1
|
López-Cervantes SP, Toledo-Pérez R, De Lira-Sánchez JA, García-Cruz G, Esparza-Perusquía M, Luna-López A, Pardo JP, Flores-Herrera O, Konigsberg M. Sedentary Lifestyles and a Hypercaloric Diets During Middle Age, are Binomial Conducive to Fatal Progression, That is Counteracted by the Hormetic Treatment of Exercise, Metformin, and Tert-Butyl Hydroquinone: An Analysis of Female Middle-Aged Rat Liver Mitochondria. Dose Response 2024; 22:15593258241272619. [PMID: 39399210 PMCID: PMC11471012 DOI: 10.1177/15593258241272619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
The world's population continuous to shift towards older, less active and more sedentary lifestyles especially during middle age. In addition consumption of high-caloric diets, increases the risk of metabolic and cardiovascular afflictions. Developing clinical strategies to mitigate those health complications represent a difficult challenge. Our group has previously shown that combining metformin (MTF) and tert-butyl hydroquinone (tBHQ) treatments, in addition to exercise, partially prevents liver damage associated with obesity. Hence, we evaluated the role of exercise in combination with MTF and tBHQ (triple-treatment) to counteract mitochondrial damage in the liver from obese middle-aged female rats. Animals were fed a high-fat diet (HFD) starting at 21 days till 15 months of age. The treated groups performed a Fartlek-type exercise 5 days/week for 30 min/session. MTF and tBHQ were administered at a dose of 250 mg/kg/day, and 10 mg/kg/day, respectively, for 7 days/month from 10 to 15 months of age. Triple-treatment therapeutic approach promoted animal survival, and increased AMPK and PGC1α expression. Treatments increased mitochondrial ATP synthesis and OXPHOS complexes activities, recovered membrane potential, and decreased ROS production. In summary, exercise in combination with intermittent tBHQ and MTF treatments proved to be an excellent intervention to prevent mitochondrial damage caused by HFD.
Collapse
Affiliation(s)
- Stefanie Paola López-Cervantes
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Rafael Toledo-Pérez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | | | - Giovanni García-Cruz
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mercedes Esparza-Perusquía
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de Mexico, México
| | - Juan Pablo Pardo
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Oscar Flores-Herrera
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mina Konigsberg
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
2
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Kumar M, Sharma S, Kumar J, Barik S, Mazumder S. Mitochondrial electron transport chain in macrophage reprogramming: Potential role in antibacterial immune response. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100077. [PMID: 38572399 PMCID: PMC10987323 DOI: 10.1016/j.crimmu.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Macrophages restrain microbial infection and reinstate tissue homeostasis. The mitochondria govern macrophage metabolism and serve as pivot in innate immunity, thus acting as immunometabolic regulon. Metabolic pathways produce electron flows that end up in mitochondrial electron transport chain (mtETC), made of super-complexes regulating multitude of molecular and biochemical processes. Cell-intrinsic and extrinsic factors influence mtETC structure and function, impacting several aspects of macrophage immunity. These factors provide the macrophages with alternate fuel sources and metabolites, critical to gain functional competence and overcoming pathogenic stress. Mitochondrial reactive oxygen species (mtROS) and oxidative phosphorylation (OXPHOS) generated through the mtETC are important innate immune attributes, which help macrophages in mounting antibacterial responses. Recent studies have demonstrated the role of mtETC in governing mitochondrial dynamics and macrophage polarization (M1/M2). M1 macrophages are important for containing bacterial pathogens and M2 macrophages promote tissue repair and wound healing. Thus, mitochondrial bioenergetics and metabolism are intimately coupled with innate immunity. In this review, we have addressed mtETC function as innate rheostats that regulate macrophage reprogramming and innate immune responses. Advancement in this field encourages further exploration and provides potential novel macrophage-based therapeutic targets to control unsolicited inflammation.
