1
|
Patel NM, Ripoll L, Peach CJ, Ma N, Blythe EE, Vaidehi N, Bunnett NW, von Zastrow M, Sivaramakrishnan S. Myosin VI drives arrestin-independent internalization and signaling of GPCRs. Nat Commun 2024; 15:10636. [PMID: 39638791 PMCID: PMC11621365 DOI: 10.1038/s41467-024-55053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
G protein-coupled receptor (GPCR) endocytosis is canonically associated with β-arrestins. Here, we delineate a β-arrestin-independent endocytic pathway driven by the cytoskeletal motor, myosin VI. Myosin VI engages GIPC, an adaptor protein that binds a PDZ sequence motif present at the C-terminus of several GPCRs. Using the D2 dopamine receptor (D2R) as a prototype, we find that myosin VI regulates receptor endocytosis, spatiotemporal localization, and signaling. We find that access to the D2R C-tail for myosin VI-driven internalization is controlled by an interaction between the C-tail and the third intracellular loop of the receptor. Agonist efficacy, co-factors, and GIPC expression modulate this interaction to tune agonist trafficking. Myosin VI is differentially regulated by distinct GPCR C-tails, suggesting a mechanism to shape spatiotemporal signaling profiles in different ligand and physiological contexts. Our biophysical and structural insights may advance orthogonal therapeutic strategies for targeting GPCRs through cytoskeletal motor proteins.
Collapse
Affiliation(s)
- Nishaben M Patel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Léa Ripoll
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chloe J Peach
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- School of Life Sciences, Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, UK
| | - Ning Ma
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Emily E Blythe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Colombo RB, Maxit C, Martinelli D, Anderson M, Masone D, Mayorga L. PURA and GLUT1: Sweet partners for brain health. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167261. [PMID: 38777099 DOI: 10.1016/j.bbadis.2024.167261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.
Collapse
Affiliation(s)
- Rocío B Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad De Química, Bioquímica y Farmacia, Universidad Nacional De San Luis, San Luis, Argentina
| | - Clarisa Maxit
- Servicio de Neurología infantil, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mel Anderson
- PURA Foundation Australia, Plenty Victoria, Australia
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Lía Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Neurología Infantojuvenil (Neuroinfan), Mendoza, Argentina.
| |
Collapse
|
3
|
Sun X, Han Y, Yu Y, Chen Y, Dong C, Lv Y, Qu H, Fan Z, Yu Y, Sang Y, Tang W, Liu Y, Ju J, Zhao D, Bai Y. Overexpressing of the GIPC1 protects against pathological cardiac remodelling. Eur J Pharmacol 2024; 971:176488. [PMID: 38458410 DOI: 10.1016/j.ejphar.2024.176488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The β-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of β1-adrenergic receptor (β1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the β1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of β1-adrenergic receptor/β2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Scientific Research, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yujie Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yi Yu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yaru Sang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wenxia Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
4
|
Qualls-Histed SJ, Nielsen CP, MacGurn JA. Lysosomal trafficking of the glucose transporter GLUT1 requires sequential regulation by TXNIP and ubiquitin. iScience 2023; 26:106150. [PMID: 36890792 PMCID: PMC9986520 DOI: 10.1016/j.isci.2023.106150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Glucose transporters are gatekeepers of cellular glucose metabolism. Understanding how their activity is regulated can provide insight into mechanisms of glucose homeostasis and diseases arising from dysregulation of glucose transport. Glucose stimulates endocytosis of the human glucose transporter GLUT1, but several important questions remain surrounding the intracellular trafficking itinerary of GLUT1. Here, we report that increased glucose availability triggers lysosomal trafficking of GLUT1 in HeLa cells, with a subpopulation of GLUT1 routed through ESCRT-associated late endosomes. This itinerary requires the arrestin-like protein TXNIP, which interacts with both clathrin and E3 ubiquitin ligases to promote GLUT1 lysosomal trafficking. We also find that glucose stimulates GLUT1 ubiquitylation, which promotes its lysosomal trafficking. Our results suggest that excess glucose first triggers TXNIP-mediated endocytosis of GLUT1 and, subsequently, ubiquitylation to promote lysosomal trafficking. Our findings underscore how complex coordination of multiple regulators is required for fine-tuning of GLUT1 stability at the cell surface.
Collapse
Affiliation(s)
- Susan J. Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Casey P. Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240 USA
| |
Collapse
|
5
|
Li X, Li L, Wu X, Wen B, Lin W, Cao Y, Xie L, Zhang H, Dong G, Li E, Xu L, Cheng Y. Anti-tumour effects of a macrolide analog F806 in oesophageal squamous cell carcinoma cells by targeting and promoting GLUT1 autolysosomal degradation. FEBS J 2022; 289:6782-6798. [PMID: 35653269 DOI: 10.1111/febs.16545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Cancer cells are characterized by altered energetic metabolism with increasing glucose uptake. F806, a 16-membered macrodiolide analogue, has anti-tumour effects on oesophageal squamous cell carcinoma (ESCC) cells. However, its precise anti-tumour mechanism remains unclear. Here, metascape analysis of our previous quantitative proteomics data showed that F806 induced glucose starvation response and inhibited energy production in ESCC cells. The reduced glucose uptake and ATP production were further validated by the fluorescent methods, using glucose-conjugated bioprobe Glu-1-O-DCSN, and the bioluminescent methods, respectively. Consistently, under F806 treatment the AMP-activated protein kinase signalling was activated, and autophagy flux was promoted and more autophagosomes were formed. Moreover, live-cell imaging and immunofluorescence analysis showed that F806 induced GLUT1 plasma membrane dissociation and promoted its internalization and autolysosome accumulation and lysosome degradation. Furthermore, molecular docking studies demonstrated that F806 bound to GLUT1 with a comparable binding energy to that of GLUT1's direct interacting inhibitor cytochalasin B. Amino acid mutation was used to test which residues of GLUT1 may participate in F806 mediated-GLUT1 internalization and degradation, and results showed that Thr137, Asn411 and Trp388 were required for GLUT1 internalization and degradation, respectively. Taken together, these findings shed light on a novel anti-tumour mechanism of F806 by targeting and promoting GLUT1 internalization and further autolysosomal degradation.
