1
|
Chen DD, Shi Q, Liu X, Liang DL, Wu YZ, Fan Q, Xiao K, Chen C, Dong XP. Aberrant SENP1-SUMO-Sirt3 Signaling Causes the Disturbances of Mitochondrial Deacetylation and Oxidative Phosphorylation in Prion-Infected Animal and Cell Models. ACS Chem Neurosci 2023; 14:1610-1621. [PMID: 37092685 DOI: 10.1021/acschemneuro.2c00786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Post-translational modifications of proteins, such as acetylation and SUMOylation, play important roles in regulation of protein functions and pathophysiology of different diseases including neurodegenerative diseases. Our previous studies have identified aberrant acetylation profiles and reduced deacetylases Sirt3 and Sirt1 in the brains of prion-infected mouse models. In this study, we have found that the levels of acetylated forms of AceCS2 and LCAD, the key enzymes regulating lipid metabolism, CS and IHD2, the key enzymes regulating complete oxidative metabolism, GDH, the key enzyme regulating the oxidative decomposition of glutamate into the tricarboxylic acid (TCA) cycle, and NDUFA9, the essential component in the complex I of respiratory chain activity, were significantly upregulated in the prion-infected animal and cell models, along with the decrease of Sirt3 activity and mitochondrial cytochrome c oxidase activity. Meanwhile, the increases of SUMO1 modifications and SUMO1-Sirt3 and decrease of SENP1 were identified in the brains and the cultured cells with prion infections. Removal of prion propagation in the cultured cells partially, but significantly, reversed the aberrant situations. Moreover, similar abnormal phenomena were also observed in the cultured 293 T cells transiently expressing cytosolic form PrP (Cyto-PrP), including decreased SENP1, increased SUMO1, decreased Sirt3 activity, increased acetylated forms of the key enzymes, and decreased cytochrome c oxidase activity. Attenuation of the accumulation of Cyto-PrP by co-expression of the p62 protein sufficiently diminished those abnormalities. The data here strongly indicate that deposits of prions in brains or accumulations of Cyto-PrP in cells trigger dysregulation of the SENP1-SUMO1-Sirt pathway and subsequently induce aberrant mitochondrial deacetylation and the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xin Liu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Dong-Lin Liang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Qin Fan
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100091, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai 201517, China
| |
Collapse
|
2
|
Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle. Pflugers Arch 2021; 473:241-252. [PMID: 33420549 DOI: 10.1007/s00424-020-02499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10-72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [ηp2 = 0.14]) whereas PGC-1α protein decreased (main effect of time: p < 0.01) during both FAST and FAST+EX. P53 acetylation increased in both conditions (main effect of time: p < 0.01) whereas ACC and SIRT1 phosphorylation were non-significantly decreased (both p < 0.06 [ηp2 = 0.15]). Fasting-induced increases in NFE2L2 and NRF1 protein were observed (main effects of time: p < 0.03), though TFAM and COXIV protein remained unchanged (p > 0.05). Elevating whole-body energetic stress blunted the increase in p53 mRNA, which was apparent during FAST only (condition × time interaction: p = 0.04). Select autophagy/mitophagy regulators (LC3BI, LC3BII, BNIP3) were non-significantly reduced at the protein level (p ≤ 0.09 [ηp2 > 0.13]) but the LC3II:I ratio was unchanged (p > 0.05). PDK4 mRNA (p < 0.01) and intramuscular triglyceride content in type IIA fibers (p = 0.04) increased similarly during both conditions. Taken together, human skeletal muscle signaling, mRNA/protein expression, and substrate storage appear to be unaffected by whole-body energetic stress during the initial hours of fasting.