Collapse
Affiliation(s)
- Manmohan Kumar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
4
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
5
|
Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol 2024; 34:150-160. [PMID: 37419738 DOI: 10.1016/j.tcb.2023.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Ferroptosis is a form of necrotic cell death characterized by iron-dependent lipid peroxidation culminating in membrane rupture. Accumulating evidence links ferroptosis to multiple cardiac diseases and identifies mitochondria as important regulators of ferroptosis. Mitochondria are not only a major source of reactive oxygen species (ROS) but also counteract ferroptosis by preserving cellular redox balance and oxidative defense. Recent evidence has revealed that the mitochondrial integrated stress response limits oxidative stress and ferroptosis in oxidative phosphorylation (OXPHOS)-deficient cardiomyocytes and protects against mitochondrial cardiomyopathy. We summarize the multiple ways in which mitochondria modulate the susceptibility of cells to ferroptosis, and discuss the implications of ferroptosis for cardiomyopathies in mitochondrial disease.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Fungfuang W, Srisuksai K, Santativongchai P, Charoenlappanit S, Phaonakrop N, Roytrakul S, Tulayakul P, Parunyakul K. Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats. Exp Anim 2023; 72:425-438. [PMID: 37032112 PMCID: PMC10658085 DOI: 10.1538/expanim.23-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023] Open
Abstract
The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the expressions of liver proteins involved in energy metabolism in rats. Twenty-one male Sprague Dawley rats were divided into three groups and underwent oral gavage with 3 ml/kg of sterile water (N group), CO (CO group), or palm oil (PO group) for 7 weeks. Body weight, energy intake, liver weight, liver indexes, blood lipid profiles, and liver-energy intermediates were measured. The liver proteome was analyzed using shotgun proteomics, and the functions and network interactions of several candidate proteins were predicted using the STITCH v.5.0 software. Body weights, energy intake, liver contents, and lipid profiles did not differ between the groups. However, hepatic oxaloacetate and malate levels were significantly higher in the CO group than in the PO group. Targeted proteomics reveals that 22 out of 1,790 unique proteins in the CO group were involved in energy-generating pathways, including the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS), and were correlated with the AMP-activated protein kinase signaling pathway. Cluster analysis of 59 differentially expressed proteins showed that OXPHOS-associated proteins were upregulated in the CO group and that three glycolytic metabolism-related proteins were downregulated in the CO group. CO may enhance hepatic energy metabolism by regulating the expressions of energy expenditure-related proteins.
Collapse
Affiliation(s)
- Wirasak Fungfuang
- Kasetsart University Research and Development Institute, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Krittika Srisuksai
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Malaiman Road, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Kongphop Parunyakul
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Mitochondrial protein import and UPR mt in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023; 143:28-36. [PMID: 35063351 DOI: 10.1016/j.semcdb.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023]
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
Collapse
|
9
|
Monoterpenoid Epoxidiol Ameliorates the Pathological Phenotypes of the Rotenone-Induced Parkinson’s Disease Model by Alleviating Mitochondrial Dysfunction. Int J Mol Sci 2023; 24:ijms24065842. [PMID: 36982914 PMCID: PMC10058627 DOI: 10.3390/ijms24065842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Unfortunately, there is still no definitive disease-modifying therapy. In our work, the antiparkinsonian potential of trans-epoxide (1S,2S,3R,4S,6R)-1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo [4.1.0]heptan-2,3-diol (E-diol) was analyzed in a rotenone-induced neurotoxicity model using in vitro, in vivo and ex vivo approaches. It was conducted as part of the study of the mitoprotective properties of the compound. E-diol has been shown to have cytoprotective properties in the SH-SY5Y cell line exposed to rotenone, which is associated with its ability to prevent the loss of mitochondrial membrane potential and restore the oxygen consumption rate after inhibition of the complex I function. Under the conditions of rotenone modeling of Parkinson’s disease in vivo, treatment with E-diol led to the leveling of both motor and non-motor disorders. The post-mortem analysis of brain samples from these animals demonstrated the ability of E-diol to prevent the loss of dopaminergic neurons. Moreover, that substance restored functioning of the mitochondrial respiratory chain complexes and significantly reduced the production of reactive oxygen species, preventing oxidative damage. Thus, E-diol can be considered as a new potential agent for the treatment of Parkinson’s disease.