Collapse
Affiliation(s)
- Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Liyan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Xiaodong Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Medical Informatics Research Center, Shantou University Medical College, China
| | - Bing Wen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Yufei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, China
| | - Geng Dong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Medical Informatics Research Center, Shantou University Medical College, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Yinwei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| |
Collapse
|
6
|
Minemura T, Fukuhara A, Otsuki M, Shimomura I. Lactate dehydrogenase regulates basal glucose uptake in adipocytes. Biochem Biophys Res Commun 2022; 607:20-27. [PMID: 35366539 DOI: 10.1016/j.bbrc.2022.03.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022]
Abstract
Plasma glucose levels are homeostatically regulated within strict boundaries and are maintained through a balance between peripheral glucose uptake and hepatic glucose production. However, little is known about the regulatory mechanism of glucose uptake in adipocytes during fasting. Under fasting conditions, the expression levels of 8 glycolytic enzymes were significantly reduced in adipose tissue. Among them, we focused on lactate dehydrogenase A (LDHA), the last enzyme of the glycolytic pathway. Under fasting conditions, both LDHA and Glut1 protein levels tended to decrease in adipose tissue. To elucidate the significance of LDHA in adipocytes, we generated adipocyte-specific LDHA knockout mice (AdLDHAKO) for the first time. AdLDHAKO mice showed no apparent changes in body weight or tissue weight. Under fasting conditions, AdLDHAKO mice exhibited a significant reduction in Glut1 protein levels and glucose uptake in adipose tissues compared with control mice. Similarly, siRNA of LDHA in 3T3-L1 adipocytes reduced Glut1 protein levels and basal glucose uptake. Moreover, treatment with bafilomycin A1, an inhibitor of lysosomal protein degradation, restored Glut1 protein levels by siRNA of LDHA. These results indicate that LDHA regulates Glut1 expression and basal glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Tomomi Minemura
- Osaka University Graduate School of Frontier Biosciences, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Rai A, Shrivastava R, Vang D, Ritt M, Sadler F, Bhaban S, Salapaka M, Sivaramakrishnan S. Multimodal regulation of myosin VI ensemble transport by cargo adaptor protein GIPC. J Biol Chem 2022; 298:101688. [PMID: 35143838 PMCID: PMC8908270 DOI: 10.1016/j.jbc.2022.101688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
A range of cargo adaptor proteins are known to recruit cytoskeletal motors to distinct subcellular compartments. However, the structural impact of cargo recruitment on motor function is poorly understood. Here, we dissect the multimodal regulation of myosin VI activity through the cargo adaptor GAIP-interacting protein, C terminus (GIPC), whose overexpression with this motor in cancer enhances cell migration. Using a range of biophysical techniques, including motility assays, FRET-based conformational sensors, optical trapping, and DNA origami-based cargo scaffolds to probe the individual and ensemble properties of GIPC-myosin VI motility, we report that the GIPC myosin-interacting region (MIR) releases an autoinhibitory interaction within myosin VI. We show that the resulting conformational changes in the myosin lever arm, including the proximal tail domain, increase the flexibility of the adaptor-motor linkage, and that increased flexibility correlates with faster actomyosin association and dissociation rates. Taken together, the GIPC MIR-myosin VI interaction stimulates a twofold to threefold increase in ensemble cargo speed. Furthermore, the GIPC MIR-myosin VI ensembles yield similar cargo run lengths as forced processive myosin VI dimers. We conclude that the emergent behavior from these individual aspects of myosin regulation is the fast, processive, and smooth cargo transport on cellular actin networks. Our study delineates the multimodal regulation of myosin VI by the cargo adaptor GIPC, while highlighting linkage flexibility as a novel biophysical mechanism for modulating cellular cargo motility.
Collapse
Affiliation(s)
- Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachit Shrivastava
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Fredrik Sadler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Shreyas Bhaban
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Murti Salapaka
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.
| |
Collapse
|
8
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
9
|
Kubicka A, Matczak K, Łabieniec-Watała M. More Than Meets the Eye Regarding Cancer Metabolism. Int J Mol Sci 2021; 22:9507. [PMID: 34502416 PMCID: PMC8430985 DOI: 10.3390/ijms22179507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not "give up" on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.
Collapse
Affiliation(s)
- Anna Kubicka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| | - Magdalena Łabieniec-Watała
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| |
Collapse
|
10
|
Martín M, Salleron L, Peyret V, Geysels RC, Darrouzet E, Lindenthal S, Bernal Barquero CE, Masini-Repiso AM, Pourcher T, Nicola JP. The PDZ protein SCRIB regulates sodium/iodide symporter (NIS) expression at the basolateral plasma membrane. FASEB J 2021; 35:e21681. [PMID: 34196428 DOI: 10.1096/fj.202100303r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/25/2023]
Abstract
The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lisa Salleron
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Elisabeth Darrouzet
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Sabine Lindenthal
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Thierry Pourcher
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
11
|
Zhang Z, Zhou Q, Liu R, Liu L, Shen WJ, Azhar S, Qu YF, Guo Z, Hu Z. The adaptor protein GIPC1 stabilizes the scavenger receptor SR-B1 and increases its cholesterol uptake. J Biol Chem 2021; 296:100616. [PMID: 33811857 PMCID: PMC8093464 DOI: 10.1016/j.jbc.2021.100616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein (HDL) receptor, is a membrane glycoprotein that mediates selective uptake of HDL-cholesterol and cholesterol ester (CE) into cells. SR-B1 is subject to posttranslational regulation; however, the underlying mechanisms still remain obscure. Here, we identified a novel SR-B1-interacting protein, GIPC1 (GAIP-interacting protein, C terminus 1) that interacts with SR-B1 and stabilizes SR-B1 by negative regulation of its proteasomal and lysosomal degradation pathways. The physiological interaction between SR-B1 and GIPC1 was supported by co-immunoprecipitation of wild-type and mutant GIPC1 constructs in SR-B1 ± GIPC1 overexpressing cells, in native liver cells, and in mouse liver tissues. Overexpression of GIPC1 increased endogenous SR-B1 protein levels, subsequently increasing selective HDL-cholesterol/CE uptake and cellular triglyceride (TG) and total cholesterol (TC) levels, whereas silencing of GIPC1 in the mouse liver was associated with blunted hepatic SR-B1 levels, elevated plasma TG and TC, and attenuated hepatic TG and TC content. A positive correlation was identified between GIPC1 and SR-B1 expression, and both expressions of GIPC1 and SR-B1 from human liver samples were inversely correlated with body mass index (BMI) from human subjects. We therefore conclude that GIPC1 plays a key role in the stability and function of SR-B1 and can also effectively regulate hepatic lipid and cholesterol metabolism. These findings expand our knowledge of the regulatory roles of GIPC1 and suggest that GIPC1 exerts a major effect on cell surface receptors such as SR-B1 and its associated hepatic lipid and cholesterol metabolic processes.
Collapse
Affiliation(s)
- Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
12
|
Alwarawrah Y, Nichols AG, Green WD, Eisner W, Kiernan K, Warren J, Hale LP, Beck MA, MacIver NJ. Targeting T-cell oxidative metabolism to improve influenza survival in a mouse model of obesity. Int J Obes (Lond) 2020; 44:2419-2429. [PMID: 33037327 PMCID: PMC7686301 DOI: 10.1038/s41366-020-00692-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obesity is associated with impaired primary and secondary immune responses to influenza infection, with T cells playing a critical role. T-cell function is highly influenced by the cellular metabolic state; however, it remains unknown how altered systemic metabolism in obesity alters T-cell metabolism and function to influence immune response. Our objective was to identify the altered cellular metabolic state of T cells from obese mice so that we may target T-cell metabolism to improve immune response to infection. METHODS Mice were fed normal chow or high-fat diet for 18-19 weeks. Changes in T-cell populations were analyzed in both adipose tissue and spleens using flow cytometry. Splenic T cells were further analyzed for nutrient uptake and extracellular metabolic flux. As changes in T-cell mitochondrial oxidation were observed in obesity, obese mice were treated with metformin for 6 weeks and compared to lean control mice or obese mice undergoing weight loss through diet switch; immunity was measured by survival to influenza infection. RESULTS We found changes in T-cell populations in adipose tissue of high-fat diet-induced obese mice, characterized by decreased proportions of Treg cells and increased proportions of CD8+ T cells. Activated CD4+ T cells from obese mice had increased glucose uptake and oxygen consumption rate (OCR), compared to T cells from lean controls, indicating increased mitochondrial oxidation of glucose. Treatment of isolated CD4+ T cells with metformin was found to inhibit OCR in vitro and alter the expression of several activation markers. Last, treatment of obese mice with metformin, but not weight loss, was able to improve survival to influenza in obesity. CONCLUSIONS T cells from obese mice have an altered metabolic profile characterized by increased glucose oxidation, which can be targeted to improve survival against influenza infection.
