1
|
Calcium signaling induced by 15-deoxy-prostamide-J2 promotes cell death by activating PERK, IP3R, and the mitochondrial permeability transition pore. Oncotarget 2022; 13:1380-1396. [PMID: 36580536 PMCID: PMC9799328 DOI: 10.18632/oncotarget.28334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer in the US. Although immunotherapeutic checkpoint inhibitors and small-molecule kinase inhibitors have dramatically increased the survival of patients with melanoma, new or optimized therapeutic approaches are still needed to improve outcomes. 15-deoxy-Δ12,14-prostamide J2 (15d-PMJ2) is an investigational small-molecule that induces ER stress-mediated apoptosis selectively in tumor cells. Additionally, 15d-PMJ2 reduces melanoma growth in vivo. To assess the chemotherapeutic potential of 15d-PMJ2, the current study sought to uncover molecular pathways by which 15d-PMJ2 exerts its antitumor activity. B16F10 melanoma and JWF2 squamous cell carcinoma cell lines were cultured in the presence of pharmacological agents that prevent ER or oxidative stress as well as Ca2+ channel blockers to identify mechanisms of 15d-PMJ2 cell death. Our data demonstrated the ER stress protein, PERK, was required for 15d-PMJ2-induced death. PERK activation triggered the release of ER-resident Ca2+ through an IP3R sensitive pathway. Increased calcium mobilization led to mitochondrial Ca2+ overload followed by mitochondrial permeability transition pore (mPTP) opening and the deterioration of mitochondrial respiration. Finally, we show the electrophilic double bond located within the cyclopentenone ring of 15d-PMJ2 was required for its activity. The present study identifies PERK/IP3R/mPTP signaling as a mechanism of 15d-PMJ2 antitumor activity.
Collapse
|
2
|
Yang CB, Liu J, Tong BCK, Wang ZY, Zhu Z, Su CF, Sreenivasmurthy SG, Wu JX, Iyaswamy A, Krishnamoorthi S, Huang SY, Cheung KH, Song JX, Tan JQ, Lu JH, Li M. TFEB, a master regulator of autophagy and biogenesis, unexpectedly promotes apoptosis in response to the cyclopentenone prostaglandin 15d-PGJ2. Acta Pharmacol Sin 2022; 43:1251-1263. [PMID: 34417577 PMCID: PMC9061728 DOI: 10.1038/s41401-021-00711-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.
Collapse
Affiliation(s)
- Chuan-bin Yang
- grid.263817.90000 0004 1773 1790Department of Geriatrics, Shenzhen People’s Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 China ,grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia Liu
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Benjamin Chun-Kit Tong
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zi-ying Wang
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China ,grid.258164.c0000 0004 1790 3548Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632 China
| | - Zhou Zhu
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng-fu Su
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jia-xi Wu
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ashok Iyaswamy
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Senthilkumar Krishnamoorthi
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shi-ying Huang
- grid.263817.90000 0004 1773 1790Department of Geriatrics, Shenzhen People’s Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 China
| | - King-ho Cheung
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ju-xian Song
- grid.221309.b0000 0004 1764 5980Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China ,grid.411866.c0000 0000 8848 7685Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jie-qiong Tan
- grid.216417.70000 0001 0379 7164Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases, School of Life Sciences, Central South University, Changsha, 410006 China
| | - Jia-hong Lu
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front Physiol 2021; 12:640374. [PMID: 34335286 PMCID: PMC8320392 DOI: 10.3389/fphys.2021.640374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.
Collapse
|
4
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:E1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
5
|
Stucki D, Stahl W. Carbon monoxide – beyond toxicity? Toxicol Lett 2020; 333:251-260. [DOI: 10.1016/j.toxlet.2020.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
|
6
|
Wang J, Li J, Xiao Y, Fu B, Qin Z. TPP-based mitocans: a potent strategy for anticancer drug design. RSC Med Chem 2020; 11:858-875. [PMID: 33479681 PMCID: PMC7489259 DOI: 10.1039/c9md00572b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most important problems that endanger human health. The number of cancer patients is increasing rapidly worldwide. Compared with normal cells, cancer cells exhibit abnormal metabolism (abnormal glycolysis and oxidative phosphorylation, high levels of reactive oxygen species, anti-apoptosis, high mitochondrial membrane potential, and so on), and specific targeting of these metabolic abnormalities would be a promising drug design direction. These physiological characteristics are closely related to tumorigenesis and development, which are mainly regulated by mitochondria. Therefore, mitochondria have become important anticancer drug targets, attracting much attention in recent years. In this review, we systematically summarize various mitochondrial anticancer drugs developed, especially mitocans based on triphenylphosphonium (TPP), and discuss the advantages of TPP in endowing mitochondrial targeting function.
Collapse
Affiliation(s)
- Jiayao Wang
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Jiaqi Li
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Yumei Xiao
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Bin Fu
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| | - Zhaohai Qin
- College of science , China Agriculture University , Haidian District 100089 , China . ; Tel: +86 130 0199 1198
| |
Collapse
|
7
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Fan Z, Nie Y, Wei Y, Zhao J, Liao X, Zhang J. Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109824. [DOI: 10.1016/j.msec.2019.109824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023]
|
9
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 989] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
10
|
Tapias V, Hu X, Luk KC, Sanders LH, Lee VM, Greenamyre JT. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci 2017; 74:2851-2874. [PMID: 28534083 DOI: 10.1007/s00018-017-2541-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Intracellular accumulation of α-synuclein (α-syn) are hallmarks of synucleinopathies, including Parkinson's disease (PD). Exogenous addition of preformed α-syn fibrils (PFFs) into primary hippocampal neurons induced α-syn aggregation and accumulation. Likewise, intrastriatal inoculation of PFFs into mice and non-human primates generates Lewy bodies and Lewy neurites associated with PD-like neurodegeneration. Herein, we investigate the putative effects of synthetic human PFFs on cultured rat ventral midbrain dopamine (DA) neurons. A time- and dose-dependent accumulation of α-syn was observed following PFFs exposure that also underwent phosphorylation at serine 129. PFFs treatment decreased the expression levels of synaptic proteins, caused alterations in axonal transport-related proteins, and increased H2AX Ser139 phosphorylation. Mitochondrial impairment (including modulation of mitochondrial dynamics-associated protein content), enhanced oxidative stress, and an inflammatory response were also detected in our experimental paradigm. In attempt to unravel a potential molecular mechanism of PFFs neurotoxicity, the expression of inducible nitric oxide synthase was blocked; a significant decline in protein nitration levels and protection against PFFs-induced DA neuron death were observed. Combined exposure to PFFs and rotenone resulted in an additive toxicity. Strikingly, many of the harmful effects found were more prominent in DA rather than non-DA neurons, suggestive of higher susceptibility to degenerate. These findings provide new insights into the role of α-syn in the pathogenesis of PD and could represent a novel and valuable model to study DA-related neurodegeneration.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology and Neuroscience, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA. .,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| | - Xiaoping Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Laurie H Sanders
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Virginia M Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh VA Healthcare System, Pittsburgh, PA, 15206, USA
| |
Collapse
|
11
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
12
|
Smith MR, Vayalil PK, Zhou F, Benavides GA, Beggs RR, Golzarian H, Nijampatnam B, Oliver PG, Smith RAJ, Murphy MP, Velu SE, Landar A. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol 2016; 8:136-48. [PMID: 26774751 PMCID: PMC4732023 DOI: 10.1016/j.redox.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study demonstrates for the first time that mitochondrial thiol modification inhibits metabolism via inhibition of both aconitase and GAC in a breast cancer cell model. IBTP dependent thiol modification decreases bioenergetics in MB231 and MCF-10A cells. IBTP treatment decreases ATP and other adenonucleotides after 1 to 6 days. IBTP treatment does not result in overt cellular toxicity. IBTP treatment decreases levels of bioenergetically-linked metabolites. IBTP treatment decreases aconitase activity and glutaminase protein levels.