Collapse
|
3
|
Wang T, Cao Y, Zheng Q, Tu J, Zhou W, He J, Zhong J, Chen Y, Wang J, Cai R, Zuo Y, Wei B, Fan Q, Yang J, Wu Y, Yi J, Li D, Liu M, Wang C, Zhou A, Li Y, Wu X, Yang W, Chin YE, Chen G, Cheng J. SENP1-Sirt3 Signaling Controls Mitochondrial Protein Acetylation and Metabolism. Mol Cell 2019; 75:823-834.e5. [PMID: 31302001 DOI: 10.1016/j.molcel.2019.06.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
Sirt3, as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolic adaption to various stresses. However, how to regulate Sirt3 activity responding to metabolic stress remains largely unknown. Here, we report Sirt3 as a SUMOylated protein in mitochondria. SUMOylation suppresses Sirt3 catalytic activity. SUMOylation-deficient Sirt3 shows elevated deacetylation on mitochondrial proteins and increased fatty acid oxidation. During fasting, SUMO-specific protease SENP1 is accumulated in mitochondria and quickly de-SUMOylates and activates Sirt3. SENP1 deficiency results in hyper-SUMOylation of Sirt3 and hyper-acetylation of mitochondrial proteins, which reduces mitochondrial metabolic adaption responding to fasting. Furthermore, we find that fasting induces SENP1 translocation into mitochondria to activate Sirt3. The studies on mice show that Sirt3 SUMOylation mutation reduces fat mass and antagonizes high-fat diet (HFD)-induced obesity via increasing oxidative phosphorylation and energy expenditure. Our results reveal that SENP1-Sirt3 signaling modulates Sirt3 activation and mitochondrial metabolism during metabolic stress.
Collapse
Affiliation(s)
- Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Ying Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Quan Zheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Zhong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Bo Wei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yicheng Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Dali Li
- Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Aiwu Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai 200050, China
| | - Yu Li
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Y Eugene Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
4
|
Park S, Jeon JH, Min BK, Ha CM, Thoudam T, Park BY, Lee IK. Role of the Pyruvate Dehydrogenase Complex in Metabolic Remodeling: Differential Pyruvate Dehydrogenase Complex Functions in Metabolism. Diabetes Metab J 2018; 42:270-281. [PMID: 30136450 PMCID: PMC6107359 DOI: 10.4093/dmj.2018.0101] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of metabolic diseases such as obesity, type 2 diabetes mellitus, neurodegenerative diseases, and cancers. Dysfunction occurs in part because of altered regulation of the mitochondrial pyruvate dehydrogenase complex (PDC), which acts as a central metabolic node that mediates pyruvate oxidation after glycolysis and fuels the Krebs cycle to meet energy demands. Fine-tuning of PDC activity has been mainly attributed to post-translational modifications of its subunits, including the extensively studied phosphorylation and de-phosphorylation of the E1α subunit of pyruvate dehydrogenase (PDH), modulated by kinases (pyruvate dehydrogenase kinase [PDK] 1-4) and phosphatases (pyruvate dehydrogenase phosphatase [PDP] 1-2), respectively. In addition to phosphorylation, other covalent modifications, including acetylation and succinylation, and changes in metabolite levels via metabolic pathways linked to utilization of glucose, fatty acids, and amino acids, have been identified. In this review, we will summarize the roles of PDC in diverse tissues and how regulation of its activity is affected in various metabolic disorders.
Collapse
Affiliation(s)
- Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.
