States
| | - Rebecca C. Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Alicia Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| |
Collapse
|
3
|
Shao S, Bu Z, Xiang J, Liu J, Tan R, Sun H, Hu Y, Wang Y. The role of Tetraspanins in digestive system tumor development: update and emerging evidence. Front Cell Dev Biol 2024; 12:1343894. [PMID: 38389703 PMCID: PMC10882080 DOI: 10.3389/fcell.2024.1343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.
Collapse
Affiliation(s)
- Shijie Shao
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Bu
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Jinghua Xiang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachen Liu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rui Tan
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanwen Hu
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yimin Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Armstrong PC, Allan HE, Kirkby NS, Gutmann C, Joshi A, Crescente M, Mitchell JA, Mayr M, Warner TD. Temporal in vivo platelet labeling in mice reveals age-dependent receptor expression and conservation of specific mRNAs. Blood Adv 2022; 6:6028-6038. [PMID: 36037520 PMCID: PMC9699941 DOI: 10.1182/bloodadvances.2022007099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The proportion of young platelets, also known as newly formed or reticulated, within the overall platelet population has been clinically correlated with adverse cardiovascular outcomes. However, our understanding of this is incomplete because of limitations in the technical approaches available to study platelets of different ages. In this study, we have developed and validated an in vivo temporal labeling approach using injectable fluorescent antiplatelet antibodies to subdivide platelets by age and assess differences in functional and molecular characteristics. With this approach, we found that young platelets (<24 hours old) in comparison with older platelets respond to stimuli with greater calcium flux and degranulation and contribute more to the formation of thrombi in vitro and in vivo. Sequential sampling confirmed this altered functionality to be independent of platelet size, with distribution of sizes of tracked platelets commensurate with the global platelet population throughout their 5-day lifespan in the circulation. The age-associated decrease in thrombotic function was accompanied by significant decreases in the surface expression of GPVI and CD31 (PECAM-1) and an increase in CD9. Platelet messenger RNA (mRNA) content also decreased with age but at different rates for individual mRNAs indicating apparent conservation of those encoding granule proteins. Our pulse-chase-type approach to define circulating platelet age has allowed timely reexamination of commonly held beliefs regarding size and reactivity of young platelets while providing novel insights into the temporal regulation of receptor and protein expression. Overall, future application of this validated tool will inform age-based platelet heterogeneity in physiology and disease.
Collapse
Affiliation(s)
- Paul C. Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Correspondence: Paul C. Armstrong, Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, United Kingdom;
| | - Harriet E. Allan
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London United Kingdom
| | - Clemens Gutmann
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Abhishek Joshi
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Marilena Crescente
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jane A. Mitchell
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London United Kingdom
| | - Manuel Mayr
- King’s British Heart Foundation Centre, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Lynch DR, Stringham EN, Zhang B, Balbin-Cuesta G, Curtis BR, Palumbo JS, Greineder CF, Tourdot BE. Anchoring IgG-degrading enzymes to the surface of platelets selectively neutralizes antiplatelet antibodies. Blood Adv 2022; 6:4645-4656. [PMID: 35737875 PMCID: PMC9636316 DOI: 10.1182/bloodadvances.2022007195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by immunoglobulin G (IgG)-mediated platelet destruction. Current therapies primarily focus on reducing antiplatelet antibodies using immunosuppression or increasing platelet production with thrombopoietin mimetics. However, there are no universally safe and effective treatments for patients presenting with severe life-threatening bleeding. The IgG-degrading enzyme of Streptococcus pyogenes (IdeS), a protease with strict specificity for IgG, prevents IgG-driven immune disorders in murine models, including ITP. In clinical trials, IdeS prevented IgG-mediated kidney transplant rejection; however, the concentration of IdeS used to remove pathogenic antibodies causes profound hypogammaglobulinemia, and IdeS is immunogenic, which limits its use. Therefore, this study sought to determine whether targeting IdeS to FcγRIIA, a low-affinity IgG receptor on the surface of platelets, neutrophils, and monocytes, would be a viable strategy to decrease the pathogenesis of antiplatelet IgG and reduce treatment-related complications of nontargeted IdeS. We generated a recombinant protein conjugate by site-specifically linking the C-terminus of a single-chain variable fragment from an FcγRIIA antibody, clone IV.3, to the N-terminus of IdeS (scIV.3-IdeS). Platelets treated with scIV.3-IdeS had reduced binding of antiplatelet IgG from patients with ITP and decreased platelet phagocytosis in vitro, with no decrease in normal IgG. Treatment of mice expressing human FcγRIIA with scIV.3-IdeS reduced thrombocytopenia in a model of ITP and significantly improved the half-life of transfused platelets expressing human FcγRIIA. Together, these data suggest that scIV.3-IdeS can selectively remove pathogenic antiplatelet IgG and may be a potential treatment for patients with ITP and severe bleeding.
Collapse
Affiliation(s)
- Donald R. Lynch
- Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Emily N. Stringham
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Boya Zhang
- Department of Pharmacology
- Department of Emergency Medicine
- BioInterfaces Institute
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Brian R. Curtis
- Platelet & Neutrophil Immunology Laboratory
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Joseph S. Palumbo
- Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Colin F. Greineder
- Department of Pharmacology
- Department of Emergency Medicine
- BioInterfaces Institute
| | - Benjamin E. Tourdot
- Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles 2022; 11:e12213. [PMID: 35524458 PMCID: PMC9077141 DOI: 10.1002/jev2.12213] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum. METHOD Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti-CD63, anti-CD9 and anti-CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP-IRIS, conventional and nano flow cytometry, magnetic bead ELISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis. RESULTS This study shows that a higher number of CD9+ EVs were present in EDTA-plasma compared to ACD-plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double-positive for CD63 and CD81. The CD63+ EVs were enriched in serum, while CD81+ vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA-plasma contained more residual platelets than ACD-plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation. CONCLUSION These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti-coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Razieh Dalirfardouei
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Faculty of MedicineDepartment of Medical BiotechnologyMashhad University of Medical SciencesMashhadIran
| | | | - Jan Lötvall
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
7
|
Liu W, Sun Q, Huang L, Bhattacharya A, Wang GW, Tan X, Kuban KCK, Joseph RM, O'Shea TM, Fry RC, Li Y, Santos HP. Innovative computational approaches shed light on genetic mechanisms underlying cognitive impairment among children born extremely preterm. J Neurodev Disord 2022; 14:16. [PMID: 35240980 PMCID: PMC8903548 DOI: 10.1186/s11689-022-09429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although survival rates for infants born extremely preterm (gestation < 28 weeks) have improved significantly in recent decades, neurodevelopmental impairment remains a major concern. Children born extremely preterm remain at high risk for cognitive impairment from early childhood to adulthood. However, there is limited evidence on genetic factors associated with cognitive impairment in this population. METHODS First, we used a latent profile analysis (LPA) approach to characterize neurocognitive function at age 10 for children born extremely preterm. Children were classified into two groups: (1) no or low cognitive impairment, and (2) moderate-to-severe cognitive impairment. Second, we performed TOPMed-based genotype imputation on samples with genotype array data (n = 528). Third, we then conducted a genome-wide association study (GWAS) for LPA-inferred cognitive impairment. Finally, computational analysis was conducted to explore potential mechanisms underlying the variant x LPA association. RESULTS We identified two loci reaching genome-wide significance (p value < 5e-8): TEA domain transcription factor 4 (TEAD4 at rs11829294, p value = 2.40e-8) and syntaxin 18 (STX18 at rs79453226, p value = 1.91e-8). Integrative analysis with brain expression quantitative trait loci (eQTL), chromatin conformation, and epigenomic annotations suggests tetraspanin 9 (TSPAN9) and protein arginine methyltransferase 8 (PRMT8) as potential functional genes underlying the GWAS signal at the TEAD4 locus. CONCLUSIONS We conducted a novel computational analysis by utilizing an LPA-inferred phenotype with genetics data for the first time. This study suggests that rs11829294 and its LD buddies have potential regulatory roles on genes that could impact neurocognitive impairment for extreme preterm born children.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Le Huang
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Geoffery W Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl C K Kuban
- Department of Pediatrics, Boston University, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy & Neurobiology, Boston University, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hudson P Santos
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Becic A, Leifeld J, Shaukat J, Hollmann M. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Front Mol Neurosci 2022; 14:801882. [PMID: 35046772 PMCID: PMC8761850 DOI: 10.3389/fnmol.2021.801882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.