Collapse
Affiliation(s)
- M Ryan Smith
- Department of Pathology, University of Alabama at Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, AL, USA
| | - Praveen K Vayalil
- Department of Pathology, University of Alabama at Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, AL, USA
| | - Fen Zhou
- Department of Pathology, University of Alabama at Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, AL, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, AL, USA
| | - Reena R Beggs
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Hafez Golzarian
- Department of Chemistry, University of Alabama at Birmingham, AL, USA
| | | | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, AL, USA
| | - Robin A J Smith
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, AL, USA
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
13
|
Figueiredo-Pereira ME, Corwin C, Babich J. Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci 2016; 1363:125-37. [PMID: 26748744 DOI: 10.1111/nyas.12987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostaglandins (PGs) are produced via cyclooxygenases, which are enzymes that play a major role in neuroinflammation. Epidemiological studies show that chronic treatment with low levels of cyclooxygenase inhibitors (nonsteroidal anti-inflammatory drugs (NSAIDs)) lowers the risk for Alzheimer's disease (AD) and Parkinson's disease (PD) by as much as 50%. Unfortunately, inhibiting cyclooxygenases with NSAIDs blocks the synthesis of downstream neuroprotective and neurotoxic PGs, thus producing adverse side effects. We focus on prostaglandin J2 (PGJ2) because it is highly neurotoxic compared to PGA1, D2, and E2. Unlike other PGs, PGJ2 and its metabolites have a cyclopentenone ring with reactive α,β-unsaturated carbonyl groups that form covalent Michael adducts with key cysteines in proteins and GSH. Cysteine-binding electrophiles such as PGJ2 are considered to play an important role in determining whether neurons will live or die. We discuss in vitro and in vivo studies showing that PGJ2 induces pathological processes relevant to neurodegenerative disorders such as AD and PD. Further, we discuss our work showing that increasing intracellular cAMP with the lipophilic peptide PACAP27 counteracts some of the PGJ2-induced detrimental effects. New therapeutic strategies that neutralize the effects of specific neurotoxic PGs downstream from cyclooxygenases could have a significant impact on the treatment of chronic neurodegenerative disorders with fewer adverse side effects.
Collapse
Affiliation(s)
| | - Chuhyon Corwin
- Department of Biological Sciences, Hunter College and the Graduate Center, CUNY, New York, New York
| | - John Babich
- Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Wasinger C, Künzl M, Minichsdorfer C, Höller C, Zellner M, Hohenegger M. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells. Br J Pharmacol 2015; 171:5708-27. [PMID: 25091578 DOI: 10.1111/bph.12871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. EXPERIMENTAL APPROACH The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. KEY RESULTS Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2 ), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. CONCLUSIONS AND IMPLICATIONS We characterized simvastatin-induced activation of the 15d-PGJ2 /FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma.
Collapse
Affiliation(s)
- Christine Wasinger
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Cunniff B, Newick K, Nelson KJ, Wozniak AN, Beuschel S, Leavitt B, Bhave A, Butnor K, Koenig A, Chouchani ET, James AM, Haynes AC, Lowther WT, Murphy MP, Shukla A, Heintz NH. Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS One 2015; 10:e0127310. [PMID: 26011724 PMCID: PMC4444329 DOI: 10.1371/journal.pone.0127310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 04/14/2015] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of signaling pathways and energy metabolism in cancer cells enhances production of mitochondrial hydrogen peroxide that supports tumorigenesis through multiple mechanisms. To counteract the adverse effects of mitochondrial peroxide many solid tumor types up-regulate the mitochondrial thioredoxin reductase 2 - thioredoxin 2 (TRX2) - peroxiredoxin 3 (PRX3) antioxidant network. Using malignant mesothelioma cells as a model, we show that thiostrepton (TS) irreversibly disables PRX3 via covalent crosslinking of peroxidatic and resolving cysteine residues in homodimers, and that targeting the oxidoreductase TRX2 with the triphenylmethane gentian violet (GV) potentiates adduction by increasing levels of disulfide-bonded PRX3 dimers. Due to the fact that activity of the PRX3 catalytic cycle dictates the rate of adduction by TS, immortalized and primary human mesothelial cells are significantly less sensitive to both compounds. Moreover, stable knockdown of PRX3 reduces mesothelioma cell proliferation and sensitivity to TS. Expression of catalase in shPRX3 mesothelioma cells restores defects in cell proliferation but not sensitivity to TS. In a SCID mouse xenograft model of human mesothelioma, administration of TS and GV together reduced tumor burden more effectively than either agent alone. Because increased production of mitochondrial hydrogen peroxide is a common phenotype of malignant cells, and TS and GV are well tolerated in mammals, we propose that targeting PRX3 is a feasible redox-dependent strategy for managing mesothelioma and other intractable human malignancies.