| | - Jae Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Byong Keol Min
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Chae Myeong Ha
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Themis Thoudam
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - Bo Yoon Park
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea
| | - In Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Biomedical Science & BK21 plus KNU Biomedical Convergence Programs, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
5
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Edgett BA, Hughes MC, Matusiak JBL, Perry CGR, Simpson CA, Gurd BJ. SIRT3 gene expression but not SIRT3 subcellular localization is altered in response to fasting and exercise in human skeletal muscle. Exp Physiol 2018; 101:1101-13. [PMID: 27337034 DOI: 10.1113/ep085744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? Evidence from cellular and animal models suggests that SIRT3 is involved in regulating aerobic ATP production. Thus, we investigated whether changes in fatty acid and oxidative metabolism known to accompany fasting and exercise occur in association with changes in SIRT3 mitochondrial localization and expression in human skeletal muscle. What is the main finding and its importance? We find that 48 h of fasting and acute endurance exercise decrease SIRT3 mRNA expression but do not alter SIRT3 mitochondrial localization despite marked increases in fatty acid oxidation. This suggests that SIRT3 activity is not regulated by changes in mitochondrial localization in response to cellular energy stress in human skeletal muscle. The present study examined SIRT3 expression and SIRT3 mitochondrial localization in response to acute exercise and short-term fasting in human skeletal muscle. Experiment 1 involved eight healthy men (age, 21.4 ± 2.8 years; peak O2 uptake, 47.1 ± 11.8 ml min(-1) kg(-1) ) who performed a single bout of exercise at ∼55% of peak aerobic work rate for 1 h. Muscle biopsies were obtained at rest (Rest), immediately after exercise (EX-0) and 3 h postexercise (EX-3). Experiment 2 involved 10 healthy men (age, 22.0 ± 1.5 years; peak O2 uptake, 46.9 ± 6.0 ml min−1 kg−1) who underwent a 48 h fast, with muscle biopsies collected 1 h postprandial (Fed) and after 48 h of fasting (Fast). Mitochondrial respiration was measured using high-resolution respirometry in permeabilized muscle fibre bundles to assess substrate oxidation. Whole body fat oxidation increased after both exercise (Rest, 0.96 ± 0.32 kcal min(-1) ; Exercise, 5.66 ± 1.97 kcal min(-1) ; P < 0.001) and fasting (Fed, 0.87 ± 0.51 kcal min(-1) ; Fast, 1.30 ± 0.37 kcal min(-1) , P < 0.05). SIRT3 gene expression decreased (P < 0.05) after both exercise (-8%) and fasting (-19%); however, SIRT3 whole muscle protein content was unaltered after fasting. No changes were observed in SIRT3 mitochondrial localization following either exercise or fasting. Fasting also decreased the Vmax of glutamate [80 ± 43 versus 50 ± 21 pmol s(-1) (mg dry weight)(-1) ; P < 0.05]. These findings suggest that SIRT3 does not appear to be regulated by changes in mitochondrial localization at the time points measured in the present study in response to cellular energy stress in human skeletal muscle.
Collapse
Affiliation(s)
- Brittany A Edgett
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Meghan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Jennifer B L Matusiak
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Craig A Simpson
- Department of Emergency Medicine, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| |
Collapse
|
7
|
Gudiksen A, Pilegaard H. PGC-1 α and fasting-induced PDH regulation in mouse skeletal muscle. Physiol Rep 2017; 5:5/7/e13222. [PMID: 28400503 PMCID: PMC5392513 DOI: 10.14814/phy2.13222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator‐activated receptor gamma coactivator 1 alpha (PGC‐1α) affects the switch in substrate utilization from a fed to fasted state and the fasting‐induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle‐specific PGC‐1α knockout (MKO) mice and floxed littermate controls were fed or fasted for 24 h. Fasting reduced PDHa activity, increased phosphorylation of all four known sites on PDH‐E1α and increased pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels, but did not alter total acetylation of PDH‐E1α. Lack of muscle PGC‐1α did not affect the switch from glucose to fat oxidation in the transition from the fed to fasted state, but was associated with lower and higher respiratory exchange ratio (RER) in the fed and fasted state, respectively. PGC‐1α MKO mice had lower skeletal muscle PDH‐E1α, PDK1, 2, 4, and pyruvate dehydrogenase phosphatase (PDP1) protein content than controls, but this did not prevent the fasting‐induced increase in PDH‐E1α phosphorylation in PGC‐1α MKO mice. However, lack of skeletal muscle PGC‐1α reduced SIRT3 protein content, increased total lysine PDH‐E1α acetylation in the fed state, and prevented a fasting‐induced increase in SIRT3 protein. In conclusion, skeletal muscle PGC‐1α is required for fasting‐induced upregulation of skeletal muscle SIRT3 and maintaining high fat oxidation in the fasted state, but is dispensable for preserving the capability to switch substrate during the transition from the fed to the fasted state and for fasting‐induced PDH regulation in skeletal muscle.