Collapse
|
9
|
Wu B, Yu J, Liu Y, Dou G, Hou Y, Zhang Z, Pan X, Wang H, Zhou P, Zhu D. Potential Pathogenic Genes and Mechanism of Ankylosing Spondylitis: A Study Based on WGCNA and Bioinformatics Analysis. World Neurosurg 2021; 158:e543-e556. [PMID: 34775094 DOI: 10.1016/j.wneu.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this study is to explore the high-risk pathogenic driver genes for the occurrence and development of ankylosing spondylitis (AS) based on the bioinformatics method at the molecular level, to further elaborate the molecular mechanism of the pathogenesis of AS, and to provide potential biological targets for the diagnosis and treatment of clinical AS. METHODS The gene expression profile data GSE16879 were downloaded from the GEO (Gene Expression Omnibus) database, and weighted gene coexpression network analysis was performed. Highly correlated genes were divided into 14 modules, and 582 genes contained in the yellow (classic module) and 59 genes contained in grey60 (hematologic module) modules had the strongest correlation with AS. After protein-protein interaction (PPI) analysis, the top 20 genes with the highest scores were obtained from classic module and hematologic module, respectively. The DAVID (Database for Annotation, Visualization, and Integrated Discovery) database was used for Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis to analyze the biological functions of high-risk genes related to AS. RESULTS The results showed that the process of signal recognition particle-dependent cotranslational protein targeting to membrane, ribosome, nicotinamide adenine diphosphate hydride dehydrogenase (ubiquinone) activity, platelet activation, integrin complex, and extracellular matrix binding were enriched. CONCLUSIONS In this study, weighted gene coexpression network analysis, an efficient system biology algorithm, was used to analyze the high-risk pathogenic driver gene of AS. We provide new targets for the diagnosis and treatment of clinical AS and new ideas for further study.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China
| | - Jing Yu
- Operating Theatre No. 1, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yibing Liu
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China; Department of Breast Surgery, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Xuefeng Pan
- Department of Obstetrics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyu Wang
- Clinical College, Jilin University, Changchun, China
| | - Pengcheng Zhou
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane. Biochem J 2021; 478:3643-3654. [PMID: 34524408 DOI: 10.1042/bcj20210459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14 700 ± 1100 Tspan8/µm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.
Collapse
|
11
|
Deng Y, Cai S, Shen J, Peng H. Tetraspanins: Novel Molecular Regulators of Gastric Cancer. Front Oncol 2021; 11:702510. [PMID: 34222025 PMCID: PMC8250138 DOI: 10.3389/fonc.2021.702510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is the fourth and fifth most common cancer worldwide in men and women, respectively. However, patients with an advanced stage of gastric cancer still have a poor prognosis and low overall survival rate. The tetraspanins belong to a protein superfamily with four hydrophobic transmembrane domains and 33 mammalian tetraspanins are ubiquitously distributed in various cells and tissues. They interact with other membrane proteins to form tetraspanin-enriched microdomains and serve a variety of functions including cell adhesion, invasion, motility, cell fusion, virus infection, and signal transduction. In this review, we summarize multiple utilities of tetraspanins in the progression of gastric cancer and the underlying molecular mechanisms. In general, the expression of TSPAN8, CD151, TSPAN1, and TSPAN4 is increased in gastric cancer tissues and enhance the proliferation and invasion of gastric cancer cells, while CD81, CD82, TSPAN5, TSPAN9, and TSPAN21 are downregulated and suppress gastric cancer cell growth. In terms of cell motility regulation, CD9, CD63 and CD82 are metastasis suppressors and the expression level is inversely associated with lymph node metastasis. We also review the clinicopathological significance of tetraspanins in gastric cancer including therapeutic targets, the development of drug resistance and prognosis prediction. Finally, we discuss the potential clinical value and current limitations of tetraspanins in gastric cancer treatments, and provide some guidance for future research.
Collapse
Affiliation(s)
- Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Cai
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Balzarotti M, Magagnoli M, Canales MÁ, Corradini P, Grande C, Sancho JM, Zaja F, Quinson AM, Belsack V, Maier D, Carlo-Stella C. A phase Ib, open-label, dose-escalation trial of the anti-CD37 monoclonal antibody, BI 836826, in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma. Invest New Drugs 2021; 39:1028-1035. [PMID: 33523334 PMCID: PMC8279964 DOI: 10.1007/s10637-020-01054-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
Background BI 836826 is a chimeric mouse–human monoclonal antibody directed against human CD37, a transmembrane protein expressed on mature B lymphocytes. This open-label, phase I dose-escalation trial (NCT02624492) was conducted to determine the maximum tolerated dose (MTD), safety/tolerability, and preliminary efficacy of BI 836826 in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Methods Eligible patients received intravenous infusions of BI 836826 on day 8 and gemcitabine 1000 mg/m2 plus oxaliplatin 100 mg/m2 on day 1, for up to six 14-day treatment cycles. Dose escalation followed the standard 3 + 3 design. Results Of 21 treated patients, 17 had relapsed/refractory DLBCL and four had follicular lymphoma transformed to DLBCL. BI 836826 dosing started at 25 mg and proceeded through 50 mg and 100 mg. Two dose-limiting toxicities (DLTs) occurred during cycle 1, both grade 4 thrombocytopenia lasting > 7 days, affecting 1/6 evaluable patients (17%) in both the 50 mg and 100 mg cohorts. Due to early termination of the study, the MTD was not determined. The most common adverse events related to BI 836826 treatment were neutropenia (52%), thrombocytopenia (48%), and anemia (48%). Eight patients (38%) experienced BI 836826-related infusion-related reactions (two grade 3). Overall objective response rate was 38%, including two patients (10%) with complete remission and six patients (29%) with partial remission. Conclusions BI 836826 in combination with GemOx was generally well tolerated but did not exceed the MTD at doses up to 100 mg given every 14 days.
Collapse
Affiliation(s)
- Monica Balzarotti
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Massimo Magagnoli
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | | | - Paolo Corradini
- University of Milan, Milan, Italy
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Juan-Manuel Sancho
- Clinical Hematology Department, ICO-IJC-Hospital Germans Trias i Pujol, Badalona, Spain
| | - Francesco Zaja
- University of Trieste, Ospedale Maggiore, Piazza dell'Ospitale 1, Trieste, Italy
| | | | | | - Daniela Maier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carmelo Carlo-Stella
- Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
13
|
Salmond N, Khanna K, Owen GR, Williams KC. Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. NANOSCALE 2021; 13:2012-2025. [PMID: 33449064 DOI: 10.1039/d0nr05525e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane enclosed nano-sized structures released into the extracellular environment by all cell types. EV constituents include proteins, lipids and nucleic acids that reflect the cell from which they originated. The molecular profile of cancer cells is distinct as compared to healthy cells of the same tissue type, and this distinct profile should be reflected by the EVs they release. This makes EVs desirable candidates for blood-based biopsy diagnosis of cancer. EVs can be time consuming to isolate therefore, a technology that can analyze EVs in complex biological samples in a high throughput manner is in demand. Here nanoscale flow cytometry is used to analyze EVs in whole, unpurified, plasma samples from healthy individuals and breast cancer patients. A known breast cancer marker, mammaglobin-a, was evaluated as a potential candidate for expression on EVs and increased levels in breast cancer. Mammaglobin-a particles were abundantly detected in plasma by nanoscale flow cytometry but only a portion of these particles were validated as bona fide EVs. EVs could be distinguish and characterized from small protein clusters and platelets based on size, marker composition, and detergent treatment. Mammaglobin-a positive EVs were characterized and found to be CD42a/CD41-positive platelet EVs, and the number of these EVs present was dependent upon plasma preparation protocol. Different plasma preparation protocols influenced the total number of platelet EVs and mammaglobin-a was found to associate with lipid membranes in plasma. When comparing plasma samples prepared by the same protocol, mammaglobin-a positive EVs were more abundant in estrogen receptor (ER) positive as compared to ER negative breast cancer patient plasma samples. This study demonstrates the capabilities of nanoscale flow cytometry for EV and small particle analysis in whole, unpurified, plasma samples, and highlights important technical challenges that need to be addressed when developing this technology as a liquid biopsy platform.