Collapse
Affiliation(s)
- Brian Cunniff
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
- * E-mail:
| | - Kheng Newick
- University of Pennsylvania School of Medicine, Division of Pulmonary, Thoracic Oncology Research Laboratory, Philadelphia, PA, 19147, United States of America
| | - Kimberly J. Nelson
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - Alexandra N. Wozniak
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Stacie Beuschel
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Bruce Leavitt
- University of Vermont, College of Medicine, Department of Surgery, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Anant Bhave
- University of Vermont, College of Medicine, Department of Radiology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Kelly Butnor
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Andreas Koenig
- University of Vermont, Department of Immunology medicine, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Edward T. Chouchani
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom
| | - Andrew M. James
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Alexina C. Haynes
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - W. Todd Lowther
- Wake Forest School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC, 27157, United States of America
| | - Michael P. Murphy
- Medical Research Council, Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Arti Shukla
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| | - Nicholas H. Heintz
- University of Vermont, College of Medicine, Department of Pathology, 149 Beaumont Ave, Burlington, VT, 05405, United States of America
| |
Collapse
|
16
|
Aldini G, Domingues MR, Spickett CM, Domingues P, Altomare A, Sánchez-Gómez FJ, Oeste CL, Pérez-Sala D. Protein lipoxidation: Detection strategies and challenges. Redox Biol 2015; 5:253-266. [PMID: 26072467 PMCID: PMC4477048 DOI: 10.1016/j.redox.2015.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - M Rosário Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco J Sánchez-Gómez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Clara L Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| |
Collapse
|
17
|
Cytoglobin ligand binding regulated by changing haem-co-ordination in response to intramolecular disulfide bond formation and lipid interaction. Biochem J 2015; 465:127-37. [PMID: 25327890 DOI: 10.1042/bj20140827] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytoglobin (Cygb) is a hexa-co-ordinate haem protein from the globin superfamily with a physiological function that is unclear. We have previously reported that the haem co-ordination is changed in the presence of lipids, potentially transforming the redox properties of the protein and hence the function of Cygb in vivo. Recent research suggests that the protein can exist in a number of states depending on the integrity and position of disulfide bonds. In the present study, we show that the monomeric protein with an internal disulfide bond between the two cysteine residues Cys38 and Cys83, interacts with lipids to induce a change in haem co-ordination. The dimeric protein with intermolecular disulfide bonds and monomeric protein without an intramolecular disulfide bond does not exhibit these changes in haem co-ordination. Furthermore, monomeric Cygb with an intramolecular disulfide bond has significantly different properties, oxidizing lipid membranes and binding ligands more rapidly as compared with the other forms of the protein. The redox state of these cysteine residues in vivo is therefore highly significant and may be a mechanism to modulate the biochemical properties of the haem under conditions of stress.
Collapse
|
18
|
Vayalil PK, Oh JY, Zhou F, Diers AR, Smith MR, Golzarian H, Oliver PG, Smith RAJ, Murphy MP, Velu SE, Landar A. A novel class of mitochondria-targeted soft electrophiles modifies mitochondrial proteins and inhibits mitochondrial metabolism in breast cancer cells through redox mechanisms. PLoS One 2015; 10:e0120460. [PMID: 25785718 PMCID: PMC4364723 DOI: 10.1371/journal.pone.0120460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Despite advances in screening and treatment over the past several years, breast cancer remains a leading cause of cancer-related death among women in the United States. A major goal in breast cancer treatment is to develop safe and clinically useful therapeutic agents that will prevent the recurrence of breast cancers after front-line therapeutics have failed. Ideally, these agents would have relatively low toxicity against normal cells, and will specifically inhibit the growth and proliferation of cancer cells. Our group and others have previously demonstrated that breast cancer cells exhibit increased mitochondrial oxygen consumption compared with non-tumorigenic breast epithelial cells. This suggests that it may be possible to deliver redox active compounds to the mitochondria to selectively inhibit cancer cell metabolism. To demonstrate proof-of-principle, a series of mitochondria-targeted soft electrophiles (MTSEs) has been designed which selectively accumulate within the mitochondria of highly energetic breast cancer cells and modify mitochondrial proteins. A prototype MTSE, IBTP, significantly inhibits mitochondrial oxidative phosphorylation, resulting in decreased breast cancer cell proliferation, cell attachment, and migration in vitro. These results suggest MTSEs may represent a novel class of anti-cancer agents that prevent cancer cell growth by modification of specific mitochondrial proteins.
Collapse
Affiliation(s)
- Praveen K Vayalil
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Fen Zhou
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anne R Diers
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - M Ryan Smith
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hafez Golzarian
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robin A J Smith
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Aimee Landar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
19
|
Wei Y, Vellanki RN, Coyaud É, Ignatchenko V, Li L, Krieger JR, Taylor P, Tong J, Pham NA, Liu G, Raught B, Wouters BG, Kislinger T, Tsao MS, Moran MF. CHCHD2 Is Coamplified with EGFR in NSCLC and Regulates Mitochondrial Function and Cell Migration. Mol Cancer Res 2015; 13:1119-29. [DOI: 10.1158/1541-7786.mcr-14-0165-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/07/2015] [Indexed: 11/16/2022]
|
20
|
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7:104. [PMID: 25628533 PMCID: PMC4292445 DOI: 10.3389/fnmol.2014.00104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Thomas Schmidt-Glenewinkel
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| |
Collapse
|
21
|
Nadtochiy SM, Madukwe J, Hagen F, Brookes PS. Mitochondrially targeted nitro-linoleate: a new tool for the study of cardioprotection. Br J Pharmacol 2014; 171:2091-8. [PMID: 24102583 DOI: 10.1111/bph.12405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Cardiac ischaemia-reperfusion (IR) injury remains a significant clinical problem with limited treatment options available. We previously showed that cardioprotection against IR injury by nitro-fatty acids, such as nitro-linoleate (LNO2 ), involves covalent modification of mitochondrial adenine nucleotide translocase 1 (ANT1). Thus, it was hypothesized that conjugation of LNO2 to the mitochondriotropic triphenylphosphonium (TPP(+) ) moiety would enhance its protective properties. EXPERIMENTAL APPROACH TPP(+) -LNO2 was synthesized from aminopropyl-TPP(+) and LNO2 , and characterized by direct infusion MS/MS. Its effects were assayed in primary cultures of cardiomyocytes from adult C57BL/6 mice and in mitochondria from these cells, exposed to simulated IR (SIR) conditions (oxygen and metabolite deprivation for 1h followed by normal conditions for 1h) by measuring viability by LDH release and exclusion of Trypan blue. Nitro-alkylated mitochondrial proteins were also measured by Western blots, using antibodies to TPP(+) . KEY RESULTS TPP(+) -LNO2 protected cardiomyocytes from SIR injury more potently than the parent compound LNO2 . In addition, TPP(+) -LNO2 modified mitochondrial proteins, including ANT1, in a manner sensitive to the mitochondrial uncoupler carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and the ANT1 inhibitor carboxyatractyloside. Similar protein nitro-alkylation was obtained in cells and in isolated mitochondria, indicating the cell membrane was not a significant barrier to TPP(+) -LNO2 . CONCLUSIONS AND IMPLICATIONS Together, these results emphasize the importance of ANT1 as a target for the protective effects of LNO2 , and suggest that TPP(+) -conjugated electrophilic lipid compounds may yield novel tools for the investigation of cardioprotection.