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Kim SJ, Kim JE, Kim YW, Kim JY, Park SY. Nutritional regulation of renal lipogenic factor expression in mice: comparison to regulation in the liver and skeletal muscle. Am J Physiol Renal Physiol 2017; 313:F887-F898. [DOI: 10.1152/ajprenal.00594.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Regulation of lipogenesis by pathophysiological factors in the liver and skeletal muscle is well understood; however, regulation in the kidney is still unclear. To elucidate nutritional regulation of lipogenic factors in the kidney, we measured the renal expression of lipogenic transcriptional factors and enzymes during fasting and refeeding in chow-fed and high-fat-fed mice. We also examined the regulatory effect of the liver X receptor (LXR) on the expression of lipogenic factors. The renal gene expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS) was reduced by fasting for 48 h and restored by refeeding, whereas the mRNA levels of forkhead box O (FOXO)1/3 were increased by fasting and restored by refeeding. Accordingly, protein levels of SREBP-1, FAS, and phosphorylated FOXO1/3 were reduced by fasting and restored by refeeding. The patterns of lipogenic factors expression in the kidney were similar to those in the liver and skeletal muscle. However, this phasic regulation of renal lipogenic gene expression was blunted in diet-induced obese mice. LXR agonist TO901317 increased the lipogenic gene expression and the protein levels of SREBP-1 precursor and FAS but not nuclear SREBP-1. Moreover, increases in insulin-induced gene mRNA and nuclear carbohydrate-responsive element binding protein (ChREBP) levels were observed in the TO901317-treated mice. These results suggest that the kidney shows flexible suppression and restoration of lipogenic factors following fasting and refeeding in lean mice, but this is blunted in obese mice. LXR is involved in the renal expression of lipogenic enzymes, and ChREBP may mediate the response.
Collapse
Affiliation(s)
- Suk-Jeong Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Ji-Eun Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Oh CJ, Ha CM, Choi YK, Park S, Choe MS, Jeoung NH, Huh YH, Kim HJ, Kweon HS, Lee JM, Lee SJ, Jeon JH, Harris RA, Park KG, Lee IK. Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury. Kidney Int 2016; 91:880-895. [PMID: 28040265 DOI: 10.1016/j.kint.2016.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 02/01/2023]
Abstract
Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Chae-Myeong Ha
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Keun Choi
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Mi Sun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, College of Health and Medical Science, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Yang Hoon Huh
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyo-Jeong Kim
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hee-Seok Kweon
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Joo Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Robert A Harris
- Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Edgett BA, Scribbans TD, Raleigh JP, Matusiak JB, Boonstra K, Simpson CA, Perry CG, Quadrilatero J, Gurd BJ. The impact of a 48-h fast on SIRT1 and GCN5 in human skeletal muscle. Appl Physiol Nutr Metab 2016; 41:953-62. [DOI: 10.1139/apnm-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study examined the impact of a 48 h fast on the expression and activation status of SIRT1 and GCN5, the relationship between SIRT1/GCN5 and the gene expression of PGC-1α, and the PGC-1α target PDK4 in the skeletal muscle of 10 lean healthy men (age, 22.0 ± 1.5 years; peak oxygen uptake, 47.2 ± 6.7 mL/(min·kg)). Muscle biopsies and blood samples were collected 1 h postprandial (Fed) and following 48 h of fasting (Fasted). Plasma insulin (Fed, 80.8 ± 47.9 pmol/L; Fasted, not detected) and glucose (Fed, 4.36 ± 0.86; Fasted, 3.74 ± 0.25 mmol/L, p = 0.08) decreased, confirming participant adherence to fasting. Gene expression of PGC-1α decreased (p < 0.05, –24%), while SIRT1 and PDK4 increased (p < 0.05, +11% and +1023%, respectively), and GCN5 remained unchanged. No changes were observed for whole-muscle protein expression of SIRT1, GCN5, PGC-1α, or COX IV. Phosphorylation of SIRT1, AMPKα, ACC, p38 MAPK, and PKA substrates as well as nuclear acetylation status was also unaltered. Additionally, nuclear SIRT1 activity, GCN5, and PGC-1α content remained unchanged. Preliminary findings derived from regression analysis demonstrate that changes in nuclear GCN5 and SIRT1 activity/phosphorylation may contribute to the control of PGC-1α, but not PDK4, messenger RNA expression following fasting. Collectively, and in contrast with previous animal studies, our data are inconsistent with the altered activation status of SIRT1 and GCN5 in response to 48 h of fasting in human skeletal muscle.