Collapse
|
10
|
Burr SP, Klimm F, Glynos A, Prater M, Sendon P, Nash P, Powell CA, Simard ML, Bonekamp NA, Charl J, Diaz H, Bozhilova LV, Nie Y, Zhang H, Frison M, Falkenberg M, Jones N, Minczuk M, Stewart JB, Chinnery PF. Cell lineage-specific mitochondrial resilience during mammalian organogenesis. Cell 2023; 186:1212-1229.e21. [PMID: 36827974 DOI: 10.1016/j.cell.2023.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/28/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Florian Klimm
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Mathematics, Imperial College London, London, UK; EPSRC Centre for Mathematics of Precision Healthcare, Imperial College, London, UK; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, D-14195 Berlin, Germany; Department of Computer Science, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany
| | - Angelos Glynos
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Malwina Prater
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Pamella Sendon
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Pavel Nash
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Nina A Bonekamp
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience (MCTN), Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Julia Charl
- Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, Cologne, Germany
| | - Hector Diaz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Lyuba V Bozhilova
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Yu Nie
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Haixin Zhang
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michele Frison
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Nick Jones
- Department of Mathematics, Imperial College London, London, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
11
|
Exercise Induces an Augmented Skeletal Muscle Mitochondrial Unfolded Protein Response in a Mouse Model of Obesity Produced by a High-Fat Diet. Int J Mol Sci 2023; 24:ijms24065654. [PMID: 36982728 PMCID: PMC10051316 DOI: 10.3390/ijms24065654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Increase in body fat contributes to loss of function and changes in skeletal muscle, accelerating sarcopenia, a phenomenon known as sarco-obesity or sarcopenic obesity. Studies suggest that obesity decreases the skeletal muscle (SM)’s ability to oxidize glucose, increases fatty acid oxidation and reactive oxygen species production, due to mitochondrial dysfunction. Exercise improves mitochondrial dysfunction in obesity; however, it is not known if exercise regulates the mitochondrial unfolded protein response (UPRmt) in the SM. Our study aimed to determine the mito-nuclear UPRmt in response to exercise in a model of obesity, and how this response is associated with the improvement in SM functioning after exercise training. C57BL/6 mice were fed a normal diet and high-fat diet (HFD) for 12 weeks. After 8 weeks, animals were subdivided into sedentary and exercised for the remaining 4 weeks. Grip strength and maximal velocity of mice submitted to HFD improved after training. Our results show an increase in the activation of UPRmt after exercise while in obese mice, proteostasis is basally decreased but shows a more pronounced increase with exercise. These results correlate with improvement in the circulating triglycerides, suggesting mitochondrial proteostasis could be protective and could be related to mitochondrial fuel utilization in SM.