Collapse
Affiliation(s)
- Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
22
|
Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B, Greenamyre JT. Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 2014; 70:214-23. [PMID: 24981012 PMCID: PMC4144978 DOI: 10.1016/j.nbd.2014.06.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
DNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in vitro models of PD, using a newly adapted histochemical assay for abasic sites and a quantitative polymerase chain reaction (QPCR)-based assay. We identified the molecular identity of mtDNA damage to be apurinic/apyrimidinic (abasic) sites in substantia nigra dopamine neurons, but not in cortical neurons from postmortem PD specimens. To model the systemic mitochondrial impairment of PD, rats were exposed to the pesticide rotenone. After rotenone treatment that does not cause neurodegeneration, abasic sites were visualized in nigral neurons, but not in cortex. Using a QPCR-based assay, a single rotenone dose induced mtDNA damage in midbrain neurons, but not in cortical neurons; similar results were obtained in vitro in cultured neurons. Importantly, these results indicate that mtDNA damage is detectable prior to any signs of degeneration - and is produced selectively in midbrain neurons under conditions of mitochondrial impairment. The selective vulnerability of midbrain neurons to mtDNA damage was not due to differential effects of rotenone on complex I since rotenone suppressed respiration equally in midbrain and cortical neurons. However, in response to complex I inhibition, midbrain neurons produced more mitochondrial H2O2 than cortical neurons. We report selective mtDNA damage as a molecular marker of vulnerable nigral neurons in PD and suggest that this may result from intrinsic differences in how these neurons respond to complex I defects. Further, the persistence of abasic sites suggests an ineffective base excision repair response in PD.
Collapse
Affiliation(s)
- Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer McCoy
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Bryan C Dickinson
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - J T Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Vasil’ev YV, Tzeng SC, Huang L, Maier CS. Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. MASS SPECTROMETRY REVIEWS 2014; 33:157-82. [PMID: 24818247 PMCID: PMC4138024 DOI: 10.1002/mas.21389] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The post-translational modification of proteins by electrophilic oxylipids is emerging as an important mechanism that contributes to the complexity of proteomes. Enzymatic and non-enzymatic oxidation of biological lipids results in the formation of chemically diverse electrophilic carbonyl compounds, such as 2-alkenals and 4-hydroxy alkenals, epoxides, and eicosanoids with reactive cyclopentenone structures. These lipoxidation products are capable of modifying proteins. Originally considered solely as markers of oxidative insult, more recently the modifications of proteins by lipid peroxidation products are being recognized as a new mechanism of cell signaling with relevance to redox homeostasis, adaptive response and inflammatory resolution. The growing interest in protein modifications by reactive oxylipid species necessitates the availability of methods that are capable of detecting, identifying and characterizing these protein adducts in biological samples with high complexity. However, the efficient analysis of these chemically diverse protein adducts presents a considerable analytical challenge. We first provide an introduction into the chemistry and biological relevance of protein adductions by electrophilic lipoxidation products. We then provide an overview of tandem mass spectrometry approaches that have been developed in recent years for the interrogation of protein modifications by electrophilic oxylipid species.
Collapse
Affiliation(s)
| | | | | | - Claudia S. Maier
- Corresponding author: Department of Chemistry, Oregon State University, 153 Gilbert Hall Phone: 541-737-9533 Fax: 541-737-2062
| |
Collapse
|
24
|
Oeste CL, Pérez-Sala D. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function. MASS SPECTROMETRY REVIEWS 2014; 33:110-125. [PMID: 23818260 DOI: 10.1002/mas.21383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Cyclopentenone prostaglandins (cyPG) are endogenous lipid mediators involved in the resolution of inflammation and the regulation of cell proliferation and cellular redox status. Upon exogenous administration they have shown beneficial effects in models of inflammation and tissue injury, as well as potential antitumoral actions, which have raised a considerable interest in their study for the development of therapeutic tools. Due to their electrophilic nature, the best-known mechanism of action of these mediators is the covalent modification of proteins at cysteine residues through Michael addition. Identification of cyPG targets through proteomic approaches, including MS/MS analysis to pinpoint the modified residues, is proving critical to characterize their mechanisms of action. Among the targets of cyPG are proinflammatory transcription factors, proteins involved in cell defense, such as the regulator of the antioxidant response Keap1 and detoxifying enzymes like GST, and key signaling proteins like Ras proteins. Moreover, cyPG may interact with redox-active small molecules, such as glutathione and hydrogen sulfide. Much has been learned about cyPG in the past few years and this knowledge has also contributed to clarify both pharmacological actions and signaling mechanisms of these and other electrophilic lipids. Given the fact that many cyPG targets are involved in or are targets for redox regulation, there is a complex interplay with redox-induced modifications. Here we address the modification of protein cysteine residues by cyPG elucidated by proteomic studies, paying special attention to the interplay with redox signaling.
Collapse
Affiliation(s)
- Clara L Oeste
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
25
|
Lerner C, Bitto A, Pulliam D, Nacarelli T, Konigsberg M, Van Remmen H, Torres C, Sell C. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell 2013; 12:966-77. [PMID: 23795962 DOI: 10.1111/acel.12122] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 01/16/2023] Open
Abstract
Coordinated expression of mitochondrial and nuclear genes is required to maintain proper mitochondrial function. However, the precise mechanisms that ensure this coordination are not well defined. We find that signaling from mitochondria to the nucleus is influenced by mammalian target of rapamycin (mTOR) activity via changes in autophagy and p62/SQSTM1 turnover. Reducing mTOR activity increases autophagic flux, enhances mitochondrial membrane potential, reduces reactive oxygen species within the cell, and increases replicative life span. These effects appear to be mediated in part by an interaction between p62/SQSTM1 and Keap1. This interaction allows nuclear accumulation of the nuclear factor erythroid 2-like 2 (NFE2L2, also known as nuclear factor related factor 2 or NRF2), increased expression of the nuclear respiratory factor 1 (NRF1), and increased expression of nuclear-encoded mitochondrial genes, such as the mitochondrial transcription factor A, and mitochondrial-encoded genes involved in oxidative phosphorylation. These findings reveal a portion of the intracellular signaling network that couples mitochondrial turnover with mitochondrial renewal to maintain homeostasis within the cell and suggest mechanisms whereby a reduction in mTOR activity may enhance longevity.