Collapse
Affiliation(s)
- Nikki Salmond
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T1Z3, Canada.
| | | | | | | |
Collapse
|
14
|
Kroschinsky F, Middeke JM, Janz M, Lenz G, Witzens-Harig M, Bouabdallah R, La Rosée P, Viardot A, Salles G, Kim SJ, Kim TM, Ottmann O, Chromik J, Quinson AM, von Wangenheim U, Burkard U, Berk A, Schmitz N. Phase I dose escalation study of BI 836826 (CD37 antibody) in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Invest New Drugs 2020; 38:1472-1482. [PMID: 32172489 PMCID: PMC7497676 DOI: 10.1007/s10637-020-00916-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
BI 836826 is a chimeric immunoglobulin G1 antibody targeting CD37, a tetraspanin transmembrane protein predominantly expressed on normal and malignant B cells. This phase I, open-label study used a modified 3 + 3 design to evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary activity of BI 836826 in patients with relapsed/refractory B cell non-Hodgkin lymphoma (NHL; NCT01403948). Eligible patients received up to three courses comprising an intravenous infusion (starting dose: 1 mg) once weekly for 4 weeks followed by an observation period of 27 (Course 1, 2) or 55 days (Course 3). Patients had to demonstrate clinical benefit before commencing treatment beyond course 2. Forty-eight patients were treated. In the dose escalation phase (1-200 mg) involving 37 Caucasian patients, the MTD was 100 mg. Dose-limiting toxicities occurred in four patients during the MTD evaluation period, and included stomatitis, febrile neutropenia, hypocalcemia, hypokalemia, and hypophosphatemia. The most common adverse events were neutropenia (57%), leukopenia (57%), and thrombocytopenia (41%), and were commonly of grade 3 or 4. Overall, 18 (38%) patients experienced infusion-related reactions, which were mostly grade 1 or 2. Preliminary evidence of anti-tumor activity was seen; three patients responded to treatment, including one complete remission in a Korean patient with diffuse large B cell lymphoma. BI 836826 plasma exposure increased more than proportionally with increasing doses. BI 836826 demonstrated preliminary activity; the most frequent adverse events were hematotoxicity and infusion-related reactions which were manageable after amending the infusion schedule. Although BI 856826 will not undergo further clinical development, these results confirm CD37 as a valid therapeutic target in B cell NHL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antigens, Neoplasm
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/blood
- Antineoplastic Agents, Immunological/pharmacokinetics
- Drug Resistance, Neoplasm
- Female
- Humans
- Infusions, Intravenous
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Male
- Maximum Tolerated Dose
- Middle Aged
- Receptors, IgG/genetics
- Recurrence
- Tetraspanins/antagonists & inhibitors
- Treatment Outcome
- beta 2-Microglobulin/blood
Collapse
Affiliation(s)
- Frank Kroschinsky
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jan Moritz Middeke
- Medical Department I, University Hospital at the Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Georg Lenz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Mathias Witzens-Harig
- Internal Medicine V: Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Reda Bouabdallah
- Department of Hematology, Institute Paoli Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Paul La Rosée
- Klinik für Innere Medizin II, Universitätsklinikum, Jena, Germany
- Klinik für Innere Medizin II, Schwarzwald-Baar-Klinikum, Villingen-Schweningen, Germany
| | - Andreas Viardot
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Gilles Salles
- Department of Hematology, University Hospital of South Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| | - Seok Jin Kim
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Irwon-dong, Gangnam-gu, Seoul, South Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-Ro Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Oliver Ottmann
- Division of Cancer and Genetics, Department of Haematology, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Joerg Chromik
- Universitätsklinikum Frankfurt, Johann-Wolfgang-Goethe-Universität, Theodor-W.-Adorno-Platz 1, 60323, Frankfurt, Germany
| | - Anne-Marie Quinson
- Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Ute von Wangenheim
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Ute Burkard
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Andreas Berk
- ClinTriCare GmbH & Co. KG, Untere Illereicher Str. 10, 89281, Altenstadt, Germany
| | - Norbert Schmitz
- Department of Hematology and Oncology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
15
|
Gavin RL, Koo CZ, Tomlinson MG. Tspan18 is a novel regulator of thrombo-inflammation. Med Microbiol Immunol 2020; 209:553-564. [PMID: 32447449 PMCID: PMC7395042 DOI: 10.1007/s00430-020-00678-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The interplay between thrombosis and inflammation, termed thrombo-inflammation, causes acute organ damage in diseases such as ischaemic stroke and venous thrombosis. We have recently identified tetraspanin Tspan18 as a novel regulator of thrombo-inflammation. The tetraspanins are a family of 33 membrane proteins in humans that regulate the trafficking, clustering, and membrane diffusion of specific partner proteins. Tspan18 partners with the store-operated Ca2+ entry channel Orai1 on endothelial cells. Orai1 appears to be expressed in all cells and is critical in health and disease. Orai1 mutations cause human immunodeficiency, resulting in chronic and often lethal infections, while Orai1-knockout mice die at around the time of birth. Orai1 is a promising drug target in autoimmune and inflammatory diseases, and Orai1 inhibitors are in clinical trials. The focus of this review is our work on Tspan18 and Orai1 in Tspan18-knockout mice and Tspan18-knockdown primary human endothelial cells. Orai1 trafficking to the cell surface is partially impaired in the absence of Tspan18, resulting in impaired Ca2+ signaling and impaired release of the thrombo-inflammatory mediator von Willebrand factor following endothelial stimulation. As a consequence, Tspan18-knockout mice are protected in ischemia-reperfusion and deep vein thrombosis models. We provide new evidence that Tspan18 is relatively highly expressed in endothelial cells, through the analysis of publicly available single-cell transcriptomic data. We also present new data, showing that Tspan18 is required for normal Ca2+ signaling in platelets, but the functional consequences are subtle and restricted to mildly defective platelet aggregation and spreading induced by the platelet collagen receptor GPVI. Finally, we generate structural models of human Tspan18 and Orai1 and hypothesize that Tspan18 regulates Orai1 Ca2+ channel function at the cell surface by promoting its clustering.
Collapse
Affiliation(s)
- Rebecca L Gavin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
16
|
Dunster JL, Unsworth AJ, Bye AP, Haining EJ, Sowa MA, Di Y, Sage T, Pallini C, Pike JA, Hardy AT, Nieswandt B, García Á, Watson SP, Poulter NS, Gibbins JM, Pollitt AY. Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation. J Thromb Haemost 2020; 18:485-496. [PMID: 31680418 PMCID: PMC7027541 DOI: 10.1111/jth.14673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate protein quantification is a vital prerequisite for generating meaningful predictions when using systems biology approaches, a method that is increasingly being used to unravel the complexities of subcellular interactions and as part of the drug discovery process. Quantitative proteomics, flow cytometry, and western blotting have been extensively used to define human platelet protein copy numbers, yet for mouse platelets, a model widely used for platelet research, evidence is largely limited to a single proteomic dataset in which the total amount of proteins was generally comparatively higher than those found in human platelets. OBJECTIVES To investigate the functional implications of discrepancies between levels of mouse and human proteins in the glycoprotein VI (GPVI) signalling pathway using a systems pharmacology model of GPVI. METHODS The protein copy number of mouse platelet receptors was determined using flow cytometry. The Virtual Platelet, a mathematical model of GPVI signalling, was used to determine the consequences of protein copy number differences observed between human and mouse platelets. RESULTS AND CONCLUSION Despite the small size of mouse platelets compared to human platelets they possessed a greater density of surface receptors alongside a higher concentration of intracellular signalling proteins. Surprisingly the predicted temporal profile of Syk activity was similar in both species with predictions supported experimentally. Super resolution microscopy demonstrates that the spatial distribution of Syk is similar between species, suggesting that the spatial distribution of receptors and signalling molecules in activated platelets, rather than their copy number, is important for signalling pathway regulation.