Collapse
Affiliation(s)
- Yazan Alwarawrah
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - William D Green
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - William Eisner
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jonathan Warren
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Nancie J MacIver
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Tilekar K, Upadhyay N, Hess JD, Macias LH, Mrowka P, Aguilera RJ, Meyer-Almes FJ, Iancu CV, Choe JY, Ramaa CS. Structure guided design and synthesis of furyl thiazolidinedione derivatives as inhibitors of GLUT 1 and GLUT 4, and evaluation of their anti-leukemic potential. Eur J Med Chem 2020; 202:112603. [PMID: 32634629 PMCID: PMC7451030 DOI: 10.1016/j.ejmech.2020.112603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells increase their glucose uptake and glycolytic activity to meet the high energy requirements of proliferation. Glucose transporters (GLUTs), which facilitate the transport of glucose and related hexoses across the cell membrane, play a vital role in tumor cell survival and are overexpressed in various cancers. GLUT1, the most overexpressed GLUT in many cancers, is emerging as a promising anti-cancer target. To develop GLUT1 inhibitors, we rationally designed, synthesized, structurally characterized, and biologically evaluated in-vitro and in-vivo a novel series of furyl-2-methylene thiazolidinediones (TZDs). Among 25 TZDs tested, F18 and F19 inhibited GLUT1 most potently (IC50 11.4 and 14.7 μM, respectively). F18 was equally selective for GLUT4 (IC50 6.8 μM), while F19 was specific for GLUT1 (IC50 152 μM in GLUT4). In-silico ligand docking studies showed that F18 interacted with conserved residues in GLUT1 and GLUT4, while F19 had slightly different interactions with the transporters. In in-vitro antiproliferative screening of leukemic/lymphoid cells, F18 was most lethal to CEM cells (CC50 of 1.7 μM). Flow cytometry analysis indicated that F18 arrested cell cycle growth in the subG0-G1 phase and lead to cell death due to necrosis and apoptosis. Western blot analysis exhibited alterations in cell signaling proteins, consistent with cell growth arrest and death. In-vivo xenograft study in a CEM model showed that F18 impaired tumor growth significantly.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Jessica D Hess
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Lucasantiago Henze Macias
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chalubinskiego, Warsaw, Poland
| | - Renato J Aguilera
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Darmstadt, Germany
| | - Cristina V Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA; Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
14
|
Li ZY, Shi YL, Liang GX, Yang J, Zhuang SK, Lin JB, Ghodbane A, Tam MS, Liang ZJ, Zha ZG, Zhang HT. Visualization of GLUT1 Trafficking in Live Cancer Cells by the Use of a Dual-Fluorescence Reporter. ACS OMEGA 2020; 5:15911-15921. [PMID: 32656411 PMCID: PMC7345384 DOI: 10.1021/acsomega.0c01054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 05/07/2023]
Abstract
Glucose metabolism is an essential process for energy production and cell survival for both normal and abnormal cellular metabolism. Several glucose transporter/solute carrier 2A (GLUT/SLC2A) superfamily members, including glucose transporter 1 (GLUT1), have been shown to mediate the cellular uptake of glucose in diverse cell types. GLUT1-mediated glucose uptake is a transient and rapid process; thus, the real-time monitoring of GLUT1 trafficking is pivotal for a better understanding of GLUT1 expression and GLUT1-dependent glucose uptake. In the present study, we established a rapid and effective method to visualize the trafficking of GLUT1 between the plasma membrane (PM) and endolysosomal system in live cells using an mCherry-EGFP-GLUT1 tandem fluorescence tracing system. We found that GLUT1 localized at the PM exhibited both red (mCherry) and green (EGFP) fluorescence (yellow when overlapping). However, a significant increase in red punctate fluorescence (mCherry is resistant to acidic pH), but not green fluorescence (EGFP is quenched by acidic pH), was observed upon glucose deprivation, indicating that the mCherry-EGFP-GLUT1 functional protein was trafficked to the acidic endolysosomal system. Besides, we were able to calculate the relative ratio of mCherry to EGFP by quantification of the translocation coefficient, which can be used as a readout for GLUT1 internalization and subsequent lysosomal degradation. Two mutants, mCherry-EGFP-GLUT1-S226D and mCherry-EGFP-GLUT1-ΔC4, were also constructed, which indirectly confirmed the specificity of mCherry-EGFP-GLUT1 for monitoring GLUT1 trafficking. By using a series of endosomal (Rab5, Rab7, and Rab11) and lysosomal markers, we were able to define a model of GLUT1 trafficking in live cells in which upon glucose deprivation, GLUT1 dissociates from the PM and experiences a pH gradient from 6.8-6.1 in the early endosomes to 6.0-4.8 in the late endosomes and finally pH 4.5 in lysosomes, which is appropriate for degradation. In addition, our proof-of-concept study indicated that the pmCherry-EGFP-GLUT1 tracing system can accurately reflect endogenous changes in GLUT1 in response to treatment with the small molecule, andrographolide. Since targeting GLUT1 expression and GLUT1-dependent glucose metabolism is a promising therapeutic strategy for diverse types of cancers and certain other glucose addiction diseases, our study herein indicates that pmCherry-EGFP-GLUT1 can be utilized as a biosensor for GLUT1-dependent functional studies and potential small molecule screening.
Collapse
Affiliation(s)
- Zhen-Yan Li
- Institute of Orthopedic Diseases and Department
of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Yu-Ling Shi
- Department of Orthopedics,
the Third Affiliated Hospital, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Guo-Xiong Liang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong 528400, China
| | - Jie Yang
- Institute of Orthopedic Diseases and Department
of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Song-Kuan Zhuang
- State Key Laboratory
of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jie-Bin Lin
- Department of Orthopedics,
the Third Affiliated Hospital, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Abdelmoumin Ghodbane
- Institute of Orthopedic Diseases and Department
of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Man-Seng Tam
- IAN WO Medical Center, Macao Special
Administrative Region, Macao 999078, China
| | - Zu-Jian Liang
- Department of Orthopedics,
the Third Affiliated Hospital, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
- . Phone: 86-13751876166
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department
of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department
of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
- . Phone: 86-13802800152
| |
Collapse
|
15
|
Wakeham CM, Ren G, Morgans CW. Expression and distribution of trophoblast glycoprotein in the mouse retina. J Comp Neurol 2020; 528:1660-1671. [PMID: 31891182 DOI: 10.1002/cne.24850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023]
Abstract
We recently identified the leucine-rich repeat (LRR) adhesion protein, trophoblast glycoprotein (TPBG), as a novel PKCα-dependent phosphoprotein in retinal rod bipolar cells (RBCs). Since TPBG has not been thoroughly examined in the retina, this study characterizes the localization and expression patterns of TPBG in the developing and adult mouse retina using two antibodies, one against the N-terminal LRR domain and the other against the C-terminal PDZ-interacting motif. Both antibodies labeled RBC dendrites in the outer plexiform layer and axon terminals in the IPL, as well as a putative amacrine cell with their cell bodies in the inner nuclear layer (INL) and a dense layer in the middle of the inner plexiform layer (IPL). In live transfected HEK293 cells, TPBG was localized to the plasma membrane with the N-terminal LRR domain facing the extracellular space. TPBG immunofluorescence in RBCs was strongly altered by the loss of TRPM1 in the adult retina, with significantly less dendritic and axon terminal labeling in TRPM1 knockout compared to wild type, despite no change in total TPBG detected by immunoblotting. During retinal development, TPBG expression increases dramatically just prior to eye opening with a time course closely correlated with that of TRPM1 expression. In the retina, LRR proteins have been implicated in the development and maintenance of functional bipolar cell synapses, and TPBG may play a similar role in RBCs.