Collapse
Affiliation(s)
- Chad Lerner
- Department of Pathology; Drexel University College of Medicine; 245 N 15th Street Philadelphia PA 19102 USA
| | - Alessandro Bitto
- Department of Pathology; Drexel University College of Medicine; 245 N 15th Street Philadelphia PA 19102 USA
| | - Daniel Pulliam
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Sciences Center; San Antonio TX 78245 USA
| | - Timothy Nacarelli
- Department of Pathology; Drexel University College of Medicine; 245 N 15th Street Philadelphia PA 19102 USA
| | - Mina Konigsberg
- Universidad Autónoma Metripolitana Iztapalapa; Av. san Rafel Atlixco 186 México City 09340 Mexico
| | - Holly Van Remmen
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Sciences Center; San Antonio TX 78245 USA
| | - Claudio Torres
- Department of Pathology; Drexel University College of Medicine; 245 N 15th Street Philadelphia PA 19102 USA
| | - Christian Sell
- Department of Pathology; Drexel University College of Medicine; 245 N 15th Street Philadelphia PA 19102 USA
| |
Collapse
|
26
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
27
|
Konigsberg M, Pérez VI, Ríos C, Liu Y, Lee S, Shi Y, Van Remmen H. Effect of oxygen tension on bioenergetics and proteostasis in young and old myoblast precursor cells. Redox Biol 2013; 1:475-82. [PMID: 24191243 PMCID: PMC3814963 DOI: 10.1016/j.redox.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022] Open
Abstract
In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2), despite the fact that physiological O2 at the tissue level in vivo is much lower (~1–5% O2). We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation) or oxidative damage to proteins (protein disulfides, carbonyls and aggregates) in myoblast precursor cells (MPCs) isolated from young (3–4 m) and old (29–30 m) C57BL/6 mice. MPCs were grown under physiological (3%) or ambient (21%) O2 for two weeks prior to exposure to an acute oxidative insult (H2O2). Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function. Myoblast precursor cells (MPC) were isolated from old and young mice. The effect of ambient (21%) or physiological (3%) O2 tension on MPCs was addressed. Mitochondrial bioenergetics after H2O2 insult was determined regards to age. 3% O2 induces old MPCs to shift from glycolysis toward oxidative phosphorylation. Protein oxidative damage was higher in old MPCs at 21% O2.
Collapse
Affiliation(s)
- M Konigsberg
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA ; Universidad Autonoma Metropolitana-Iztapalpa, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
28
|
Detection of electrophile-sensitive proteins. Biochim Biophys Acta Gen Subj 2013; 1840:913-22. [PMID: 24021887 DOI: 10.1016/j.bbagen.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/22/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues. SCOPE OF REVIEW This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics. MAJOR CONCLUSIONS There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts. GENERAL SIGNIFICANCE In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
|
29
|
Hamdan L, Arrar Z, Al Muataz Y, Suleiman L, Négrier C, Mulengi JK, Boukerche H. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells. PLoS One 2013; 8:e72953. [PMID: 24039831 PMCID: PMC3764168 DOI: 10.1371/journal.pone.0072953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.
Collapse
Affiliation(s)
- Lamia Hamdan
- Unité de Recherche Mixte EA4174, Université Claude Bernard Lyon1, INSERM, Lyon, France
- Department de Chimie Organique, Substances Naturelles et Analyses, University de Tlemcen, Tlemcen, Algerie
| | - Zoheir Arrar
- Department de Chimie Organique, Substances Naturelles et Analyses, University de Tlemcen, Tlemcen, Algerie
| | - Yacoub Al Muataz
- Unité de Recherche Mixte EA4174, Université Claude Bernard Lyon1, INSERM, Lyon, France
| | - Lutfi Suleiman
- Unité de Recherche Mixte EA4174, Université Claude Bernard Lyon1, INSERM, Lyon, France
| | - Claude Négrier
- Unité de Recherche Mixte EA4174, Université Claude Bernard Lyon1, INSERM, Lyon, France
| | - Joseph Kajima Mulengi
- Department de Chimie Organique, Substances Naturelles et Analyses, University de Tlemcen, Tlemcen, Algerie
| | - Habib Boukerche
- Unité de Recherche Mixte EA4174, Université Claude Bernard Lyon1, INSERM, Lyon, France
| |
Collapse
|
30
|
Broniowska KA, Diers AR, Corbett JA, Hogg N. Effect of nitric oxide on naphthoquinone toxicity in endothelial cells: role of bioenergetic dysfunction and poly (ADP-ribose) polymerase activation. Biochemistry 2013; 52:4364-72. [PMID: 23718265 DOI: 10.1021/bi400342t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When produced at physiological levels, reactive oxygen species (ROS) can act as signaling molecules to regulate normal vascular function. Produced under pathological conditions, ROS can contribute to the oxidative damage of cellular components (e.g., DNA and proteins) and trigger cell death. Moreover, the reaction of superoxide with nitric oxide (NO) produces the strong oxidant peroxynitrite and decreases NO bioavailability, both of which may contribute to activation of cell death pathways. The effects of ROS generated from the 1,4-naphthoquinones alone and in combination with NO on the activation status of poly(ADP-ribose) polymerase (PARP) and cell viability were examined. Treatment with redox cycling quinones activates PARP, and this stimulatory effect is attenuated in the presence of NO. Mitochondria play a central role in cell death signaling pathways and are a target of oxidants. We show that simultaneous exposure of endothelial cells to NO and ROS results in mitochondrial dysfunction, ATP and NAD(+) depletion, and cell death. Alone, NO and ROS have only minor effects on cellular bioenergetics. Further, PARP inhibition does not attenuate reduced cell viability or mitochondrial dysfunction. These results show that concomitant exposure to NO and ROS impairs energy metabolism and triggers PARP-independent cell death. While superoxide-mediated PARP activation is attenuated in the presence of NO, PARP inhibition does not modify the loss of mitochondrial function or adenine and pyridine nucleotide pools and subsequent bioenergetic dysfunction. These findings suggest that the mechanisms by which ROS and NO induce endothelial cell death are closely linked to the maintenance of mitochondrial function and not overactivation of PARP.