Collapse
Affiliation(s)
- Joanne L. Dunster
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Amanda J. Unsworth
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
- Department of Life SciencesSchool of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Alexander P. Bye
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Marcin A. Sowa
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
- Platelet Proteomics GroupCenter for Research in Molecular Medicine and Chronic Diseases (CIMUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Chiara Pallini
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Jeremy A. Pike
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Alexander T. Hardy
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Bernhard Nieswandt
- Department of Experimental BiomedicineUniversity HospitalUniversity of WürzburgWürzburgGermany
| | - Ángel García
- Platelet Proteomics GroupCenter for Research in Molecular Medicine and Chronic Diseases (CIMUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Steve P. Watson
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences (ICVS)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsBirminghamUK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| | - Alice Y. Pollitt
- Institute for Cardiovascular and Metabolic Research (ICMR)School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
17
|
Noy PJ, Gavin RL, Colombo D, Haining EJ, Reyat JS, Payne H, Thielmann I, Lokman AB, Neag G, Yang J, Lloyd T, Harrison N, Heath VL, Gardiner C, Whitworth KM, Robinson J, Koo CZ, Di Maio A, Harrison P, Lee SP, Michelangeli F, Kalia N, Rainger GE, Nieswandt B, Brill A, Watson SP, Tomlinson MG. Tspan18 is a novel regulator of the Ca 2+ channel Orai1 and von Willebrand factor release in endothelial cells. Haematologica 2019; 104:1892-1905. [PMID: 30573509 PMCID: PMC6717597 DOI: 10.3324/haematol.2018.194241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ca2+ entry via Orai1 store-operated Ca2+ channels in the plasma membrane is critical to cell function, and Orai1 loss causes severe immunodeficiency and developmental defects. The tetraspanins are a superfamily of transmembrane proteins that interact with specific 'partner proteins' and regulate their trafficking and clustering. The aim of this study was to functionally characterize tetraspanin Tspan18. We show that Tspan18 is expressed by endothelial cells at several-fold higher levels than most other cell types analyzed. Tspan18-knockdown primary human umbilical vein endothelial cells have 55-70% decreased Ca2+ mobilization upon stimulation with the inflammatory mediators thrombin or histamine, similar to Orai1-knockdown. Tspan18 interacts with Orai1, and Orai1 cell surface localization is reduced by 70% in Tspan18-knockdown endothelial cells. Tspan18 overexpression in lymphocyte model cell lines induces 20-fold activation of Ca2+ -responsive nuclear factor of activated T cell (NFAT) signaling, in an Orai1-dependent manner. Tspan18-knockout mice are viable. They lose on average 6-fold more blood in a tail-bleed assay. This is due to Tspan18 deficiency in non-hematopoietic cells, as assessed using chimeric mice. Tspan18-knockout mice have 60% reduced thrombus size in a deep vein thrombosis model, and 50% reduced platelet deposition in the microcirculation following myocardial ischemia-reperfusion injury. Histamine- or thrombin-induced von Willebrand factor release from endothelial cells is reduced by 90% following Tspan18-knockdown, and histamine-induced increase of plasma von Willebrand factor is reduced by 45% in Tspan18-knockout mice. These findings identify Tspan18 as a novel regulator of endothelial cell Orai1/Ca2+ signaling and von Willebrand factor release in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Peter J Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca L Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Dario Colombo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jasmeet S Reyat
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Holly Payne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ina Thielmann
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | - Adam B Lokman
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Tammy Lloyd
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria L Heath
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chris Gardiner
- Department of Haematology, University College London, London, UK
| | - Katharine M Whitworth
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Joseph Robinson
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Chek Z Koo
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alessandro Di Maio
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Harrison
- Scar Free Foundation for Burns Research, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Steven P Lee
- Institute of Immunology and Immunotherapy, Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham-Nottingham, UK
| |
Collapse
|
18
|
|
19
|
|
20
|
Brosnahan MM, Al Abri MA, Brooks SA, Antczak DF, Osterrieder N. Genome-wide association study of equine herpesvirus type 1-induced myeloencephalopathy identifies a significant single nucleotide polymorphism in a platelet-related gene. Vet J 2018; 245:49-54. [PMID: 30819425 DOI: 10.1016/j.tvjl.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/16/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022]
Abstract
Equine herpesvirus type 1 (EHV-1)-induced myeloencephalopathy (EHM) is a neurologic disease of horses that represents one outcome of infection. The neurologic form of disease occurs in a subset of infected horses when virus-induced endothelial cell damage triggers vasculitis and subsequent ischemic insult to the central nervous system. EHM causes considerable animal suffering and economic loss for the horse industry. Virus polymorphisms have been previously associated with disease outcome but cannot fully explain why only some horses develop EHM. This study investigated the role of host genetics in EHM. DNA samples were collected from 129 horses infected with EHV-1 (61 that developed EHM and 68 in which disease resolved without the development of neurologic signs) during natural outbreaks or experimental infections. A genome-wide association study (GWAS) was performed to investigate host genetic variations associated with EHM. Genotyping was performed using the Illumina SNP50 and SNP70 arrays and a custom Sequenom array. Mixed linear model (MLM) analysis using a recessive model identified one marker that surpassed the threshold for genome-wide significance (P<0.001) after Bonferroni correction. The marker (BIEC2_946397) is in an intron of the tetraspanin 9 (TSPAN9) gene, which is expressed in endothelial cells and platelets. The GWAS identified a region in the horse genome that is associated with EHM in the sample population and thus warrants further exploration. Understanding the contribution of host genetic variation to the development of EHM will enhance our knowledge of disease pathophysiology, and lead to improved strategies for treating individual cases and managing outbreaks.
Collapse
Affiliation(s)
- M M Brosnahan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States; College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, United States.
| | - M A Al Abri
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States; Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - S A Brooks
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States; University of Florida, Gainsville, FL 32611, United States
| | - D F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - N Osterrieder
- Institut fur Virologie, Freie Universität, 14163 Berlin, Germany
| |
Collapse
|
21
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
22
|
de Winde CM, Matthews AL, van Deventer S, van der Schaaf A, Tomlinson ND, Jansen E, Eble JA, Nieswandt B, McGettrick HM, Figdor CG, Tomlinson MG, Acton SE, van Spriel AB. C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37. J Cell Sci 2018; 131:jcs214551. [PMID: 30185523 DOI: 10.1242/jcs.214551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Sjoerd van Deventer
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Neil D Tomlinson
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erik Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, D-48149 Münster, Germany
| | - Bernhard Nieswandt
- University Clinic of Würzburg and Rudolf Virchow Center for Experimental Biomedicine, 97070 Würzburg, Germany
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl G Figdor
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Sophie E Acton
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Annemiek B van Spriel
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci 2018; 65:102-109. [PMID: 29736818 PMCID: PMC5978804 DOI: 10.1007/s12031-018-1066-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Ischemic cardiomyopathy (ICM) represents a worldwide health issue owning to its high sudden death rate. Easy diagnosis and effective treatment of ICM are still lacking. Identification of novel molecular markers will help illustrate the pathophysiology of ICM and facilitate its diagnosis and targeted treatment. Transcription profiling could be an easy and efficient way for identifying new markers. However, the mega data in the available database may contain a large number of false-positive hits. To identify the true marker for ICM, we systematically compared available microarray datasets in the GEO database and identified 26 genes that are shared by all datasets. We further verified the expression pattern of these 26 genes in ICM rat model. Only 12 genes show significant differential expression in our animal model. Among them, we focused on PHLDA1, a well-documented pro-apoptotic factor. Expression of PHLDA1 was elevated in both ischemic cardiac cell lines and in rat model. Overexpression of PHLDA1 promotes apoptosis of cardiac muscle cell. Meanwhile, PHLDA1 not only inhibited AKT pathway, but also activated p53 pathway. We thus confirmed PHLDA1 as a true molecular marker for ICM.