Collapse
Affiliation(s)
- Colin M Wakeham
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Gaoying Ren
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
16
|
Tang M, Park SH, De Vivo DC, Monani UR. Therapeutic strategies for glucose transporter 1 deficiency syndrome. Ann Clin Transl Neurol 2019; 6:1923-1932. [PMID: 31464092 PMCID: PMC6764625 DOI: 10.1002/acn3.50881] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/01/2023] Open
Abstract
Proper development and function of the mammalian brain is critically dependent on a steady supply of its chief energy source, glucose. Such supply is mediated by the glucose transporter 1 (Glut1) protein. Paucity of the protein stemming from mutations in the associated SLC2A1 gene deprives the brain of glucose and triggers the infantile‐onset neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). Considering the monogenic nature of Glut1 DS, the disease is relatively straightforward to model and thus study. Accordingly, Glut1 DS serves as a convenient paradigm to investigate the more general cellular and molecular consequences of brain energy failure. Here, we review how Glut1 DS models have informed the biology of a prototypical brain energy failure syndrome, how these models are facilitating the development of promising new treatments for the human disease, and how important insights might emerge from the study of Glut1 DS to illuminate the myriad conditions involving the Glut1 protein.
Collapse
Affiliation(s)
- Maoxue Tang
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, 10032.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, 10032
| | - Sarah H Park
- Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, 10032.,Department of Neurology, Columbia University Medical Center, New York, New York, 10032
| | - Darryl C De Vivo
- Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, 10032.,Department of Neurology, Columbia University Medical Center, New York, New York, 10032
| | - Umrao R Monani
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, 10032.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, 10032.,Department of Neurology, Columbia University Medical Center, New York, New York, 10032
| |
Collapse
|
17
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
18
|
Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM. Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits. Hum Mutat 2019; 40:983-995. [PMID: 30950137 DOI: 10.1002/humu.23758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.
Collapse
Affiliation(s)
- Osatohanmwen J Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Peter M U Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
19
|
Guo Z, Jia J, Yao M, Kang J, Wang Y, Yan X, Zhang L, Lv Q, Chen X, Lu F. Diacylglycerol kinase γ predicts prognosis and functions as a tumor suppressor by negatively regulating glucose transporter 1 in hepatocellular carcinoma. Exp Cell Res 2018; 373:211-220. [PMID: 30399372 DOI: 10.1016/j.yexcr.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes catalyzing the transformation of diacylglycerol into phosphatidic acid, which have been recognized as key regulators in cell signaling pathways. The role of DGKγ in human malignancies has seldom been studied. In this study, we investigated the role of DGKγ in hepatocellular carcinoma (HCC). We found that DGKγ was down-regulated in HCC tumor tissues and cell lines as compared to that in non-tumor tissues. The prognostic value of DGKγ expression was evaluated by Cox regression and Kaplan-Meier analyses. Lower DGKγ expression in tumor tissues was an independent prognostic factor for poor post-surgical overall survival. By using HDACs inhibitors treatment and ChIP-PCR, we discovered that histone H3 and H4 deacetylation mainly contributed to the downregulation of DGKγ expression. Functional studies revealed that ectopic expression of DGKγ inhibited cell proliferation and cell migration in HCC cells. Mechanism studies showed that DGKγ overexpression led to down regulation of GLUT1 protein level and AMPK activity, which result in glucose uptake suppression as well as lactate and ATP production declination. The decrease of GLUT1 level could be partially rescued by treatments with either DGK inhibitor and lysosome inhibitor, indicating DGKγ may down-regulate GLUT1 through its kinase activity and lysosome degradation process. Together, this study demonstrated that DGKγ plays a tumor suppressor role in HCC by negatively regulating GLUT1. DGKγ could be a novel prognostic indicator and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhengyang Guo
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Junqiao Jia
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Mingjie Yao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Jingting Kang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Yongfeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotong Yan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ling Zhang
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, PR China
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, No.100 Science Road, Zhengzhou, Henan 450001, PR China.
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China.
| |
Collapse
|
20
|
Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda OM, Caldas C, Di Fiore PP, Sapino A, Lanzetti L. High USP6NL Levels in Breast Cancer Sustain Chronic AKT Phosphorylation and GLUT1 Stability Fueling Aerobic Glycolysis. Cancer Res 2018; 78:3432-3444. [PMID: 29691252 DOI: 10.1158/0008-5472.can-17-3018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
USP6NL, also named RN-tre, is a GTPase-activating protein involved in control of endocytosis and signal transduction. Here we report that USP6NL is overexpressed in breast cancer, mainly of the basal-like/integrative cluster 10 subtype. Increased USP6NL levels were accompanied by gene amplification and were associated with worse prognosis in the METABRIC dataset, retaining prognostic value in multivariable analysis. High levels of USP6NL in breast cancer cells delayed endocytosis and degradation of the EGFR, causing chronic AKT (protein kinase B) activation. In turn, AKT stabilized the glucose transporter GLUT1 at the plasma membrane, increasing aerobic glycolysis. In agreement, elevated USP6NL sensitized breast cancer cells to glucose deprivation, indicating that their glycolytic capacity relies on this protein. Depletion of USP6NL accelerated EGFR/AKT downregulation and GLUT1 degradation, impairing cell proliferation exclusively in breast cancer cells that harbored increased levels of USP6NL. Overall, these findings argue that USP6NL overexpression generates a metabolic rewiring that is essential to foster the glycolytic demand of breast cancer cells and promote their proliferation.Significance: USP6NL overexpression leads to glycolysis addiction of breast cancer cells and presents a point of metabolic vulnerability for therapeutic targeting in a subset of aggressive basal-like breast tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3432/F1.large.jpg Cancer Res; 78(13); 3432-44. ©2018 AACR.