Collapse
Affiliation(s)
- Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Trisha D. Scribbans
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - James P. Raleigh
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jennifer B.L. Matusiak
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Kristen Boonstra
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Craig A. Simpson
- Department of Emergency Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts 2016; 6:177-90. [PMID: 25945723 DOI: 10.1515/bmc-2015-0007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
The liver X receptors (LXR) are crucial regulators of metabolism. After ligand binding, they regulate gene transcription and thereby mediate changes in metabolic pathways. Modulation of LXR and their downstream targets has appeared to be a promising treatment for metabolic diseases especially atherosclerosis and cholesterol metabolism. However, the complexity of LXR action in various metabolic tissues and the liver side effect of LXR activation have slowed down the interest for LXR drugs. In this review, we summarized the role of LXR in the main metabolically active tissues with a special focus on obesity and associated diseases in mammals. We will also discuss the dual interplay between the two LXR isoforms suggesting that they may collaborate to establish a fine and efficient system for the maintenance of metabolism homeostasis.
Collapse
|
12
|
Singh R, Yadav V, Kumar S, Saini N. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep 2015; 5:17454. [PMID: 26632252 PMCID: PMC4668367 DOI: 10.1038/srep17454] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
De novo lipogenesis, a hallmark for cancers is required for cellular transformation. Further it is believed that resistance to apoptosis and epithelial-to-mesenchymal-transition(EMT) facilitates metastasis via over-expression of anti-apoptotic Bcl-2. Previously we demonstrated that hsa-miR-195 targets BCL2, induces apoptosis and augmented the effect of etoposide in breast cancer cells. However, the mechanism behind its function remains elusive. Herein gene expression profiling was done in presence/absence of hsa-miR-195 in Breast cancer cells. IPA revealed mitochondrial dysfunction, fatty acid metabolism and xenobiotic metabolism signalling among the top processes being affected. For the first time we herein identified ACACA, FASN (the key enzymes of de novo fatty acid synthesis), HMGCR (the key enzyme of de novo cholesterol synthesis) and CYP27B1 as direct targets of hsa-miR-195. We further showed that ectopic expression of hsa-miR-195 in MCF-7 and MDA-MB-231 cells not only altered cellular cholesterol and triglyceride levels significantly but also resulted in reduced proliferation, invasion and migration. We further demonstrated that over expression of hsa-miR-195 decreased the Mesenchymal markers expression and enhanced Epithelial markers. In conclusion we say that hsa-miR-195 targets the genes of de novo lipogenesis, inhibits cell proliferation, migration, and invasion which potentially opens new avenues for the treatment of breast cancer.