Collapse
Affiliation(s)
- Jinhui Wang
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Feifei Wang
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jingbin Zhu
- Orthopedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Mei Song
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jinghong An
- Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Weimin Li
- Cardiology, The First Hospital of Harbin, Harbin, Heilongjiang Province, China.
| |
Collapse
|
24
|
Makkawi M, Howells D, Wright MD, Jackson DE. A complementary role for tetraspanin superfamily member TSSC6 and ADP purinergic P2Y 12 receptor in platelets. Thromb Res 2018; 161:12-21. [PMID: 29178985 DOI: 10.1016/j.thromres.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Tumor-suppressing subchromosomal transferable fragment cDNA 6 (TSSC6) expression is restricted to hematopoietic organs and tissues where it plays a role in hematopoietic-cell function. The ADP purinergic receptor P2Y12 is mainly expressed by platelets with important clinical significance as a target for several clinically approved antithrombotic agents. We have previously shown a physical association between P2Y12 and TSSC6 in platelets. Hence our aim was to investigate whether this physical association is translated to functional effects. To investigate this possibility, we used wild-type or TSSC6 knockout (KO) mice treated with either PBS or 50mg/kg clopidogrel. TSSC6 KO mice treated with clopidogrel exhibited synergy in delayed kinetics of clot retraction, reduced collagen-mediated platelet aggregation, and platelet spreading on fibrinogen. Platelets derived from TSSC6 mice with P2Y12 blockade form smaller thrombi when perfused over a collagen matrix under arterial flow. Clopidogrel treated TSSC6 KO arterioles showed smaller and less stable thrombi with increased tendency to embolise in vivo. These studies demonstrate a complementary role between TSSC6 and P2Y12 receptor in platelets in regulating 'outside in' integrin αIIbβ3 signalling thrombus growth and stability.
Collapse
Affiliation(s)
- Mohammed Makkawi
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, RMIT University, Victoria, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia; King Khalid University, Saudi Arabia
| | - David Howells
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Denise E Jackson
- Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, RMIT University, Victoria, Australia.
| |
Collapse
|
25
|
Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, Berditchevski F, Nieswandt B, Poulter NS, Watson SP, Tomlinson MG. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017; 28:629-642. [PMID: 28032533 PMCID: PMC5706974 DOI: 10.1080/09537104.2016.1254175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.
Collapse
Affiliation(s)
- Elizabeth J. Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra L. Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Peter J. Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Helen J. Harris
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy Pike
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- PSIBS Doctoral Training Centre, School of Chemistry, University of Birmingham, Birmingham, UK
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Rebecca L. Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre-Emmanuel Milhiet
- INSERM U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier University, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem Soc Trans 2017; 45:719-730. [PMID: 28620033 PMCID: PMC5473022 DOI: 10.1042/bst20160290] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane protein which is essential for embryonic development through activation of Notch proteins. ADAM10 regulates over 40 other transmembrane proteins and acts as a ‘molecular scissor’ by removing their extracellular regions. ADAM10 is also a receptor for α-toxin, a major virulence factor of Staphylococcus aureus. Owing to the importance of its substrates, ADAM10 is a potential therapeutic target for cancer, neurodegenerative diseases such as Alzheimer's and prion diseases, bacterial infection and inflammatory diseases such as heart attack, stroke and asthma. However, targetting ADAM10 is likely to result in toxic side effects. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals which interact with and regulate specific partner proteins within membrane nanodomains. Tetraspanins appear to have a cone-shaped structure with a cholesterol-binding cavity, which may enable tetraspanins to undergo cholesterol-regulated conformational change. An emerging paradigm for tetraspanin function is the regulation of ADAM10 by the TspanC8 subgroup of tetraspanins, namely Tspan5, 10, 14, 15, 17 and 33. This review will describe how TspanC8s are required for ADAM10 trafficking from the endoplasmic reticulum and its enzymatic maturation. Moreover, different TspanC8s localise ADAM10 to different subcellular localisations and may cause ADAM10 to adopt distinct conformations and cleavage of distinct substrates. We propose that ADAM10 should now be regarded as six different scissor proteins depending on the interacting TspanC8. Therapeutic targetting of specific TspanC8/ADAM10 complexes could allow ADAM10 targetting in a cell type- or substrate-specific manner, to treat certain diseases while minimising toxicity.
Collapse
|
27
|
Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS, Joensuu A, Kangas AJ, Soininen P, Wennerström A, Milani L, Metspalu A, Männistö S, Würtz P, Kettunen J, Raitoharju E, Kähönen M, Juonala M, Palotie A, Ala-Korpela M, Ripatti S, Lehtimäki T, Abraham G, Raitakari O, Salomaa V, Perola M, Inouye M. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 2017; 18:146. [PMID: 28764798 PMCID: PMC5540552 DOI: 10.1186/s13059-017-1279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
Collapse
Affiliation(s)
- Artika P Nath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Sean G Byars
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Liam G Fearnley
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Anni Joensuu
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland
| | | | - Lili Milani
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Andres Metspalu
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, FI-33521, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, FI-20520, Turku, Finland.,Murdoch Childrens Research Institute, Parkville, 3052, Victoria, Australia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol, Bristol, BS8 1TH, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Gad Abraham
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Michael Inouye
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. .,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
28
|
Chamaria S, Johnson KW, Vengrenyuk Y, Baber U, Shameer K, Divaraniya AA, Glicksberg BS, Li L, Bhatheja S, Moreno P, Maehara A, Mehran R, Dudley JT, Narula J, Sharma SK, Kini AS. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomics after Intensive Statin Treatment in Diabetes. Sci Rep 2017; 7:7001. [PMID: 28765529 PMCID: PMC5539108 DOI: 10.1038/s41598-017-07029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Residual atherothrombotic risk remains higher in patients with versus without diabetes mellitus (DM) despite statin therapy. The underlying mechanisms are unclear. This is a retrospective post-hoc analysis of the YELLOW II trial, comparing patients with and without DM (non-DM) who received rosuvastatin 40 mg for 8–12 weeks and underwent intracoronary multimodality imaging of an obstructive nonculprit lesion, before and after therapy. In addition, blood samples were drawn to assess cholesterol efflux capacity (CEC) and changes in gene expression in peripheral blood mononuclear cells (PBMC). There was a significant reduction in low density lipoprotein-cholesterol (LDL-C), an increase in CEC and beneficial changes in plaque morphology including increase in fibrous cap thickness and decrease in the prevalence of thin cap fibro-atheroma by optical coherence tomography in DM and non-DM patients. While differential gene expression analysis did not demonstrate differences in PBMC transcriptome between the two groups on the single-gene level, weighted gene coexpression network analysis revealed two modules of coexpressed genes associated with DM, Collagen Module and Platelet Module, related to collagen catabolism and platelet function respectively. Bayesian network analysis revealed key driver genes within these modules. These transcriptomic findings might provide potential mechanisms responsible for the higher cardiovascular risk in DM patients.
Collapse
Affiliation(s)
| | - Kipp W Johnson
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA
| | | | - Usman Baber
- Mount Sinai Heart, Mount Sinai Hospital, New York, USA
| | - Khader Shameer
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA
| | - Aparna A Divaraniya
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA
| | - Li Li
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA
| | | | - Pedro Moreno
- Mount Sinai Heart, Mount Sinai Hospital, New York, USA
| | | | - Roxana Mehran
- Mount Sinai Heart, Mount Sinai Hospital, New York, USA
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genetics and Genomic Sciences, Icahn School of Medicine, New York, USA.,Department of Population Health and Health Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jagat Narula
- Mount Sinai Heart, Mount Sinai Hospital, New York, USA
| | | | | |
Collapse
|
29
|
Pérez-Martínez CA, Maravillas-Montero JL, Meza-Herrera I, Vences-Catalán F, Zlotnik A, Santos-Argumedo L. Tspan33 is Expressed in Transitional and Memory B Cells, but is not Responsible for High ADAM10 Expression. Scand J Immunol 2017; 86:23-30. [PMID: 28449222 DOI: 10.1111/sji.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Tetraspanins are a family of transmembrane proteins that form membrane microdomains. They play important roles in migration, adhesion and other cellular processes. TspanC8, a subfamily of tetraspanins, was found to associate and promote ADAM10 trafficking and cell surface localization. One of its members, Tspan33, is expressed in activated B cells. Using RT-PCR and flow cytometry, we analysed the pattern of expression of Tspan33 in B cells from healthy donors. We found Tspan33 expression in early and late stages of B cell development. However, Tspan33 expression did not correlate with ADAM10 surface expression. We also found expression of Tspan33 early in the activation process. Given its predominant expression in activated B cells and in several lymphomas, but not in naive B cells, we hypothesize that Tspan33 could be a potential target for therapeutic purposes.