Collapse
Affiliation(s)
- Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Emanuela Pupo
- Department of Oncology, University of Torino Medical School, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Nadia Ducano
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Claudio Isella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giovanni Bertalot
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Chiara Luise
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alejandra Bruna
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pier Paolo Di Fiore
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino Medical School, Torino, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
21
|
Pastò A, Pagotto A, Pilotto G, De Paoli A, De Salvo GL, Baldoni A, Nicoletto MO, Ricci F, Damia G, Bellio C, Indraccolo S, Amadori A. Resistance to glucose starvation as metabolic trait of platinum-resistant human epithelial ovarian cancer cells. Oncotarget 2018; 8:6433-6445. [PMID: 28031535 PMCID: PMC5351643 DOI: 10.18632/oncotarget.14118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Deregulated glucose metabolism is observed in cancer but whether this metabolic trait influences response to or is modulated by cytotoxic drugs is unknown. We show here that tumor cells from epithelial ovarian cancer (EOC) patients can be categorized, according to their in vitro viability under glucose starvation, into glucose deprivation-sensitive (glucose-addicted, GA) and glucose deprivation-resistant (glucose non-addicted, GNA). When EOC cells were cultured in the absence of glucose, all samples from platinum (PLT)-sensitive patients felt into the GA group; they disclosed higher expression of glucose metabolism enzymes, higher proliferation rates and in vitro sensitivity to PLT. Moreover, GA patients showed reduced multi-drug resistance pump expression and autophagy, compared to GNA samples. The close association between PLT sensitivity and glucose metabolic profile was confirmed in a xenograft model, where a stringent parallelism between PLT sensitivity/resistance and glucose metabolism was identified. Finally, in a cohort of naïve EOC patients categorized as GA or GNA at diagnosis, Kaplan Meier curves showed that the GA phenotype was associated with significantly better progression-free survival, compared to GNA patients.
Collapse
Affiliation(s)
- Anna Pastò
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anna Pagotto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giorgia Pilotto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | | | - Francesca Ricci
- Laboratory of Molecular Pharmacology, Oncology Department, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Oncology Department, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Chiara Bellio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Alberto Amadori
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IRCCS, Padova, Italy
| |
Collapse
|
22
|
Kim SB, Kim HR, Park MC, Cho S, Goughnour PC, Han D, Yoon I, Kim Y, Kang T, Song E, Kim P, Choi H, Mun JY, Song C, Lee S, Jung HS, Kim S. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J Cell Biol 2017; 216:2201-2216. [PMID: 28611052 PMCID: PMC5496609 DOI: 10.1083/jcb.201605118] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/05/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs), enzymes that normally control protein synthesis, can be secreted and have different activities in the extracellular space, but the mechanism of their secretion is not understood. This study describes the secretion route of the ARS lysyl-tRNA synthetase (KRS) and how this process is regulated by caspase activity, which has been implicated in the unconventional secretion of other proteins. We show that KRS is secreted from colorectal carcinoma cells within the lumen of exosomes that can trigger an inflammatory response. Caspase-8 cleaved the N-terminal of KRS, thus exposing a PDZ-binding motif located in the C terminus of KRS. Syntenin bound to the exposed PDZ-binding motif of KRS and facilitated the exosomic secretion of KRS dissociated from the multi-tRNA synthetase complex. KRS-containing exosomes released by cancer cells induced macrophage migration, and their secretion of TNF-α and cleaved KRS made a significant contribution to these activities, which suggests a novel mechanism by which caspase-8 may promote inflammation.
Collapse
Affiliation(s)
- Sang Bum Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hye Rim Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Seongmin Cho
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Daeyoung Han
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - YounHa Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea
| | - Ji Young Mun
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, South Korea.,Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, South Korea
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Roy S, Leidal AM, Ye J, Ronen SM, Debnath J. Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake. Mol Cell 2017; 67:84-95.e5. [PMID: 28602638 DOI: 10.1016/j.molcel.2017.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/07/2017] [Accepted: 05/19/2017] [Indexed: 01/16/2023]
Abstract
Autophagy traditionally sustains metabolism in stressed cells by promoting intracellular catabolism and nutrient recycling. Here, we demonstrate that in response to stresses requiring increased glycolytic demand, the core autophagy machinery also facilitates glucose uptake and glycolytic flux by promoting cell surface expression of the glucose transporter GLUT1/Slc2a1. During metabolic stress, LC3+ autophagic compartments bind and sequester the RabGAP protein TBC1D5 away from its inhibitory interactions with the retromer complex, thereby enabling retromer recruitment to endosome membranes and GLUT1 plasma membrane translocation. In contrast, TBC1D5 inhibitory interactions with the retromer are maintained in autophagy-deficient cells, leading to GLUT1 mis-sorting into endolysosomal compartments. Furthermore, TBC1D5 depletion in autophagy-deficient cells rescues retromer recruitment to endosomal membranes and GLUT1 surface recycling. Hence, TBC1D5 shuttling to autophagosomes during metabolic stress facilitates retromer-dependent GLUT1 trafficking. Overall, our results illuminate key interconnections between the autophagy and endosomal pathways dictating GLUT1 trafficking and extracellular nutrient uptake.
Collapse
Affiliation(s)
- Srirupa Roy
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Looyenga B, VanOpstall C, Lee Z, Bell J, Lodge E, Wrobel K, Arnoys E, Louters L. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer. Sci Rep 2016; 6:29130. [PMID: 27357903 PMCID: PMC4928127 DOI: 10.1038/srep29130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes-which express particularly high levels of GLUT1-have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells.
Collapse
Affiliation(s)
- Brendan Looyenga
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Calvin VanOpstall
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Zion Lee
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Jed Bell
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Evans Lodge
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Katherine Wrobel
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Eric Arnoys
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Larry Louters
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| |
Collapse
|
25
|
A systematic evaluation of sorting motifs in the sodium–iodide symporter (NIS). Biochem J 2016; 473:919-28. [DOI: 10.1042/bj20151086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Human sodium–iodide symporter (NIS) variants were created to suppress predicted binding motifs potentially implicated in trafficking of this protein. A leucine residue in an internal PDZ-binding motif was found to be essential for expression of the symporter at the plasma membrane.
Collapse
|
26
|
Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89:1209-26. [PMID: 26047665 PMCID: PMC4508370 DOI: 10.1007/s00204-015-1520-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.
Collapse
Affiliation(s)
- Dania C. Liemburg-Apers
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sander Grefte
- />Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RUMC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- />Department of Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
27
|
Pastò A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, Rasola A, Frasson C, Nardo G, Zulato E, Nicoletto MO, Manicone M, Indraccolo S, Amadori A. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 2015; 5:4305-19. [PMID: 24946808 PMCID: PMC4147325 DOI: 10.18632/oncotarget.2010] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated the metabolic profile of cancer stem cells (CSC) isolated from patients with epithelial ovarian cancer. CSC overexpressed genes associated with glucose uptake, oxidative phosphorylation (OXPHOS), and fatty acid β-oxidation, indicating higher ability to direct pyruvate towards the Krebs cycle. Consistent with a metabolic profile dominated by OXPHOS, the CSC showed higher mitochondrial reactive oxygen species (ROS) production and elevated membrane potential, and underwent apoptosis upon inhibition of the mitochondrial respiratory chain. The CSC also had a high rate of pentose phosphate pathway (PPP) activity, which is not typical of cells privileging OXPHOS over glycolysis, and may rather reflect the PPP role in recharging scavenging enzymes. Furthermore, CSC resisted in vitro and in vivo glucose deprivation, while maintaining their CSC phenotype and OXPHOS profile. These observations may explain the CSC resistance to anti-angiogenic therapies, and indicate this peculiar metabolic profile as a possible target of novel treatment strategies.