Collapse
Affiliation(s)
- Katarzyna A Broniowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| | | | | | | |
Collapse
|
31
|
Cummins TD, Higdon AN, Kramer PA, Chacko BK, Riggs DW, Salabei JK, Dell’Italia LJ, Zhang J, Darley-Usmar VM, Hill BG. Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radic Biol Med 2013; 59:56-68. [PMID: 22954622 PMCID: PMC3522791 DOI: 10.1016/j.freeradbiomed.2012.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 01/05/2023]
Abstract
Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled arachidonic acid or BODIPY-conjugated electrophiles can be paired with organelle-specific probes to identify specific biological processes and signaling pathways activated in response to oxidative stress. In particular, we demonstrate "negative" and "positive" labeling methods using BODIPY-tagged reagents for examining oxidative modifications to protein nucleophiles. The protocol describes the use of these probes in slot immunoblotting, quantitative Western blotting, in-gel fluorescence, and confocal microscopy techniques. In particular, the use of the BODIPY fluorophore with organelle- or biological process-specific dyes and chromophores is highlighted. These methods can be used in multiple cell types as well as isolated organelles to interrogate the role of oxidative modifications in regulating biological responses to oxidative stress.
Collapse
Affiliation(s)
- Timothy D. Cummins
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Ashlee N. Higdon
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Philip A. Kramer
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Balu K. Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Daniel W. Riggs
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Joshua K. Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202
| | - Louis J. Dell’Italia
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202
| |
Collapse
|
32
|
Bolisetty S, Traylor A, Zarjou A, Johnson MS, Benavides GA, Ricart K, Boddu R, Moore RD, Landar A, Barnes S, Darley-Usmar V, Agarwal A. Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. Am J Physiol Renal Physiol 2013; 305:F255-64. [PMID: 23720344 DOI: 10.1152/ajprenal.00160.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | | | | |
Collapse
|
34
|
Valencia-Cruz AI, Uribe-Figueroa LI, Galindo-Murillo R, Baca-López K, Gutiérrez AG, Vázquez-Aguirre A, Ruiz-Azuara L, Hernández-Lemus E, Mejía C. Whole genome gene expression analysis reveals casiopeína-induced apoptosis pathways. PLoS One 2013; 8:e54664. [PMID: 23382936 PMCID: PMC3561376 DOI: 10.1371/journal.pone.0054664] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis-in a process mediated by reactive oxygen species-for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model) is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial) apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa) cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line) and assessed by means of data mining studies.
Collapse
Affiliation(s)
- Alejandra Idan Valencia-Cruz
- Computational Genomics Department, National Institute of Genomic Medicine, México City, México
- Microarray Core Facility, National Institute of Genomic Medicine, México City, México
| | | | - Rodrigo Galindo-Murillo
- Chemical Physics Department, Institute of Chemistry, National Autonomous University of México, México City, México
- Medicinal Chemistry Department, College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
| | - Karol Baca-López
- Computational Genomics Department, National Institute of Genomic Medicine, México City, México
- School of Sciences, Autonomous University of the State of México, Toluca, México
| | - Anllely G. Gutiérrez
- Genomic Medicine and Environmental Toxicology Department, Institute for Biomedical Research, National Autonomous University of México, México City, México
| | - Adriana Vázquez-Aguirre
- Genomic Medicine and Environmental Toxicology Department, Institute for Biomedical Research, National Autonomous University of México, México City, México
| | - Lena Ruiz-Azuara
- Nuclear and Inorganic Chemistry Department, Chemistry School, National Autonomous University of México, México City, México
| | - Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine, México City, México
- Center for Complexity Sciences, National Autonomous University of México, México City, México
| | - Carmen Mejía
- Genomic Medicine and Environmental Toxicology Department, Institute for Biomedical Research, National Autonomous University of México, México City, México
| |
Collapse
|
35
|
Diers AR, Broniowska KA, Hogg N. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biol 2013; 1:1-7. [PMID: 24024132 PMCID: PMC3757685 DOI: 10.1016/j.redox.2012.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.
Collapse
Key Words
- BAEC, Bovine aortic endothelial cells
- BSO, Buthioninesulphoximine
- CysNO, S-nitrosocysteine
- DMNQ, 2,3-dimethoxy-1,4-naphthoquinone
- DMSO, Dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate buffered saline
- DTPA, Diethylenetriaminepentaacetic acid
- DTT, Dithiothreitol
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GSHee, Glutathione Ethyl Ester
- LDH, Lactate Dehydrogenase
- Mitochondria
- N.D., Not detectable
- NAC, N-acetyl cysteine
- NOS, Nitric oxide synthase
- Nitric oxide
- OCR, Oxygen consumption rate
- ROS, Reactive oxygen species
- Reactive oxygen species
- S-nitrosation
- S-nitrosylation
- SEM, Standard error of the mean.
- Thiol
- cGMP, Cyclic guanosine monophosphate
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | | |
Collapse
|
36
|
Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP, Darley-Usmar V. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 2013; 1:86-93. [PMID: 23667828 PMCID: PMC3647698 DOI: 10.1016/j.redox.2012.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are recognized as critical sites of localized injury in a number of chronic pathologies which has led to the development of organelle directed therapeutics. One of the approaches employed to target molecules to the mitochondrion is to conjugate a delocalized cation such as triphenylphosphonium (TPP+) to various redox active compounds. Mitochondrially targeted antioxidants have also been used in numerous cell culture based studies as probes of the contribution of the mitochondrial generation of reactive oxygen species on cell signaling events. However, concentrations used in vitro are typically 10-100 times greater than those generated from oral dosing in a wide range of animal models and in humans. In the present study, we determined the effects of mitochondrial targeted antioxidants, MitoQ, MitoTempol, and MitoE on cellular bioenergetics of mesangial cells in culture and compared these to TPP+ conjugated compounds which lack the antioxidant functional group. We found that all TPP+ compounds inhibited oxidative phosphorylation to different extents independent of the antioxidant functional groups. These findings show that the TPP+ moiety can disrupt mitochondrial function at concentrations frequently observed in cell culture and this behavior is dependent on the linker group and independent of antioxidant properties. Moreover, TPP+ moiety alone is unlikely to achieve the concentrations needed to contribute to the protective mechanisms of the mitochondrially targeted compounds that have been reported in vivo.