Collapse
Affiliation(s)
- Richa Singh
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB). Council of Scientific &Industrial Research (CSIR), Delhi, India
| | - Vikas Yadav
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB). Council of Scientific &Industrial Research (CSIR), Delhi, India
| | - Sachin Kumar
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB). Council of Scientific &Industrial Research (CSIR), Delhi, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB). Council of Scientific &Industrial Research (CSIR), Delhi, India
| |
Collapse
|
13
|
Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, Doo Kim N, Choi YK, Do JY, Go Y, Ha CM, Ha CM, Choi JY, Huh S, Ho Jeoung N, Lee KU, Choi HS, Wang Y, Park KG, Harris RA, Lee IK. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci Rep 2015; 5:16577. [PMID: 26560812 PMCID: PMC4642318 DOI: 10.1038/srep16577] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 01/07/2023] Open
Abstract
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Sun Joo Lee
- Department of Biomedical Science, Graduate School of Medicine, Kyungpook National University
| | - Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University.,Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi, Republic of Korea
| | - Chang Joo Oh
- Department of Internal Medicine, Kyungpook National University
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Joon-Young Kim
- Department of Internal Medicine, Kyungpook National University.,GIST College, Gwangju Institute of Science and Technology
| | - Han-Jong Kim
- Department of Internal Medicine, Kyungpook National University.,Research Institute of Clinical Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation
| | - Young-Keun Choi
- Department of Internal Medicine, Kyungpook National University
| | - Ji-Yeon Do
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Younghoon Go
- Department of Internal Medicine, Kyungpook National University
| | | | - Chae-Myung Ha
- Department of Internal Medicine, Kyungpook National University
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| | - Seung Huh
- Department of Surgery, Kyungpook National University, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Ki-Up Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Robert A Harris
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Gu C, Zeng Y, Tang Z, Wang C, He Y, Feng X, Zhou L. Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth. Mol Med Rep 2015; 12:6451-60. [PMID: 26323321 PMCID: PMC4626146 DOI: 10.3892/mmr.2015.4245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of Astragalus polysaccharides (APS) on insulin resistance by modulation of hepatic sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α/PPARα-fibroblast growth factor (FGF)21, and glucose and lipid metabolism. Thirty male Sprague Dawley rats were divided into three groups: A normal control group, a catch-up growth group and an APS-treated (APS-G) group. The latter two groups underwent food restriction for 4 weeks, prior to being provided with a high fat diet, which was available ad libitum. The APS-G group was orally treated with APS for 8 weeks, whereas the other groups were administered saline. Body weight was measured and an oral glucose tolerance test (OGTT) was conducted after 8 weeks. The plasma glucose and insulin levels obtained from the OGTT were assayed, and hepatic morphology was observed by light and transmission electron microscopy. In addition, the mRNA expression levels of PGC-1α/PPARα, and the protein expression levels of SIRT1, FGF21 and nuclear factor-κB were quantified in the liver and serum. APS treatment suppressed abnormal glycolipid metabolism and insulin resistance following 8 weeks of catch-up growth by improving hepatic SIRT1-PPARα-FGF21 intracellular signaling and reducing chronic inflammation, and by partially attenuating hepatic steatosis. The suppressive effects of APS on liver acetylation and glycolipid metabolism-associated molecules contributed to the observed suppression of insulin resistance. However, the mechanism underlying the effects of APS on insulin resistance requires further research in order to be elucidated. Rapid and long-term treatment with APS may provide a novel, safe and effective therapeutic strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Chengying Gu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yipeng Zeng
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yanju He
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Xinge Feng
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| |
Collapse
|
15
|
Increased pyruvate dehydrogenase kinase expression in cultured myotubes from obese and diabetic individuals. Eur J Nutr 2014; 54:1033-43. [DOI: 10.1007/s00394-014-0780-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
16
|
Bonzo JA, Brocker C, Jiang C, Wang RH, Deng CX, Gonzalez FJ. Hepatic sirtuin 1 is dispensable for fibrate-induced peroxisome proliferator-activated receptor-α function in vivo. Am J Physiol Endocrinol Metab 2014; 306:E824-37. [PMID: 24496310 PMCID: PMC4116399 DOI: 10.1152/ajpendo.00175.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) mediates metabolic remodeling, resulting in enhanced mitochondrial and peroxisomal β-oxidation of fatty acids. In addition to the physiological stimuli of fasting and high-fat diet, PPARα is activated by the fibrate class of drugs for the treatment of dyslipidemia. Sirtuin 1 (SIRT1), an important regulator of energy homeostasis, was downregulated in fibrate-treated wild-type mice, suggesting PPARα regulation of Sirt1 gene expression. The impact of SIRT1 loss on PPARα functionality in vivo was assessed in hepatocyte-specific knockout mice that lack the deacetylase domain of SIRT1 (Sirt1(ΔLiv)). Knockout mice were treated with fibrates or fasted for 24 h to activate PPARα. Basal expression of the PPARα target genes Cyp4a10 and Cyp4a14 was reduced in Sirt1(ΔLiv) mice compared with wild-type mice. However, no difference was observed between wild-type and Sirt1(ΔLiv) mice in either fasting- or fibrate-mediated induction of PPARα target genes. Similar to the initial results, there was no difference in fibrate-activated PPARα gene induction. To assess the relationship between SIRT1 and PPARα in a pathophysiological setting, Sirt1(ΔLiv) mice were maintained on a high-fat diet for 14 wk, followed by fibrate treatment. Sirt1(ΔLiv) mice exhibited increased body mass compared with control mice. In the context of a high-fat diet, Sirt1(ΔLiv) mice did not respond to the cholesterol-lowering effects of the fibrate treatment. However, there were no significant differences in PPARα target gene expression. These results suggest that, in vivo, SIRT1 deacetylase activity does not significantly impact induced PPARα activity.