Collapse
Affiliation(s)
- Anna Pastò
- Department of Surgery, Oncology, and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bhattacharya S, Pal K, Sharma AK, Dutta SK, Lau JS, Yan IK, Wang E, Elkhanany A, Alkharfy KM, Sanyal A, Patel TC, Chari ST, Spaller MR, Mukhopadhyay D. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways. PLoS One 2014; 9:e114409. [PMID: 25469510 PMCID: PMC4255029 DOI: 10.1371/journal.pone.0114409] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.
Collapse
Affiliation(s)
- Santanu Bhattacharya
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Krishnendu Pal
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anil K. Sharma
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shamit K. Dutta
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julie S. Lau
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Irene K. Yan
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Enfeng Wang
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ahmed Elkhanany
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Khalid M. Alkharfy
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Arunik Sanyal
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tushar C. Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Suresh T. Chari
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark R. Spaller
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, and Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Debabrata Mukhopadhyay
- Department Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
29
|
McGough IJ, Steinberg F, Gallon M, Yatsu A, Ohbayashi N, Heesom KJ, Fukuda M, Cullen PJ. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma-membrane recycling. J Cell Sci 2014; 127:4940-53. [PMID: 25278552 PMCID: PMC4231307 DOI: 10.1242/jcs.156299] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Retromer is a protein assembly that orchestrates the sorting of transmembrane cargo proteins into endosome-to-Golgi and endosome-to-plasma-membrane transport pathways. Here, we have employed quantitative proteomics to define the interactome of human VPS35, the core retromer component. This has identified a number of new interacting proteins, including ankyrin-repeat domain 50 (ANKRD50), seriologically defined colon cancer antigen 3 (SDCCAG3) and VPS9-ankyrin-repeat protein (VARP, also known as ANKRD27). Depletion of these proteins resulted in trafficking defects of retromer-dependent cargo, but differential and cargo-specific effects suggested a surprising degree of functional heterogeneity in retromer-mediated endosome-to-plasma-membrane sorting. Extending this, suppression of the retromer-associated WASH complex did not uniformly affect retromer cargo, thereby confirming cargo-specific functions for retromer-interacting proteins. Further analysis of the retromer-VARP interaction identified a role for retromer in endosome-to-melanosome transport. Suppression of VPS35 led to mistrafficking of the melanogenic enzymes, tyrosinase and tryrosine-related protein 1 (Tyrp1), establishing that retromer acts in concert with VARP in this trafficking pathway. Overall, these data reveal hidden complexities in retromer-mediated sorting and open up new directions in our molecular understanding of this essential sorting complex.
Collapse
Affiliation(s)
- Ian J McGough
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Florian Steinberg
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew Gallon
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ayaka Yatsu
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Norihiko Ohbayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Peter J Cullen
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
Pal K, Pletnev AA, Dutta SK, Wang E, Zhao R, Baral A, Yadav VK, Aggarwal S, Krishnaswamy S, Alkharfy KM, Chowdhury S, Spaller MR, Mukhopadhyay D. Inhibition of endoglin-GIPC interaction inhibits pancreatic cancer cell growth. Mol Cancer Ther 2014; 13:2264-75. [PMID: 25125675 PMCID: PMC4229952 DOI: 10.1158/1535-7163.mct-14-0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoglin, a 180-kDa disulfide-linked homodimeric transmembrane receptor protein mostly expressed in tumor-associated endothelial cells, is an endogenous binding partner of GAIP-interacting protein, C terminus (GIPC). Endoglin functions as a coreceptor of TβRII that binds TGFβ and is important for vascular development, and consequently has become a compelling target for antiangiogenic therapies. A few recent studies in gastrointestinal stromal tumor (GIST), breast cancer, and ovarian cancer, however, suggest that endoglin is upregulated in tumor cells and is associated with poor prognosis. These findings indicate a broader role of endoglin in tumor biology, beyond angiogenic effects. The goal of our current study is to evaluate the effects of targeting endoglin in pancreatic cancer both in vitro and in vivo. We analyzed the antiproliferative effect of both RNAi-based and peptide ligand-based inhibition of endoglin in pancreatic cancer cell lines, the latter yielding a GIPC PDZ domain-targeting lipopeptide with notable antiproliferative activity. We further demonstrated that endoglin inhibition induced a differentiation phenotype in the pancreatic cancer cells and sensitized them against conventional chemotherapeutic drug gemcitabine. Most importantly, we have demonstrated the antitumor effect of both RNAi-based and competitive inhibitor-based blocking of endoglin in pancreatic cancer xenograft models in vivo. To our knowledge, this is the first report exploring the effect of targeting endoglin in pancreatic cancer cells.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Alexandre A Pletnev
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Ruizhi Zhao
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Vinod Kumar Yadav
- G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Suruchi Aggarwal
- G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | | | - Khalid M Alkharfy
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shantanu Chowdhury
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India. G.N.R. Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, Council for Scientific and Industrial Research, New Delhi, India
| | - Mark R Spaller
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire
| | | |
Collapse
|
31
|
McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol 2014; 24:1670-1676. [PMID: 24980502 PMCID: PMC4110399 DOI: 10.1016/j.cub.2014.06.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized. Here we established that in cells expressing VPS35(D620N) there is a perturbation in endosome-to-TGN transport but not endosome-to-plasma membrane recycling, which we confirm in patient cells harboring the VPS35(D620N) mutation. Through comparative stable isotope labeling by amino acids in cell culture (SILAC)-based analysis of wild-type VPS35 versus the VPS35(D620N) mutant interactomes, we establish that the major defect of the D620N mutation lies in the association to the actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog (WASH) complex. Moreover, using isothermal calorimetry, we establish that the primary defect of the VPS35(D620N) mutant is a 2.2 ± 0.5-fold decrease in affinity for the WASH complex component FAM21. These data define the primary molecular defect in retromer assembly that arises from the VPS35(D620N) mutation and, by revealing functional effects on retromer-mediated endosome-to-TGN transport, provide new insight into retromer deregulation in Parkinson disease.
Collapse
Affiliation(s)
- Ian J McGough
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Florian Steinberg
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Da Jia
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter A Barbuti
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Kirsty J McMillan
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Alan L Whone
- Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, UK
| | - Maeve A Caldwell
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Daniel D Billadeau
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter J Cullen
- The Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
32
|
Andrisse S, Koehler RM, Chen JE, Patel GD, Vallurupalli VR, Ratliff BA, Warren DE, Fisher JS. Role of GLUT1 in regulation of reactive oxygen species. Redox Biol 2014; 2:764-71. [PMID: 25101238 PMCID: PMC4116627 DOI: 10.1016/j.redox.2014.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022] Open
Abstract
In skeletal muscle cells, GLUT1 is responsible for a large portion of basal uptake of glucose and dehydroascorbic acid, both of which play roles in antioxidant defense. We hypothesized that conditions that would decrease GLUT1-mediated transport would cause increased reactive oxygen species (ROS) levels in L6 myoblasts, while conditions that would increase GLUT1-mediated transport would result in decreased ROS levels. We found that the GLUT1 inhibitors fasentin and phloretin increased the ROS levels induced by antimycin A and the superoxide generator pyrogallol. However, indinavir, which inhibits GLUT4 but not GLUT1, had no effect on ROS levels. Ataxia telangiectasia mutated (ATM) inhibitors and activators, previously shown to inhibit and augment GLUT1-mediated transport, increased and decreased ROS levels, respectively. Mutation of an ATM target site on GLUT1 (GLUT1-S490A) increased ROS levels and prevented the ROS-lowering effect of the ATM activator doxorubicin. In contrast, expression of GLUT1-S490D lowered ROS levels during challenge with pyrogallol, prevented an increase in ROS when ATM was inhibited, and prevented the pyrogallol-induced decrease in insulin signaling and insulin-stimulated glucose transport. Taken together, the data suggest that GLUT1 plays a role in regulation of ROS and could contribute to maintenance of insulin action in the presence of ROS. Inhibition of GLUT1, but not inhibition of GLUT4, increases ROS levels in myoblasts. Mutation of an ATM target site on GLUT1 to alanine (GLUT1-S490A) increases ROS. The ATM activator doxorubicin decreases ROS except in cells that express GLUT1-S490A. Inhibition of ATM increases ROS except in cells transfected with GLUT1S490D. Expression of GLUT1-S490D protects cells against ROS-mediated insulin resistance.