Collapse
|
12
|
Burgin H, Sharpe AJ, Nie S, Ziemann M, Crameri JJ, Stojanovski D, Pitt J, Ohtake A, Murayama K, McKenzie M. Loss of mitochondrial fatty acid β-oxidation protein short-chain Enoyl-CoA hydratase disrupts oxidative phosphorylation protein complex stability and function. FEBS J 2023; 290:225-246. [PMID: 35962613 PMCID: PMC10087869 DOI: 10.1111/febs.16595] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023]
Abstract
Short-chain enoyl-CoA hydratase 1 (ECHS1) is involved in the second step of mitochondrial fatty acid β-oxidation (FAO), catalysing the hydration of short-chain enoyl-CoA esters to short-chain 3-hyroxyl-CoA esters. Genetic deficiency in ECHS1 (ECHS1D) is associated with a specific subset of Leigh Syndrome, a disease typically caused by defects in oxidative phosphorylation (OXPHOS). Here, we examined the molecular pathogenesis of ECHS1D using a CRISPR/Cas9 edited human cell 'knockout' model and fibroblasts from ECHS1D patients. Transcriptome analysis of ECHS1 'knockout' cells showed reductions in key mitochondrial pathways, including the tricarboxylic acid cycle, receptor-mediated mitophagy and nucleotide biosynthesis. Subsequent proteomic analyses confirmed these reductions and revealed additional defects in mitochondrial oxidoreductase activity and fatty acid β-oxidation. Functional analysis of ECHS1 'knockout' cells showed reduced mitochondrial oxygen consumption rates when metabolising glucose or OXPHOS complex I-linked substrates, as well as decreased complex I and complex IV enzyme activities. ECHS1 'knockout' cells also exhibited decreased OXPHOS protein complex steady-state levels (complex I, complex III2 , complex IV, complex V and supercomplexes CIII2 /CIV and CI/CIII2 /CIV), which were associated with a defect in complex I assembly. Patient fibroblasts exhibit varied reduction of mature OXPHOS complex steady-state levels, with defects detected in CIII2 , CIV, CV and the CI/CIII2 /CIV supercomplex. Overall, these findings highlight the contribution of defective OXPHOS function, in particular complex I deficiency, to the molecular pathogenesis of ECHS1D.
Collapse
Affiliation(s)
- Harrison Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Jordan J Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - James Pitt
- Department of Paediatrics, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, The University of Melbourne, Australia
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Japan.,Centre for Intractable Diseases, Saitama Medical University Hospital, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Japan
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Brokatzky D, Häcker G. Mitochondria: intracellular sentinels of infections. Med Microbiol Immunol 2022; 211:161-172. [PMID: 35790577 PMCID: PMC9255486 DOI: 10.1007/s00430-022-00742-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/19/2023]
Abstract
Structure and integrity of the mitochondrial network play important roles in many cellular processes. Loss of integrity can lead to the activation of a variety of signalling pathways and affect the cell’s response to infections. The activation of such mitochondria-mediated cellular responses has implications for infection recognition, signal transduction and pathogen control. Although we have a basic understanding of mitochondrial factors such as mitochondrial DNA or RNA that may be involved in processes like pro-inflammatory signalling, the diverse roles of mitochondria in host defence remain unclear. Here we will first summarise the functions of mitochondria in the host cell and provide an overview of the major known mitochondrial stress responses. We will then present recent studies that have contributed to the understanding of the role of mitochondria in infectious diseases and highlight a number of recently investigated models of bacterial and viral infections.
Collapse
Affiliation(s)
- Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Centre University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| |
Collapse
|
14
|
López-Cervantes SP, Sánchez NS, Calahorra M, Mena-Montes B, Pedraza-Vázquez G, Hernández-Álvarez D, Esparza-Perusquía M, Peña A, López-Díazguerrero NE, Alarcón-Aguilar A, Luna-López A, Flores-Herrera Ó, Königsberg M. Moderate exercise combined with metformin-treatment improves mitochondrial bioenergetics of the quadriceps muscle of old female Wistar rats. Arch Gerontol Geriatr 2022; 102:104717. [DOI: 10.1016/j.archger.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
|
15
|
Gil CH, Chakraborty D, Vieira CP, Prasain N, Calzi SL, Fortmann SD, Hu P, Banno K, Jamal M, Huang C, Sielski MS, Lin Y, Huang X, Dupont MD, Floyd JL, Prasad R, Longhini ALF, McGill TJ, Chung HM, Murphy MP, Kotton DN, Boulton ME, Yoder MC, Grant MB. Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice. SCIENCE ADVANCES 2022; 8:eabm5559. [PMID: 35245116 PMCID: PMC8896785 DOI: 10.1126/sciadv.abm5559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.