Collapse
Affiliation(s)
- C A Pérez-Martínez
- Departamento de Biomedicina Molecular, CINVESTAV-IPN, CDMX, Mexico City, Mexico.,Facultad de Medicina, UNAM, CDMX, Mexico City, Mexico
| | | | - I Meza-Herrera
- Departamento de Biomedicina Molecular, CINVESTAV-IPN, CDMX, Mexico City, Mexico
| | - F Vences-Catalán
- Departamento de Biomedicina Molecular, CINVESTAV-IPN, CDMX, Mexico City, Mexico.,Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - A Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - L Santos-Argumedo
- Departamento de Biomedicina Molecular, CINVESTAV-IPN, CDMX, Mexico City, Mexico
| |
Collapse
|
30
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
31
|
Do D, Bissonnette N, Lacasse P, Miglior F, Sargolzaei M, Zhao X, Ibeagha-Awemu E. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. J Dairy Sci 2017; 100:1955-1970. [DOI: 10.3168/jds.2016-11910] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
|
32
|
Abstract
Whilst significant effort has been focused on development of tools and approaches to clinically modulate activation processes that consume platelets, the platelet receptors that initiate activation processes remain untargeted. The modulation of receptor levels is also linked to underlying platelet aging processes which influence normal platelet lifespan and also the functionality and survival of stored platelets that are used in transfusion. In this review, we will focus on platelet adhesion receptors initiating thrombus formation, and discuss how regulation of levels of these receptors impact platelet function and platelet survival.
Collapse
Affiliation(s)
- Robert K Andrews
- a Australian Centre for Blood Diseases , Monash University , Melbourne , Australia
| | - Elizabeth E Gardiner
- b Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research , Australian National University , Canberra , Australia
| |
Collapse
|
33
|
Feng T, Sun L, Qi W, Pan F, Lv J, Guo J, Zhao S, Ding A, Qiu W. Prognostic significance of Tspan9 in gastric cancer. Mol Clin Oncol 2016; 5:231-236. [PMID: 27588187 DOI: 10.3892/mco.2016.961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Tetraspanins are a large superfamily of glycoproteins, which are engaged in a wide range of specific molecular interactions by forming tetraspanin-enriched microdomains. Tetraspanin 9 (Tspan9) is a previously poorly studied tetraspanin gene, which was predominantly identified as an amplified gene in serous Fallopian tube carcinoma. However, the expression and role of Tspan9 in gastric cancer have yet to be fully elucidated. The aim of the present study was to evaluate the expression and clinical significance of Tspan9 in gastric cancer. In the present study, 105 gastric cancer tissue samples and corresponding adjacent normal samples were detected for Tspan9 expression using immunohistochemistry; furthermore, the association between clinical characteristics and Tspan9 expression was also analyzed. Tspan9 expression was determined to be significantly lower in cancer samples compared with those in corresponding adjacent normal samples (P<0.001). However, its increased levels of expression in cancer samples appeared to demonstrate a poorer prognostic tendency, which is associated with deeper tumor depth (P=0.025), more nodal involvement (P=0.01), more advanced tumor/lymph node/metastasis (TNM) stages (P=0.017) and a larger tumor size (P=0.026). Additionally, multivariate analysis demonstrated that high expression of Tspan9 was an independent prognostic factor for poor overall survival (P<0.01). These results suggested that Tspan9 may be used as a potential prognostic factor in gastric cancer.
Collapse
Affiliation(s)
- Tongtong Feng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weiwei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fei Pan
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shufen Zhao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aiping Ding
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
34
|
A Five-Gene Expression Signature Predicts Clinical Outcome of Ovarian Serous Cystadenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6945304. [PMID: 27478834 PMCID: PMC4949334 DOI: 10.1155/2016/6945304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
Ovarian serous cystadenocarcinoma is a common malignant tumor of female genital organs. Treatment is generally less effective as patients are usually diagnosed in the late stage. Therefore, a well-designed prognostic marker provides valuable data for optimizing therapy. In this study, we analyzed 303 samples of ovarian serous cystadenocarcinoma and the corresponding RNA-seq data. We observed the correlation between gene expression and patients' survival and eventually established a risk assessment model of five factors using Cox proportional hazards regression analysis. We found that the survival time in high-risk patients was significantly shorter than in low-risk patients in both training and testing sets after Kaplan-Meier analysis. The AUROC value was 0.67 when predicting the survival time in testing set, which indicates a relatively high specificity and sensitivity. The results suggest diagnostic and therapeutic applications of our five-gene model for ovarian serous cystadenocarcinoma.
Collapse
|
35
|
Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets 2016; 28:333-341. [PMID: 27256961 PMCID: PMC5490636 DOI: 10.1080/09537104.2016.1184751] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are ubiquitous transmembrane “molecular scissors” which proteolytically cleave, or shed, the extracellular regions of other transmembrane proteins. ADAM10 is essential for development because it cleaves Notch proteins to induce Notch signaling and regulate cell fate decisions. ADAM17 is regarded as a first line of defense against injury and infection, by releasing tumor necrosis factor α (TNFα) to promote inflammation and epidermal growth factor (EGF) receptor ligands to maintain epidermal barrier function. However, the regulation of ADAM10 and ADAM17 trafficking and activation are not fully understood. This review will describe how the TspanC8 subgroup of tetraspanins (Tspan5, 10, 14, 15, 17, and 33) and the iRhom subgroup of protease-inactive rhomboids (iRhom1 and 2) have emerged as important regulators of ADAM10 and ADAM17, respectively. In particular, they are required for the enzymatic maturation and trafficking to the cell surface of the ADAMs, and there is evidence that different TspanC8s and iRhoms target the ADAMs to distinct substrates. The TspanC8s and iRhoms have not been studied functionally on platelets. On these cells, ADAM10 is the principal sheddase for the platelet collagen receptor GPVI, and the regulatory TspanC8s are Tspan14, 15, and 33, as determined from proteomic data. Platelet ADAM17 is the sheddase for the von Willebrand factor (vWF) receptor GPIb, and iRhom2 is the only iRhom that is expressed. Induced shedding of either GPVI or GPIb has therapeutic potential, since inhibition of either receptor is regarded as a promising anti-thrombotic therapy. Targeting of Tspan14, 15, or 33 to activate platelet ADAM10, or iRhom2 to activate ADAM17, may enable such an approach to be realized, without the toxic side effects of activating the ADAMs on every cell in the body.
Collapse
Affiliation(s)
- Alexandra L Matthews
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Peter J Noy
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Jasmeet S Reyat
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Michael G Tomlinson
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
36
|
Li PY, Lv J, Qi WW, Zhao SF, Sun LB, Liu N, Sheng J, Qiu WS. Tspan9 inhibits the proliferation, migration and invasion of human gastric cancer SGC7901 cells via the ERK1/2 pathway. Oncol Rep 2016; 36:448-54. [PMID: 27177197 DOI: 10.3892/or.2016.4805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/17/2016] [Indexed: 11/05/2022] Open
Abstract
Tetraspanins are a heterogeneous group of 4-transmembrane proteins that recruit other cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs). TEMs of various types are involved in the regulation of cell growth, migration and invasion of several tumor cell types, both as suppressors or promotors. Tetraspanin 9 (Tspan9, NET-5, PP1057), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, reportedly regulates platelet function in concert with other platelet tetraspanins and their associated proteins. Our previous study demonstrated that Tspan9 is also expressed in gastric cancer (GC), but the role of Tspan9 in GC has not been well characterized. In this study, we investigated the influence of Tspan9 on proliferation, migration and invasion of human gastric cancer SGC7901 cells using CCK-8 assay, cell cycle analysis, wound-healing assay and Transwell assay. Western blot analysis and ELISA assay were also performed to identify the potential mechanisms involved. The proliferation, migration and invasion of human gastric cancer SGC7901 cells were significantly inhibited by overexpression of Tspan9. In addition, Tspan9 downregulated the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the secretion levels of proteins related to tumor metastasis, such as matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA). Our study indicated that Tspan9 inhibited SGC7901 cell proliferation, migration and invasion through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Pai-Yun Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei-Wei Qi
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shu-Fen Zhao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li-Bin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ning Liu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Sheng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen-Sheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
37
|
Role of TSPAN9 in Alphavirus Entry and Early Endosomes. J Virol 2016; 90:4289-97. [PMID: 26865714 DOI: 10.1128/jvi.00018-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Alphaviruses are small enveloped RNA viruses that infect cells via clathrin-mediated endocytosis and low-pH-triggered fusion in the early endosome. Using a small interfering RNA (siRNA) screen in human cells, we previously identified TSPAN9 as a host factor that promotes infection by the alphaviruses Sindbis virus (SINV), Semliki Forest virus (SFV), and chikungunya virus (CHIKV). Depletion of TSPAN9 specifically decreases SFV membrane fusion in endosomes. TSPAN9 is a member of the tetraspanin family of multipass membrane proteins, but its cellular function is currently unknown. Here we used U-2 OS cells stably overexpressing TSPAN9 to show that TSPAN9 is localized at the plasma membrane and in early and late endosomes. Internalized SFV particles colocalized with TSPAN9 in vesicles early during infection. Depletion of TSPAN9 led to reductions in the amounts of the late endosomal proteins LAMP1 and CD63 and an increase in the amount of LAMP2. However, TSPAN9 depletion did not alter the delivery of SFV to early endosomes or change their pH or protease activity. Comparative studies showed that TSPAN9 depletion strongly inhibited infection by several viruses that fuse in early endosomes (SFV, SINV, CHIKV, and vesicular stomatitis virus [VSV]), while viruses that fuse in the late endosome (recombinant VSV-Lassa and VSV-Junin), including an SFV point mutant with a lower pH threshold for fusion (SFV E2 T12I), were relatively resistant. Our data suggest that TSPAN9 modulates the early endosome compartment to make it more permissive for membrane fusion of early-penetrating viruses. IMPORTANCE Alphaviruses are spread by mosquitoes and can cause serious human diseases such as arthritis and encephalitis. Recent outbreaks of CHIKV infection are responsible for millions of cases of acute illness and long-term complications. There are no vaccines or antiviral treatments for these important human pathogens. Alphaviruses infect host cells by utilizing the endocytic machinery of the cell and fusing their membrane with that of the endosome. Although the mechanism of virus-membrane fusion is well studied, we still know relatively little about the host cell proteins that are involved in alphavirus entry. Here we characterized the role of the host membrane protein TSPAN9 in alphavirus infection. TSPAN9 was localized to early endosomes containing internalized alphavirus, and depletion of TSPAN9 inhibited virus fusion with the early endosome membrane. In contrast, infection of viruses that enter through the late endosome was relatively resistant to TSPAN9 depletion, suggesting an important role for TSPAN9 in the early endosome.