Collapse
Affiliation(s)
- Stanley Andrisse
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Rikki M Koehler
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Joseph E Chen
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Gaytri D Patel
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Vivek R Vallurupalli
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Benjamin A Ratliff
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Daniel E Warren
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| | - Jonathan S Fisher
- Department of Biology, Saint Louis University, 3507 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
33
|
Andrisse S, Patel GD, Chen JE, Webber AM, Spears LD, Koehler RM, Robinson-Hill RM, Ching JK, Jeong I, Fisher JS. ATM and GLUT1-S490 phosphorylation regulate GLUT1 mediated transport in skeletal muscle. PLoS One 2013; 8:e66027. [PMID: 23776597 PMCID: PMC3679034 DOI: 10.1371/journal.pone.0066027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/04/2013] [Indexed: 12/24/2022] Open
Abstract
Objective The glucose and dehydroascorbic acid (DHA) transporter GLUT1 contains a phosphorylation site, S490, for ataxia telangiectasia mutated (ATM). The objective of this study was to determine whether ATM and GLUT1-S490 regulate GLUT1. Research Design and Methods L6 myoblasts and mouse skeletal muscles were used to study the effects of ATM inhibition, ATM activation, and S490 mutation on GLUT1 localization, trafficking, and transport activity. Results In myoblasts, inhibition of ATM significantly diminished cell surface GLUT1, glucose and DHA transport, GLUT1 externalization, and association of GLUT1 with Gα-interacting protein-interacting protein, C-terminus (GIPC1), which has been implicated in recycling of endosomal proteins. In contrast, ATM activation by doxorubicin (DXR) increased DHA transport, cell surface GLUT1, and the GLUT1/GIPC1 association. S490A mutation decreased glucose and DHA transport, cell surface GLUT1, and interaction of GLUT1 with GIPC1, while S490D mutation increased transport, cell surface GLUT1, and the GLUT1/GIPC1 interaction. ATM dysfunction or ATM inhibition reduced DHA transport in extensor digitorum longus (EDL) muscles and decreased glucose transport in EDL and soleus. In contrast, DXR increased DHA transport in EDL. Conclusions These results provide evidence that ATM and GLUT1-S490 promote cell surface GLUT1 and GLUT1-mediated transport in skeletal muscle associated with upregulation of the GLUT1/GIPC1 interaction.
Collapse
Affiliation(s)
- Stanley Andrisse
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Gaytri D. Patel
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Joseph E. Chen
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Andrea M. Webber
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Larry D. Spears
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Rikki M. Koehler
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Rona M. Robinson-Hill
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - James K. Ching
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Imju Jeong
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jonathan S. Fisher
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
34
|
Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM, Cullen PJ. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 2013; 15:461-71. [PMID: 23563491 PMCID: PMC4052425 DOI: 10.1038/ncb2721] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
The PDZ-domain-containing sorting nexin 27 (SNX27) promotes recycling of internalized transmembrane proteins from endosomes to the plasma membrane by linking PDZ-dependent cargo recognition to retromer-mediated transport. Here, we employed quantitative proteomics of the SNX27 interactome and quantification of the surface proteome of SNX27- and retromer-suppressed cells to dissect the assembly of the SNX27 complex and provide an unbiased global view of SNX27-mediated sorting. Over 100 cell surface proteins, many of which interact with SNX27, including the glucose transporter GLUT1, the Menkes disease copper transporter ATP7A, various zinc and amino acid transporters, and numerous signalling receptors, require SNX27-retromer to prevent lysosomal degradation and maintain surface levels. Furthermore, we establish that direct interaction of the SNX27 PDZ domain with the retromer subunit VPS26 is necessary and sufficient to prevent lysosomal entry of SNX27 cargo. Our data identify the SNX27-retromer as a major endosomal recycling hub required to maintain cellular nutrient homeostasis.
Collapse
Affiliation(s)
- Florian Steinberg
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
T cell activation leads to dramatic shifts in cell metabolism to protect against pathogens and to orchestrate the action of other immune cells. Quiescent T cells require predominantly ATP-generating processes, whereas proliferating effector T cells require high metabolic flux through growth-promoting pathways. Further, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. Pathways that control immune cell function and metabolism are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell functions. As a result of these findings, cell metabolism is now appreciated as a key regulator of T cell function specification and fate. This review discusses the role of cellular metabolism in T cell development, activation, differentiation, and function to highlight the clinical relevance and opportunities for therapeutic interventions that may be used to disrupt immune pathogenesis.
Collapse
Affiliation(s)
- Nancie J MacIver
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
36
|
Abstract
Changes in metabolic processes play a critical role in the survival or death of cells subjected to various stresses. In the present study, we have investigated the effects of ER (endoplasmic reticulum) stress on cellular metabolism. A major difficulty in studying metabolic responses to ER stress is that ER stress normally leads to apoptosis and metabolic changes observed in dying cells may be misleading. Therefore we have used IL-3 (interleukin 3)-dependent Bak-/-Bax-/- haemopoietic cells which do not die in the presence of the ER-stress-inducing drug tunicamycin. Tunicamycin-treated Bak-/-Bax-/- cells remain viable, but cease growth, arresting in G1-phase and undergoing autophagy in the absence of apoptosis. In these cells, we used NMR-based SIRM (stable isotope-resolved metabolomics) to determine the metabolic effects of tunicamycin. Glucose was found to be the major carbon source for energy production and anabolic metabolism. Following tunicamycin exposure, glucose uptake and lactate production are greatly reduced. Decreased 13C labelling in several cellular metabolites suggests that mitochondrial function in cells undergoing ER stress is compromised. Consistent with this, mitochondrial membrane potential, oxygen consumption and cellular ATP levels are much lower compared with untreated cells. Importantly, the effects of tunicamycin on cellular metabolic processes may be related to a reduction in cell-surface GLUT1 (glucose transporter 1) levels which, in turn, may reflect decreased Akt signalling. These results suggest that ER stress exerts profound effects on several central metabolic processes which may help to explain cell death arising from ER stress in normal cells.