Collapse
Affiliation(s)
- Chang-Hyun Gil
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Nutan Prasain
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Astellas Institute for Regenerative Medicine (AIRM), Westborough, MA 01581, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Seth D. Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ping Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Kimihiko Banno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Mohamed Jamal
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Endodontics, Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 00000, UAE
| | - Chao Huang
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Micheli S. Sielski
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Yang Lin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Zhongshan-Xuhui Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 310104, China
| | - Mariana D. Dupont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ana Leda F. Longhini
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Trevor J. McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
17
|
Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E. The Unfolded Protein Responses in Health, Aging, and Neurodegeneration: Recent Advances and Future Considerations. Front Mol Neurosci 2022; 15:831116. [PMID: 35283733 PMCID: PMC8914544 DOI: 10.3389/fnmol.2022.831116] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.
Collapse
Affiliation(s)
- Andrew P. K. Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W. Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brent T. Harris
- Department of Pathology, Georgetown University, Washington, DC, United States
- Department of Neurology, Georgetown University, Washington, DC, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Park SH, Lu Y, Shao Y, Prophete C, Horton L, Sisco M, Lee HW, Kluz T, Sun H, Costa M, Zelikoff J, Chen LC, Gorr MW, Wold LE, Cohen MD. Longitudinal Impact of WTC Dust Inhalation on Rat Cardiac Tissue Transcriptomic Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020919. [PMID: 35055737 PMCID: PMC8776213 DOI: 10.3390/ijerph19020919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
First responders (FR) exposed to the World Trade Center (WTC) Ground Zero air over the first week after the 9/11 disaster have an increased heart disease incidence compared to unexposed FR and the general population. To test if WTC dusts were causative agents, rats were exposed to WTC dusts (under isoflurane [ISO] anesthesia) 2 h/day on 2 consecutive days; controls received air/ISO or air only. Hearts were collected 1, 30, 240, and 360 d post-exposure, left ventricle total RNA was extracted, and transcription profiles were obtained. The data showed that differentially expressed genes (DEG) for WTC vs. ISO rats did not reach any significance with a false discovery rate (FDR) < 0.05 at days 1, 30, and 240, indicating that the dusts did not impart effects beyond any from ISO. However, at day 360, 14 DEG with a low FDR were identified, reflecting potential long-term effects from WTC dust alone, and the majority of these DEG have been implicated as having an impact on heart functions. Furthermore, the functional gene set enrichment analysis (GSEA) data at day 360 showed that WTC dust could potentially impact the myocardial energy metabolism via PPAR signaling and heart valve development. This is the first study showing that WTC dust could significantly affect some genes that are associated with the heart/CV system, in the long term. Even > 20 years after the 9/11 disaster, this has potentially important implications for those FR exposed repeatedly at Ground Zero over the first week after the buildings collapsed.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
- Correspondence:
| | - Yuting Lu
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Yongzhao Shao
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; (Y.L.); (Y.S.)
| | - Colette Prophete
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lori Horton
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Maureen Sisco
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Judith Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| | - Matthew W. Gorr
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 13210, USA; (M.W.G.); (L.E.W.)
- College of Nursing, The Ohio State University, Columbus, OH 13210, USA
| | - Mitchell D. Cohen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA; (C.P.); (L.H.); (M.S.); (H.-W.L.); (T.K.); (H.S.); (M.C.); (J.Z.); (L.-C.C.); (M.D.C.)