Collapse
Affiliation(s)
- Colin Reily
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
37
|
Beck BH, Fuller SA. The impact of mitochondrial and thermal stress on the bioenergetics and reserve respiratory capacity of fish cell lines. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:244-250. [PMID: 23113865 DOI: 10.1080/08997659.2012.720637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Various stressors affect the health of wild and cultured fish and can cause metabolic disturbances that first manifest at the cellular level. Here, we sought to further our understanding of cellular metabolism in fish by examining the metabolic responses of cell lines derived from channel catfish Ictalurus puntatus (CCO), white bass Morone chrysops (WBE), and fathead minnow Pimephales promelas (EPC) to both mitochondrial and thermal stressors. Using extracellular flux (EF) technology, we simultaneously measured the oxygen consumption rate (OCR; a measure of mitochondrial function) and extracellular acidification rate (ECAR; a surrogate of glycolysis) in each cell type. We performed a mitochondrial function protocol whereby compounds modulating different components of mitochondrial respiration were sequentially exposed to cells. This provided us with basal and maximal OCR, OCR linked to ATP production, OCR from ion movement across the mitochondrial inner membrane, the reserve capacity, and OCR independent of the electron transport chain. After heat shock, EPC and CCO significantly decreased OCR and all three cell lines modestly increased ECAR. After heat shock, the reserve capacity, the mitochondrial energetic reserve used to cope with stress and increased bioenergetic demand, was unaffected in EPC and CCO and completely abrogated in WBE. These findings provide proof-of-concept experimental data that further highlight the utility of fish cell lines as tools for modeling bioenergetics.
Collapse
Affiliation(s)
- Benjamin H Beck
- U.S. Department of Agriculture, Harry K. Dupree-Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA.
| | | |
Collapse
|
38
|
Higdon AN, Landar A, Barnes S, Darley-Usmar VM. The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function. Antioxid Redox Signal 2012; 17:1580-9. [PMID: 22352679 PMCID: PMC3448939 DOI: 10.1089/ars.2012.4523] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE The process of lipid peroxidation is emerging as an important mechanism that mediates the post-translational modification of proteins. Through advanced analytical techniques, lipidomics is now emerging as a critical factor in our understanding of the pathology of a broad range of diseases. RECENT ADVANCES During enzymatic or nonenzymatic lipid peroxidation, the simple structure of an unsaturated fatty acid is converted to an oxylipidome, many members of which are electrophilic and form the reactive lipid species (RLS). This aspect of lipid biology is particularly important, as it directly connects lipidomics with proteomics through the post-translational modification of a sub-proteome in the cell. This arises, because the electrophilic members of the oxylipidome react with proteins at nucleophilic amino-acid residues and so change their structure and function to form electrophile-responsive proteomes (ERP). CRITICAL ISSUES Biological systems have relatively few but well-defined and mechanistically distinct pro-oxidant pathways generating RLS. Defining the ERPs and the mechanisms underlying their formation and action has been a major focus for the field of lipidomics and redox signaling. FUTURE DIRECTIONS We propose that a unique oxylipidome can be defined for specific oxidants and will predict the biological responses through the reaction with proteins to form a specific ERP. In this review, we will describe the ERPs that modulate antioxidant and anti-inflammatory protective pathways, including the activation of Keap1/Nrf2 and the promotion of cell death through interactions with mitochondria.
Collapse
Affiliation(s)
- Ashlee N Higdon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
39
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wall SB, Oh JY, Diers AR, Landar A. Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 2012; 3:369. [PMID: 23049513 PMCID: PMC3442266 DOI: 10.3389/fphys.2012.00369] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 01/01/2023] Open
Abstract
There are a wide variety of reactive species which can affect cell function, including reactive oxygen, nitrogen, and lipid species. Some are formed endogenously through enzymatic or non-enzymatic pathways, and others are introduced through diet or environmental exposure. Many of these reactive species can interact with biomolecules and can result in oxidative post-translational modification of proteins. It is well documented that some oxidative modifications cause macromolecular damage and cell death. However, a growing body of evidence suggests that certain classes of reactive species initiate cell signaling by reacting with specific side chains of peptide residues without causing cell death. This process is generally termed "redox signaling," and its role in physiological and pathological processes is a subject of active investigation. This review will give an overview of oxidative protein modification as a mechanism of redox signaling, including types of reactive species and how they modify proteins, examples of modified proteins, and a discussion about the current concepts in this area.
Collapse
Affiliation(s)
- Stephanie B Wall
- Departments of Pathology, University of Alabama at Birmingham Birmingham, AL, USA ; Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
41
|
Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J 2012; 444:561-71. [PMID: 22458763 DOI: 10.1042/bj20120294] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have highlighted the fact that cancer cells have an altered metabolic phenotype, and this metabolic reprogramming is required to drive the biosynthesis pathways necessary for rapid replication and proliferation. Specifically, the importance of citric acid cycle-generated intermediates in the regulation of cancer cell proliferation has been recently appreciated. One function of MCTs (monocarboxylate transporters) is to transport the citric acid cycle substrate pyruvate across the plasma membrane and into mitochondria, and inhibition of MCTs has been proposed as a therapeutic strategy to target metabolic pathways in cancer. In the present paper, we examined the effect of different metabolic substrates (glucose and pyruvate) on mitochondrial function and proliferation in breast cancer cells. We demonstrated that cancer cells proliferate more rapidly in the presence of exogenous pyruvate when compared with lactate. Pyruvate supplementation fuelled mitochondrial oxygen consumption and the reserve respiratory capacity, and this increase in mitochondrial function correlated with proliferative potential. In addition, inhibition of cellular pyruvate uptake using the MCT inhibitor α-cyano-4-hydroxycinnamic acid impaired mitochondrial respiration and decreased cell growth. These data demonstrate the importance of mitochondrial metabolism in proliferative responses and highlight a novel mechanism of action for MCT inhibitors through suppression of pyruvate-fuelled mitochondrial respiration.
Collapse
|
42
|
Abstract
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the ‘covalent advantage’. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.
Collapse
|
43
|
Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012; 33:4773-82. [PMID: 22469294 DOI: 10.1016/j.biomaterials.2012.03.032] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/10/2012] [Indexed: 11/23/2022]
Abstract
Dendrimers have emerged as promising carriers for the delivery of a wide variety of pay-loads including therapeutic drugs, imaging agents and nucleic acid materials into biological systems. The current work aimed to develop a novel mitochondria-targeted generation 5 poly(amidoamine) (PAMAM) dendrimer (G(5)-D). To achieve this goal, a known mitochondriotropic ligand triphenylphosphonium (TPP) was conjugated on the surface of the dendrimer. A fraction of the cationic surface charge of G(5)-D was neutralized by partial acetylation of the primary amine groups. Next, the mitochondria-targeted dendrimer was synthesized via the acid-amine-coupling conjugation reaction between the acid group of (3-carboxypropyl)triphenyl-phosphonium bromide and the primary amines of the acetylated dendrimer (G(5)-D-Ac). These dendrimers were fluorescently labeled with fluorescein isothiocyanate (FITC) to quantify cell association by flow cytometry and for visualization under confocal laser scanning microscopy to assess the mitochondrial targeting in vitro. The newly developed TPP-anchored dendrimer (G(5)-D-Ac-TPP) was efficiently taken up by the cells and demonstrated good mitochondrial targeting. In vitro cytotoxicity experiments carried out on normal mouse fibroblast cells (NIH-3T3) had greater cell viability in the presence of the G(5)-D-Ac-TPP compared to the parent unmodified G(5)-D. This mitochondria-targeted dendrimer-based nanocarrier could be useful for imaging as well as for selective delivery of bio-actives to the mitochondria for the treatment of diseases associated with mitochondrial dysfunction.