Collapse
|
37
|
Abstract
SUMMARY The regulation of lymphocyte homeostasis is critical for the development and formation of productive immune responses. Cell numbers must be maintained to allow sufficient numbers of lymphocytes to combat foreign pathogens but prevent the accumulation of excess lymphocytes that may increase the risk of developing autoimmunity or neoplasia. Cell extrinsic growth factors are essential to maintain homeostasis and cell survival, and it has become increasingly apparent that a key mechanism of this control is through regulation of cell metabolism. The metabolic state of T cells can have profound influences on cell growth and survival and even differentiation. In particular, resting T cells utilize an energy efficient oxidative metabolism but shift to a highly glycolytic metabolism when stimulated to grow and proliferate by pathogen encounter. After antigen clearance, T cells must return to a more quiescent oxidative metabolism to support T-cell memory. This review highlights how these metabolic changes may be intricately involved with both T-cell growth and death in the control of homeostasis and immunity.
Collapse
Affiliation(s)
- Ryan D Michalek
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
38
|
Gospe SM, Baker SA, Arshavsky VY. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments. J Cell Sci 2010; 123:3639-44. [PMID: 20923839 DOI: 10.1242/jcs.072389] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.
Collapse
Affiliation(s)
- Sidney M Gospe
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Lauffer BEL, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. ACTA ACUST UNITED AC 2010; 190:565-74. [PMID: 20733053 PMCID: PMC2928020 DOI: 10.1083/jcb.201004060] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein–coupled receptors rely on the PDZ domain of SNX27 for endosomal recycling. Postsynaptic density 95/discs large/zonus occludens-1 (PDZ) domain–interacting motifs, in addition to their well-established roles in protein scaffolding at the cell surface, are proposed to act as cis-acting determinants directing the molecular sorting of transmembrane cargo from endosomes to the plasma membrane. This hypothesis requires the existence of a specific trans-acting PDZ protein that mediates the proposed sorting operation in the endosome membrane. Here, we show that sorting nexin 27 (SNX27) is required for efficient PDZ-directed recycling of the β2-adrenoreceptor (β2AR) from early endosomes. SNX27 mediates this sorting function when expressed at endogenous levels, and its recycling activity requires both PDZ domain–dependent recognition of the β2AR cytoplasmic tail and Phox homology (PX) domain–dependent association with the endosome membrane. These results identify a discrete role of SNX27 in PDZ-directed recycling of a physiologically important signaling receptor, and extend the concept of cargo-specific molecular sorting in the recycling pathway.
Collapse
Affiliation(s)
- Benjamin E L Lauffer
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California-San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Spicer E, Suckert C, Al-Attar H, Marsden M. Integrin alpha5beta1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation. PLoS One 2010; 5:e10665. [PMID: 20498857 PMCID: PMC2871791 DOI: 10.1371/journal.pone.0010665] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/19/2010] [Indexed: 12/17/2022] Open
Abstract
During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis.
Collapse
Affiliation(s)
- Erin Spicer
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Catherine Suckert
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Hyder Al-Attar
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mungo Marsden
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ, Carmeliet P, Simons M. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 2010; 18:713-24. [PMID: 20434959 DOI: 10.1016/j.devcel.2010.02.016] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 01/14/2010] [Accepted: 02/13/2010] [Indexed: 12/28/2022]
Abstract
VEGF is the key growth factor regulating arterial morphogenesis. However, molecular events involved in this process have not been elucidated. Synectin null mice demonstrate impaired VEGF signaling and a marked reduction in arterial morphogenesis. Here, we show that this occurs due to delayed trafficking of VEGFR2-containing endosomes that exposes internalized VEGFR2 to selective dephosphorylation by PTP1b on Y(1175) site. Synectin involvement in VEGFR2 intracellular trafficking requires myosin-VI, and myosin-VI knockout in mice or knockdown in zebrafish phenocopy the synectin null phenotype. Silencing of PTP1b restores VEGFR2 activation and significantly recovers arterial morphogenesis in myosin-VI(-/-) knockdown zebrafish and synectin(-/-) mice. We conclude that activation of the VEGF-mediated arterial morphogenesis cascade requires phosphorylation of the VEGFR2 Y(1175) site that is dependent on trafficking of internalized VEGFR2 away from the plasma membrane via a synectin-myosin-VI complex. This key event in VEGF signaling occurs at an intracellular site and is regulated by a novel endosomal trafficking-dependent process.
Collapse
Affiliation(s)
- Anthony A Lanahan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Choi JS, Paek AR, Kim SY, You HJ. GIPC mediates the generation of reactive oxygen species and the regulation of cancer cell proliferation by insulin-like growth factor-1/IGF-1R signaling. Cancer Lett 2010; 294:254-63. [PMID: 20206441 DOI: 10.1016/j.canlet.2010.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1)/IGF-1 receptor signaling participates in a variety of cellular processes, including cell survival, growth, and proliferation. Increased expression of IGF-1R and activation of its downstream signaling components have been implicated in human cancers. Although a regulatory role for IGF-1R has been established, the relationship between IGF-1R and its binding partner, GAIP-interacting protein C-terminus (GIPC), in terms of promoting cell proliferation, remains unclear. We found that siRNA-mediated silencing of GIPC expression decreased IGF-1-mediated IGF-1R phosphorylation and cellular proliferation in breast cancer models. IGF-1-mediated cellular proliferation was also inhibited by N-acetylcysteine, which implicates reactive oxygen species generation. siRNA-mediated silencing of GIPC expression also decreased IGF-1-mediated reactive oxygen species generation. Taken together, these data suggest that GIPC contributes to IGF-1-induced cancer cell proliferation via the regulation of reactive oxygen species production.
Collapse
Affiliation(s)
- Ji Seung Choi
- Carcinogenesis Branch, Div. of Cancer Biology, National Cancer Center, Research Institute, 111 Jungbalsan-ro, Ilsandong-gu, Goyang, Gyeonggi 410-769, South Korea
| | | | | | | |
Collapse
|
43
|
Lee JD, Hempel N, Lee NY, Blobe GC. The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling. Carcinogenesis 2009; 31:175-83. [PMID: 19955393 DOI: 10.1093/carcin/bgp271] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Loss of expression of the type III transforming growth factor-beta receptor (TbetaRIII or betaglycan), a transforming growth factor-beta (TGF-beta) superfamily co-receptor, is common in human breast cancers. TbetaRIII suppresses cancer progression in vivo by reducing cancer cell migration and invasion by largely unknown mechanisms. Here, we demonstrate that the cytoplasmic domain of TbetaRIII is essential for TbetaRIII-mediated downregulation of migration and invasion in vitro and TbetaRIII-mediated inhibition of breast cancer progression in vivo. Functionally, the cytoplasmic domain of TbetaRIII is required to attenuate TGF-beta signaling, whereas TbetaRIII-mediated attenuation of TGF-beta signaling is required for TbetaRIII-mediated inhibition of migration and invasion. Mechanistically, both TbetaRIII-mediated inhibition of TGF-beta signaling and TbetaRIII-mediated inhibition of invasion occur through the interaction of the cytoplasmic domain of TbetaRIII with the scaffolding protein GAIP-interacting protein C-terminus (GIPC). Taken together, these studies support a functional role for the TbetaRIII cytoplasmic domain interacting with GIPC to suppress breast cancer progression.
Collapse
Affiliation(s)
- Jason D Lee
- Department of Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | | | | | | |
Collapse
|