Collapse
Affiliation(s)
- Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | | | | | | | | | | |
Collapse
|
17
|
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 2014; 11:10. [PMID: 24520982 PMCID: PMC3925357 DOI: 10.1186/1743-7075-11-10] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/08/2014] [Indexed: 01/26/2023] Open
Abstract
Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs’ pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA.
| |
Collapse
|
18
|
Liu L, Nam M, Fan W, Akie TE, Hoaglin DC, Gao G, Keaney JF, Cooper MP. Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. J Clin Invest 2014; 124:768-84. [PMID: 24430182 PMCID: PMC4381729 DOI: 10.1172/jci69413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022] Open
Abstract
Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of increased substrate oxidation in fasted liver remains unclear. Here, we show that liver mitochondria in fasting mice adapt to the demand of increased substrate oxidation by increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, activation of mitochondrial transcription and OXPHOS by the KR mutant remained robust, further highlighting the contribution of LRP130 deacetylation to increased OXPHOS in fasted liver. These data establish a link between nutrient sensing and mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how fasted liver adapts to increased substrate oxidation.
Collapse
Affiliation(s)
- Lijun Liu
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Minwoo Nam
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wei Fan
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thomas E. Akie
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David C. Hoaglin
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - John F. Keaney
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marcus P. Cooper
- Division of Cardiovascular Medicine, Department of Medicine,
Division of Biostatistics and Health Services Research, Department of Quantitative Health Sciences, and
Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Auburger G, Gispert S, Jendrach M. Mitochondrial acetylation and genetic models of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:155-82. [PMID: 25149217 DOI: 10.1016/b978-0-12-394625-6.00006-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is frequent at old age, leading to atrophy of specific neurons and to early death. Lifespan and healthy aging of organisms depend on growth factor/nutrient signaling and on bioenergetics via mitochondria, all of which regulate downstream nuclear functions through FOXO and SIR proteins. Mammalian SIRtuins include the mitochondrial deacetylase SIRT3, and recently mitochondrial lysine acetylation (AcLys) was found to initiate mitochondrial degradation by autophagy. This mitophagy process is closely regulated by PINK1 and Parkin, two interacting proteins which relocalize to mitochondria with deficient proton gradients, and whose mutations cause autosomal recessive variants of PD. Strong generalized deacetylation of mitochondrial proteins and altered SIRT3 levels occur in rodent models of PD before the onset of toxic aggregate formation. We propose that the development of site-specific AcLys-antibodies and their characterization in patients will have medical value.