| |
Collapse
|
19
|
Schmitt F, Babylon L, Dieter F, Eckert GP. Effects of Pesticides on Longevity and Bioenergetics in Invertebrates-The Impact of Polyphenolic Metabolites. Int J Mol Sci 2021; 22:ijms222413478. [PMID: 34948274 PMCID: PMC8707434 DOI: 10.3390/ijms222413478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Environmentally hazardous substances such as pesticides are gaining increasing interest in agricultural and nutritional research. This study aims to investigate the impact of these compounds on the healthspan and mitochondrial functions in an invertebrate in vivo model and in vitro in SH-SY5Y neuroblastoma cells, and to investigate the potential of polyphenolic metabolites to compensate for potential impacts. Wild-type nematodes (Caenorhabditis elegans, N2) were treated with pesticides such as pyraclostrobin (Pyr), glyphosate (Gly), or fluopyram (Fluo). The lifespans of the nematodes under heat stress conditions (37 °C) were determined, and the chemotaxis was assayed. Energetic metabolites, including adenosine triphosphate (ATP), lactate, and pyruvate, were analyzed in lysates of nematodes and cells. Genetic expression patterns of several genes associated with lifespan determination and mitochondrial parameters were assessed via qRT-PCR. After incubation with environmentally hazardous substances, nematodes were incubated with a pre-fermented polyphenol mixture (Rechtsregulat®Bio, RR) or protocatechuic acid (PCA) to determine heat stress resistance. Treatment with Pyr, Glyph and Fluo leads to dose-dependently decreased heat stress resistance, which was significantly improved by RR and PCA. The chemotaxes of the nematodes were not affected by pesticides. ATP levels were not significantly altered by the pesticides, except for Pyr, which increased ATP levels after 48 h leads. The gene expression of healthspan and mitochondria-associated genes were diversely affected by the pesticides, while Pyr led to an overall decrease of mRNA levels. Over time, the treatment of nematodes leads to a recovery of the nematodes on the mitochondrial level but not on stress resistance on gene expression. Fermented extracts of fruits and vegetables and phenolic metabolites such as PCA seem to have the potential to recover the vitality of C. elegans after damage caused by pesticides.
Collapse
|
20
|
Ling Q, Rioux M, Hu Y, Lee M, Gray SJ. Adeno-associated viral vector serotype 9-based gene replacement therapy for SURF1-related Leigh syndrome. Mol Ther Methods Clin Dev 2021; 23:158-168. [PMID: 34703839 PMCID: PMC8517205 DOI: 10.1016/j.omtm.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
SURF1 (surfeit locus protein 1)-related Leigh syndrome is an early-onset neurodegenerative disorder, characterized by reduction in complex IV activity, resulting in disrupted mitochondrial function. Currently, there are no treatment options available. To test our hypothesis that adeno-associated viral vector serotype 9 (AAV9)/human SURF1 (hSURF1) gene replacement therapy can provide a potentially meaningful and long-term therapeutic benefit, we conducted preclinical efficacy studies using SURF1 knockout mice and safety evaluations with wild-type (WT) mice. Our data indicate that with a single intrathecal (i.t.) administration, our treatment partially and significantly rescued complex IV activity in all tissues tested, including liver, brain, and muscle. Accordingly, complex IV content (examined via MT-CO1 protein expression level) also increased with our treatment. In a separate group of mice, AAV9/hSURF1 mitigated the blood lactic acidosis induced by exhaustive exercise at 9 months post-dosing. A toxicity study in WT mice showed no adverse effects in either the in-life portion or after microscopic examination of major tissues up to a year following the same treatment regimen. Taken together, our data suggest a single dose, i.t. administration of AAV9/hSURF1 is safe and effective in improving biochemical abnormalities induced by SURF1 deficiency with potential applicability for SURF1-related Leigh syndrome patients.