Collapse
|
44
|
Higdon AN, Benavides GA, Chacko BK, Ouyang X, Johnson MS, Landar A, Zhang J, Darley-Usmar VM. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. Am J Physiol Heart Circ Physiol 2012; 302:H1394-409. [PMID: 22245770 DOI: 10.1152/ajpheart.00584.2011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity.
Collapse
Affiliation(s)
- Ashlee N Higdon
- Department of Pathology, Center For Free Radical Biology, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 2011; 51:1621-35. [PMID: 21872656 PMCID: PMC3548422 DOI: 10.1016/j.freeradbiomed.2011.08.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/22/2022]
Abstract
It is now clear that mitochondria are an important target for oxidative stress in a broad range of pathologies, including cardiovascular disease, diabetes, neurodegeneration, and cancer. Methods for assessing the impact of reactive species on isolated mitochondria are well established but constrained by the need for large amounts of material to prepare intact mitochondria for polarographic measurements. With the availability of high-resolution polarography and fluorescence techniques for the measurement of oxygen concentration in solution, measurements of mitochondrial function in intact cells can be made. Recently, the development of extracellular flux methods to monitor changes in oxygen concentration and pH in cultures of adherent cells in multiple-sample wells simultaneously has greatly enhanced the ability to measure bioenergetic function in response to oxidative stress. Here we describe these methods in detail using representative cell types from renal, cardiovascular, nervous, and tumorigenic model systems while illustrating the application of three protocols to analyze the bioenergetic response of cells to oxidative stress.
Collapse
Affiliation(s)
- Brian P. Dranka
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gloria A. Benavides
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anne R. Diers
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Samantha Giordano
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Blake R. Zelickson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Colin Reily
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Luyun Zou
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bradford G. Hill
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY 40202
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aimee Landar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
46
|
Diers AR, Broniowska KA, Darley-Usmar VM, Hogg N. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301:H803-12. [PMID: 21685262 DOI: 10.1152/ajpheart.00210.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, L-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas L-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
47
|
Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. Biochem J 2011; 434:483-92. [PMID: 21171964 DOI: 10.1042/bj20101136] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoglobin is a recently discovered hexa-co-ordinate haemoglobin that does not appear to function as a classical oxygen-binding protein. Its function is unknown and studies on the effects of changes in its expression have not decisively determined its role within the cell. In the present paper, we report that the protein is transformed from hexa-co-ordinate to penta-co-ordinate on binding a lipid molecule. This transformation occurs with the ferric oxidation state of the protein, but not the ferrous state, indicating that this process only occurs under an oxidative environment and may thus be related to redox-linked cell signalling mechanisms. Oleate binds to the protein in a 1:1 stoichiometry and with high affinity (K(d)=0.7 μM); however, stopped-flow kinetic measurements yield a K(d) value of 110 μM. The discrepancy between these K(d) values may be rationalized by recognizing that cytoglobin is a disulfide-linked dimer and invoking co-operativity in oleate binding. The lipid-induced transformation of cytoglobin from hexa-co-ordinate to penta-co-ordinate does not occur with similar hexa-co-ordinate haemoglobins such as neuroglobin, and therefore appears to be a unique property of cytoglobin among the haemoglobin superfamily. The lipid-derived transformation may explain why cytoglobin has enhanced peroxidatic activity, converting lipids into various oxidized products, a property virtually absent from neuroglobin and much decreased in myoglobin. We propose that the binding of ferric cytoglobin to lipids and their subsequent transformation may be integral to the physiological function of cytoglobin, generating cell signalling lipid molecules under an oxidative environment.
Collapse
|
48
|
Fan YY, Ran Q, Toyokuni S, Okazaki Y, Callaway ES, Lupton JR, Chapkin RS. Dietary fish oil promotes colonic apoptosis and mitochondrial proton leak in oxidatively stressed mice. Cancer Prev Res (Phila) 2011; 4:1267-74. [PMID: 21490130 DOI: 10.1158/1940-6207.capr-10-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An alteration of mitochondrial function can result in disruption of redox homeostasis and is associated with abnormal cancer cell growth. Manganese superoxide dismutase (SOD2) and glutathione peroxidase 4 (Gpx4) are two of the most important antioxidant defense enzymes that protect cells against oxidative stress. We had previously shown that n-3 polyunsaturated fatty acids (PUFA) promote colonocyte apoptosis, a marker of colon cancer risk, in part by enhancing phospholipid oxidation. To elucidate the mechanisms regulating oxidative stress-induced apoptosis in vivo, we fed heterozygous SOD2(Het), Gpx4(Het), and transgenic Gpx4(Tg) mice diets containing either 15% corn oil by weight (CO, enriched in n-6 PUFA) or 3.5% CO + 11.5% fish oil (FO, enriched in n-3 PUFA) for 4 weeks. Our data showed that (i) genetic predeposition to oxidative stress facilitates apoptosis in the mouse colon (Gpx4(Het) > SOD2(Het) > Wt > Gpx4(Tg)), (ii) dietary n-3 PUFA have an additive effect on the induction of apoptosis in Gpx4(Het) and SOD2(Het) mice; and (iii) dietary n-3 PUFA reverse the phenotype in oxidatively protected Gpx4(Tg) mice by elevating apoptosis to a level observed in wild-type (Wt; control) animals. Complimentary experiments examining colonic mitochondrial bioenergetic profiles indicate that FO-fed mice exhibit a significantly (P < 0.05) increased respiration-induced proton leak relative to control CO treatment. This finding was consistent with a loss of membrane potential in response to chronic oxidative stress and supports the contention that n-3 PUFA alter mitochondrial metabolic activity, thereby enhancing apoptosis and reducing colon cancer risk.
Collapse
Affiliation(s)
- Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Oliva CR, Nozell SE, Diers A, McClugage SG, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE. Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 2010; 285:39759-67. [PMID: 20870728 DOI: 10.1074/jbc.m110.147504] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.
Collapse
Affiliation(s)
- Claudia R Oliva
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Alabama 35294-0006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|