Collapse
Affiliation(s)
- Georg Auburger
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Marina Jendrach
- Experimental Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. J Physiol Biochem 2013; 70:271-84. [DOI: 10.1007/s13105-013-0301-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
|
21
|
LXRα gene expression, genetic variation and association analysis between novel SNPs and growth traits in Chinese native cattle. J Appl Genet 2013; 55:65-74. [DOI: 10.1007/s13353-013-0175-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/08/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
|
22
|
Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness MJ, Sugden MC. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013; 56:1068-77. [PMID: 23397292 DOI: 10.1007/s00125-013-2851-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/18/2013] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin (SIRT)3 is a mitochondrial protein deacetylase that regulates reactive oxygen species (ROS) production and exerts anti-inflammatory effects. As chronic inflammation and mitochondrial dysfunction are key factors mediating pancreatic beta cell impairment in type 2 diabetes, we investigated the role of SIRT3 in the maintenance of beta cell function and mass in type 2 diabetes. METHODS We analysed changes in SIRT3 expression in experimental models of type 2 diabetes and in human islets isolated from type 2 diabetic patients. We also determined the effects of SIRT3 knockdown on beta cell function and mass in INS1 cells. RESULTS SIRT3 expression was markedly decreased in islets isolated from type 2 diabetes patients, as well as in mouse islets or INS1 cells incubated with IL1β and TNFα. SIRT3 knockdown in INS1 cells resulted in lowered insulin secretion, increased beta cell apoptosis and reduced expression of key beta cell genes. SIRT3 knockdown also blocked the protective effects of nicotinamide mononucleotide on pro-inflammatory cytokines in beta cells. The deleterious effects of SIRT3 knockdown were mediated by increased levels of cellular ROS and IL1β. CONCLUSIONS/INTERPRETATION Decreased beta cell SIRT3 levels could be a key step in the onset of beta cell dysfunction, occurring via abnormal elevation of ROS levels and amplification of beta cell IL1β synthesis. Strategies to increase the activity or levels of SIRT3 could generate attractive therapies for type 2 diabetes.
Collapse
Affiliation(s)
- P W Caton
- Centre for Diabetes, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 2012; 287:42436-43. [PMID: 23086951 DOI: 10.1074/jbc.r112.404863] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sirtuins are a family of NAD(+)-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Three sirtuins, SIRT3-5, localize to mitochondria. Expression of SIRT3 is selectively activated during fasting and calorie restriction. SIRT3 regulates the acetylation level and enzymatic activity of key metabolic enzymes, such as acetyl-CoA synthetase, long-chain acyl-CoA dehydrogenase, and 3-hydroxy-3-methylglutaryl-CoA synthase 2, and enhances fat metabolism during fasting. SIRT5 exhibits demalonylase/desuccinylase activity, and lysine succinylation and malonylation are abundant mitochondrial protein modifications. No convincing enzymatic activity has been reported for SIRT4. Here, we review the emerging role of mitochondrial sirtuins as metabolic sensors that respond to changes in the energy status of the cell and modulate the activities of key metabolic enzymes via protein deacylation.
Collapse
Affiliation(s)
- John C Newman
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | | | |
Collapse
|
24
|
Abstract
The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical & Pharmaceutical Sciences, Catholic University of Daegu, Daegu, Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
25
|
He W, Newman JC, Wang MZ, Ho L, Verdin E. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab 2012; 23:467-76. [PMID: 22902903 DOI: 10.1016/j.tem.2012.07.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 11/30/2022]
Abstract
Sirtuins are NAD(+)-dependent protein deacetylases and have been implicated in the regulation of metabolism, stress responses, and aging. Three sirtuins are located in mitochondria: SIRT3, 4, and 5. SIRT3 deacetylates and regulates the enzymatic activity of many metabolic enzymes in mitochondria, whereas SIRT5 removes two novel post-translational modifications, lysine malonylation and succinylation. Here, we review the current knowledge of how mitochondrial sirtuins function in metabolism and metabolic diseases, and offer a conceptual model how they may regulate mitochondrial function through distinct deacylation activities (deacetylation, demalonylation, or desuccinylation).
Collapse
Affiliation(s)
- Wenjuan He
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
26
|
Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ. Mitochondrial sirtuins - a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 2012; 35:1887-93. [DOI: 10.1111/j.1460-9568.2012.08150.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS One 2012; 7:e36663. [PMID: 22623960 PMCID: PMC3356436 DOI: 10.1371/journal.pone.0036663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. METHODOLOGY/PRINCIPAL FINDINGS The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35-37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. CONCLUSIONS DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation.
Collapse
|