Collapse
Affiliation(s)
- Qinglan Ling
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | - Matthew Rioux
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | - Yuhui Hu
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | - MinJae Lee
- Department of Population and Data Science, UTSW Medical Center, Dallas, TX 75390, USA
| | - Steven J. Gray
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Gujarati NA, Leonardo AR, Vasquez JM, Guo Y, Frimpong BO, Fozilov E, Revelo MP, Daehn IS, He JC, Bogenhagen D, Mallipattu SK. Loss of Functional SCO2 Attenuates Oxidative Stress in Diabetic Kidney Disease. Diabetes 2021; 71:db210316. [PMID: 34702781 PMCID: PMC8763871 DOI: 10.2337/db21-0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Alexandra R Leonardo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Jessica M Vasquez
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Bismark O Frimpong
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Elbek Fozilov
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Bogenhagen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
- Renal Section, Northport VA Medical Center, Northport, NY
| |
Collapse
|
22
|
Solano Fonseca R, Metang P, Egge N, Liu Y, Zuurbier KR, Sivaprakasam K, Shirazi S, Chuah A, Arneaud SL, Konopka G, Qian D, Douglas PM. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration. eLife 2021; 10:69438. [PMID: 34473622 PMCID: PMC8448530 DOI: 10.7554/elife.69438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect. Concussion is a type of traumatic brain injury that results from a sudden blow or jolt to the head. Symptoms can include a passing headache, dizziness, confusion or sensitivity to light, but experiencing multiple concussions can have drastic repercussions in later life. Studies of professional athletes have shown that those who experience one or more concussions are prone to developing Alzheimer’s and Parkinson’s disease, two well-known neurodegenerative diseases. Both conditions involve the progressive loss or breakdown of nerve cells, called neurons. But exactly how this so-called neurodegeneration of brain cells stems from the original, physical injury remains unclear. Head trauma may cause damage to the structural support of a cell or disrupt the flow of electrical impulses through neurons. Energy use and production in damaged cells could shift into overdrive to repair the damage. The chemical properties of different types of brain cells could also make some more vulnerable to trauma than others. Besides neurons, star-shaped support cells in the brain called astrocytes, which may have some protective ability, could also be affected. To investigate which cells may be more susceptible to traumatic injuries, Solano Fonseca et al. modelled the impacts of concussion-like head trauma in roundworms (C. elegans) and mice. In both animals, one type of neuron was extremely vulnerable to cell death after trauma. Neurons that release dopamine, a chemical involved in cell-to-cell communication and the brain’s reward system, showed signs of cell damage and deteriorated after injury. Dopaminergic cells, as these cells are called, are involved in motor coordination, and the loss of dopaminergic cells has been linked to both Alzheimer’s and Parkinson’s disease. Astrocytes, however, had a role in reducing the death of dopaminergic neurons after trauma. In experiments, astrocytes appeared to restore the balance of energy production to meet the increased energy demands of impacted neurons. Single-cell analyses showed that genes involved in metabolism were switched on in astrocytes to produce energy via an alternative pathway. This energetic shift facilitated via astrocytes may help mitigate against some damage to dopamine-producing neurons after trauma, reducing cell death. This work furthers our understanding of cellular changes in the concussed brain. More research will be required to better characterise how this immediate trauma to cells, and the subsequent loss of dopaminergic neurons, impacts brain health long-term. Efforts to design effective therapies to slow or reverse these changes could then follow.
Collapse
Affiliation(s)
- Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick Metang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nathan Egge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yingjian Liu
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Kielen R Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karthigayini Sivaprakasam
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shawn Shirazi
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Ashleigh Chuah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sonja Lb Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Genevieve Konopka
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, United States
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
23
|
Kobayashi M, Nezu Y, Tagawa R, Higami Y. Mitochondrial Unfolded Protein Responses in White Adipose Tissue: Lipoatrophy, Whole-Body Metabolism and Lifespan. Int J Mol Sci 2021; 22:ijms22062854. [PMID: 33799894 PMCID: PMC7998111 DOI: 10.3390/ijms22062854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yuichiro Nezu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3676
| |
Collapse
|
24