Collapse
|
38
|
Noy PJ, Yang J, Reyat JS, Matthews AL, Charlton AE, Furmston J, Rogers DA, Rainger GE, Tomlinson MG. TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) Interact via Their Extracellular Regions: EVIDENCE FOR DISTINCT BINDING MECHANISMS FOR DIFFERENT TspanC8 PROTEINS. J Biol Chem 2015; 291:3145-57. [PMID: 26668317 PMCID: PMC4751363 DOI: 10.1074/jbc.m115.703058] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Indexed: 01/01/2023] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane metalloprotease that cleaves the extracellular regions from its transmembrane substrates. ADAM10 is essential for embryonic development and is implicated in cancer, Alzheimer, and inflammatory diseases. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals, of which the TspanC8 subgroup (Tspan5, 10, 14, 15, 17, and 33) promote ADAM10 intracellular trafficking and enzymatic maturation. However, the interaction between TspanC8s and ADAM10 has only been demonstrated in overexpression systems and the interaction mechanism remains undefined. To address these issues, an antibody was developed to Tspan14, which was used to show co-immunoprecipitation of Tspan14 with ADAM10 in primary human cells. Chimeric Tspan14 constructs demonstrated that the large extracellular loop of Tspan14 mediated its co-immunoprecipitation with ADAM10, and promoted ADAM10 maturation and trafficking to the cell surface. Chimeric ADAM10 constructs showed that membrane-proximal stalk, cysteine-rich, and disintegrin domains of ADAM10 mediated its co-immunoprecipitation with Tspan14 and other TspanC8s. This TspanC8-interacting region was required for ADAM10 exit from the endoplasmic reticulum. Truncated ADAM10 constructs revealed differential TspanC8 binding requirements for the stalk, cysteine-rich, and disintegrin domains. Moreover, Tspan15was the only TspanC8 to promote cleavage of the ADAM10 substrate N-cadherin, whereas Tspan14 was unique in reducing cleavage of the platelet collagen receptor GPVI. These findings suggest that ADAM10 may adopt distinct conformations in complex with different TspanC8s, which could impact on substrate selectivity. Furthermore, this study identifies regions of TspanC8s and ADAM10 for potential interaction-disrupting therapeutic targeting.
Collapse
Affiliation(s)
- Peter J Noy
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Jing Yang
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Jasmeet S Reyat
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Alexandra L Matthews
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Alice E Charlton
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - Joanna Furmston
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - David A Rogers
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| | - G Ed Rainger
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael G Tomlinson
- From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom and
| |
Collapse
|
39
|
Uchtmann K, Park ER, Bergsma A, Segula J, Edick MJ, Miranti CK. Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Exp Cell Res 2015; 339:261-9. [PMID: 26562164 DOI: 10.1016/j.yexcr.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 11/15/2022]
Abstract
Integrin αIIbβ3 is critical for platelet-mediated blood clotting. Tetraspanins are well-established regulators of integrins and genetic loss of tetraspanin CD151 or TSSC6 in mice leads to increased bleeding due to inadequate integrin αIIbβ3 outside-in signaling. Conversely, mild but enhanced integrin αIIbβ3 activation and hyperaggregation is observed in CD9 and CD63 null mice respectively. CD82 is reportedly expressed in platelets; however its function is unknown. Using genetically engineered CD82 null mice, we investigated the role of the tetraspanin CD82 in platelet activation. Loss of CD82 resulted in reduced bleed times in vivo. CD82 was present on the surface of both human and mouse platelets, and its levels did not change upon platelet activation or degranulation. No differences in platelet activation, degranulation, or aggregation in response to ADP or collagen were detected in CD82 null mice. However, the kinetics of clot retraction was enhanced, which was intrinsic to the CD82-null platelets. Integrin αIIbβ3 surface expression was elevated on the platelets from CD82 null mice and they displayed enhanced adhesion and tyrosine kinase signaling on fibrinogen. This is the first report on CD82 function in platelets; which we found intrinsically modulates clot retraction, integrin αIIbβ3 expression, cell adhesion, and tyrosine signaling.
Collapse
Affiliation(s)
- Kristen Uchtmann
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Electa R Park
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Alexis Bergsma
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Justin Segula
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Mathew J Edick
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Cindy K Miranti
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States.
| |
Collapse
|
40
|
Hsu PY, Hsu HK, Hsiao TH, Ye Z, Wang E, Profit AL, Jatoi I, Chen Y, Kirma NB, Jin VX, Sharp ZD, Huang THM. Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells. Oncogene 2015; 35:2379-89. [PMID: 26300005 PMCID: PMC4865474 DOI: 10.1038/onc.2015.298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 12/29/2022]
Abstract
Recruitment of transcription machinery to target promoters for aberrant gene expression has been well studied, but underlying control directed by distant-acting enhancers remains unclear in cancer development. Our previous study demonstrated that distant estrogen response elements (DEREs) located on chromosome 20q13 are frequently amplified and translocated to other chromosomes in ERα-positive breast cancer cells. In this study, we used three-dimensional interphase fluorescence in situ hybridization to decipher spatiotemporal gathering of multiple DEREs in the nucleus. Upon estrogen stimulation, scattered 20q13 DEREs were mobilized to form regulatory depots for synchronized gene expression of target loci. A chromosome conformation capture assay coupled with chromatin immunoprecipitation further uncovered that ERα-bound regulatory depots are tethered to heterochromatin protein 1 (HP1) for coordinated chromatin movement and histone modifications of target loci, resulting in transcription repression. Neutralizing HP1 function dysregulated the formation of DERE-involved regulatory depots and transcription inactivation of candidate tumor-suppressor genes. Deletion of amplified DEREs using the CRISPR/Cas9 genomic-editing system profoundly altered transcriptional profiles of proliferation-associated signaling networks, resulting in reduction of cancer cell growth. These findings reveal a formerly uncharacterized feature wherein multiple copies of the amplicon congregate as transcriptional units in the nucleus for synchronous regulation of function-related loci in tumorigenesis. Disruption of their assembly can be a new strategy for treating breast cancers and other malignancies.
Collapse
Affiliation(s)
- P-Y Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H-K Hsu
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T-H Hsiao
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Z Ye
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - E Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A L Profit
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - I Jatoi
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Y Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N B Kirma
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - V X Jin
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Z D Sharp
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - T H-M Huang
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
41
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
42
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
43
|
Involvement of neutrophils in thrombus formation in living mice. ACTA ACUST UNITED AC 2014; 62:1-9. [PMID: 24485849 DOI: 10.1016/j.patbio.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022]
Abstract
Thrombosis is one of the major causes of human death worldwide. Identification of the cellular and molecular mechanisms leading to thrombus formation is thus crucial for the understanding of the thrombotic process. To examine thrombus formation in a living mouse, new technologies have been developed. Digital intravital microscopy allows to visualize the development of thrombosis and generation of fibrin in real-time within living animal in a physiological context. This specific system allowed the identification of new cellular partners involved in platelet adhesion and activation. Furthermore, it improved, especially, the knowledge of the early phase of thrombus formation and fibrin generation in vivo. Until now, platelets used to be considered the sole central player in thrombus generation. However, recently, it has been demonstrated that leukocytes, particularly neutrophils, play a crucial role in the activation of the blood coagulation cascade leading to thrombosis. In this review, we summarized the mechanisms leading to thrombus formation in the microcirculation according to the method of injury in mice with a special focus on the new identified roles of neutrophils in this process.
Collapse
|
44
|
Saleh SM, Parhar RS, Al-Hejailan RS, Bakheet RH, Khaleel HS, Khalak HG, Halees AS, Zaidi MZ, Meyer BF, Yung GP, Seebach JD, Conca W, Khabar KS, Collison KS, Al-Mohanna FA. Identification of the tetraspanin CD82 as a new barrier to xenotransplantation. THE JOURNAL OF IMMUNOLOGY 2013; 191:2796-805. [PMID: 23872050 DOI: 10.4049/jimmunol.1300601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Galα1,3Galβ1,4GlcNAc-R (Galα1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Galα1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Galα1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Galα1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.
Collapse
Affiliation(s)
- Soad M Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamaguchi T, Nakaoka H, Yamamoto K, Fujikawa T, Kim Y, Yano K, Haga S, Katayama K, Shibusawa T, Park SB, Maki K, Kimura R, Inoue I. Genome‐wide association study of degenerative bony changes of the temporomandibular joint. Oral Dis 2013; 20:409-15. [DOI: 10.1111/odi.12141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/07/2013] [Accepted: 05/18/2013] [Indexed: 01/05/2023]
Affiliation(s)
- T Yamaguchi
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - H Nakaoka
- Division of Human Genetics National Institute of Genetics ShizuokaJapan
| | - K Yamamoto
- Division of Genome Analysis Research Center for Genetic Information Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - T Fujikawa
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - Y‐I Kim
- Department of Orthodontics Pusan National University Dental Hospital Yangsan Korea
| | - K Yano
- Verde Orthodontic Dental Clinic TokyoJapan
| | - S Haga
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - K Katayama
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - T Shibusawa
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - SB Park
- Department of Orthodontics Pusan National University Dental Hospital Yangsan Korea
| | - K Maki
- Department of Orthodontics School of Dentistry Showa University TokyoJapan
| | - R Kimura
- Faculty of Medicine University of the Ryukyus Okinawa Japan
| | - I Inoue
- Division of Human Genetics National Institute of Genetics ShizuokaJapan
| |
Collapse
|
46
|
Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 2012; 287:39753-65. [PMID: 23035126 DOI: 10.1074/jbc.m112.416503] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane "partner" proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting.
Collapse
Affiliation(s)
- Elizabeth J Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
UNSWORTH AJ, FINNEY BA, NAVARRO-NUNEZ L, SEVERIN S, WATSON SP, PEARS CJ. Protein kinase Cε and protein kinase Cθ double-deficient mice have a bleeding diathesis. J Thromb Haemost 2012; 10:1887-94. [PMID: 22812584 PMCID: PMC3532618 DOI: 10.1111/j.1538-7836.2012.04857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND In comparison to the classical isoforms of protein kinase C (PKC), the novel isoforms are thought to play minor or inhibitory roles in the regulation of platelet activation and thrombosis. OBJECTIVES To measure the levels of PKCθ and PKCε and to investigate the phenotype of mice deficient in both novel PKC isoforms. METHODS Tail bleeding and platelet activation assays were monitored in mice and platelets from mice deficient in both PKCθ and PKCε. RESULTS PKCε plays a minor role in supporting aggregation and secretion following stimulation of the collagen receptor GPVI in mouse platelets but has no apparent role in spreading on fibrinogen. PKCθ, in contrast, plays a minor role in supporting adhesion and filopodial generation on fibrinogen but has no apparent role in aggregation and secretion induced by GPVI despite being expressed at over 10 times the level of PKCε. Platelets deficient in both novel isoforms have a similar pattern of aggregation downstream of GPVI and spreading on fibrinogen as the single null mutants. Strikingly, a marked reduction in aggregation on collagen under arteriolar shear conditions is observed in blood from the double but not single-deficient mice along with a significant increase in tail bleeding. CONCLUSIONS These results reveal a greater than additive role for PKCθ and PKCε in supporting platelet activation under shear conditions and demonstrate that, in combination, the two novel PKCs support platelet activation.
Collapse
Affiliation(s)
- A J UNSWORTH
- Department of Biochemistry, University of OxfordOxford
| | - B A FINNEY
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - L NAVARRO-NUNEZ
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S SEVERIN
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S P WATSON
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - C J PEARS
- Department of Biochemistry, University of OxfordOxford
| |
Collapse
|
48
|
The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120:e73-82. [PMID: 22869793 DOI: 10.1182/blood-2012-04-416594] [Citation(s) in RCA: 557] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiplatelet treatment is of fundamental importance in combatting functions/dysfunction of platelets in the pathogenesis of cardiovascular and inflammatory diseases. Dysfunction of anucleate platelets is likely to be completely attributable to alterations in posttranslational modifications and protein expression. We therefore examined the proteome of platelets highly purified from fresh blood donations, using elaborate protocols to ensure negligible contamination by leukocytes, erythrocytes, and plasma. Using quantitative mass spectrometry, we created the first comprehensive and quantitative human platelet proteome, comprising almost 4000 unique proteins, estimated copy numbers for ∼ 3700 of those, and assessed intersubject (4 donors) as well as intrasubject (3 different blood samples from 1 donor) variations of the proteome. For the first time, our data allow for a systematic and weighted appraisal of protein networks and pathways in human platelets, and indicate the feasibility of differential and comprehensive proteome analyses from small blood donations. Because 85% of the platelet proteome shows no variation between healthy donors, this study represents the starting point for disease-oriented platelet proteomics. In the near future, comprehensive and quantitative comparisons between normal and well-defined dysfunctional platelets, or between platelets obtained from donors at various stages of chronic cardiovascular and inflammatory diseases will be feasible.
Collapse
|
49
|
Abstract
Platelets are crucial for preventing excessive blood loss at sites of injury by plugging holes in damaged blood vessels through thrombus formation. Platelet thrombi can, however, cause heart attack or stroke by blocking diseased vessels upon rupture of atherosclerotic plaques. Current anti-platelet therapy is not effective in all patients and carries a risk of bleeding. As such, a major goal in platelet research is to identify new drug targets to specifically inhibit platelets in disease processes. Tetraspanins are potential candidates because of their capacity to regulate other proteins in microdomains, and their defined roles in cell adhesion and signalling. In the last 6 years, analyses of tetraspanin-deficient mice have suggested that tetraspanins are indeed important for fine-tuning platelet responses. The future characterization of novel regulatory mechanisms in tetraspanin microdomains may lead to new drug targets for the prevention and treatment of heart attack and stroke.
Collapse
|
50
|
Senapedis WT, Kennedy CJ, Boyle PM, Silver PA. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Mol Biol Cell 2011; 22:1791-805. [PMID: 21460183 PMCID: PMC3093329 DOI: 10.1091/mbc.e10-10-0854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Akt activation sequesters FOXO1a away from its target genes and serves as an endpoint of a complex signaling network. A cell-based RNAi screen reveals an extensive network of genes, including UCP5, which directs nuclear localization of FOXO1a. Silencing of UCP5 disrupts the mitochondria and induces JNK1, creating a link to the Akt signaling network. Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- William T Senapedis
- Department of Systems Biology and the Harvard University Wyss Institute of Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|