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Pharaoh G, Brown J, Ranjit R, Ungvari Z, Van Remmen H. Reduced adenosine diphosphate sensitivity in skeletal muscle mitochondria increases reactive oxygen species production in mouse models of aging and oxidative stress but not denervation. JCSM RAPID COMMUNICATIONS 2021; 4:75-89. [PMID: 36159599 PMCID: PMC9503137 DOI: 10.1002/rco2.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Background Mitochondrial bioenergetics are sensitive to adenosine diphosphate (ADP) concentration. Reactive oxygen species (ROS) production and respiration [oxygen consumption rate (OCR)] are altered at physiological ADP concentrations (i.e. ADP insensitivity) in aged human muscle. Here, we investigate ADP sensitivity in mouse muscle mitochondria. Methods We measured OCR and ROS production in permeabilized gastrocnemius fibres using an ADP titration protocol and the Oroboros O2k respirometer and fluorometer. We measured changes in ADP sensitivity in muscle from mice at different ages, after sciatic nerve transection (denervation), and in response to increased oxidative stress (Sod1 -/- mice). Further, we asked whether the mitochondrial-targeted peptide SS-31 can modulate ADP insensitivity and contractile function in the Sod1 -/- mouse model. Results Reduced ADP sensitivity is associated with increases in mitochondrial ROS production in aged (62%) and Sod1 -/- (33%) mice. The maximal capacity to produce ROS does not increase with age, and there is no effect of age on ADP sensitivity for OCR in mouse gastrocnemii. Denervation does not induce ADP insensitivity for either ROS generation or OCR. Treatment of Sod1 -/- mice with SS-31 increases ADP sensitivity for both OCR and ROS, decreases maximal ROS production (~40%), and improves resistance to muscle fatigue. Conclusions Adenosine diphosphate sensitivity for ROS production decreases in aged mouse gastrocnemius muscle fibres, although aged mice do not exhibit a difference in OCR. Denervation does not induce ADP insensitivity; however, insensitivity to ADP is induced in a model of oxidative stress. ADP insensitivity could contribute to muscle fatigue, and SS-31 may be the first drug capable of targeting this aging phenotype.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Physiology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jacob Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Physiology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Gras DE, Mansilla N, Rodríguez C, Welchen E, Gonzalez DH. Arabidopsis thaliana SURFEIT1-like genes link mitochondrial function to early plant development and hormonal growth responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:690-704. [PMID: 32248588 DOI: 10.1111/tpj.14762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Mutations in SURFEIT1 (SURF1) genes affect cytochrome c oxidase (COX) levels in different prokaryotic and eukaryotic organisms. In this work, we report that Arabidopsis thaliana has two genes that potentially encode SURF1 proteins, as a result of a duplication that took place in Brassicaceae. Both genes encode mitochondrial proteins and mutation in AtSURF1a causes embryonic lethality. Mutation in AtSURF1b, instead, causes defects in hypocotyl elongation under growth-stimulating conditions, such as low light intensity, increased ambient temperature and incubation with glucose. Mutants in AtSURF1b show reduced expression of the auxin reporter DR5:GUS and increased levels of the gibberellin reporter GFP-RGA, suggesting that auxin and gibberellin homeostasis are affected. In agreement, growth defects caused by AtSURF1b mutation can be overcome by treatment with indole-3-acetic acid and gibberellin A3 , and also by increasing expression of the auxin biosynthesis gene YUC8 or the transcription factor PIF4, which shows lower abundance in AtSURF1b-deficient plants. Mutants in AtSURF1b display lower COX levels, higher alternative oxidase and superoxide levels, and increased expression of genes that respond to mitochondrial dysfunction. Decreased hypocotyl growth and DR5:GUS expression can be reversed by treatment with reduced glutathione, suggesting that redox changes, probably related to mitochondrial dysfunction, are responsible for the effect of AtSURF1b deficiency on hormone responses. The results indicate that changes in AtSURF1b affect mitochondrial function and the production of reactive oxygen species, which, in turn, impinges on a growth regulatory circuit that involves auxin, gibberellins and the transcription factor PIF4.
Collapse
Affiliation(s)
- Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carina Rodríguez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
27
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
28
|
Bar-Ziv R, Bolas T, Dillin A. Systemic effects of mitochondrial stress. EMBO Rep 2020; 21:e50094. [PMID: 32449292 DOI: 10.15252/embr.202050094] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Shen G, Liu W, Xu L, Wang LL. Mitochondrial Unfolded Protein Response and Its Roles in Stem Cells. Stem Cells Dev 2020; 29:627-637. [PMID: 32070227 DOI: 10.1089/scd.2019.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gerong Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Department of Prosthetics, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lvwan Xu
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Mani S, Chandak GR, Singh KK, Singh R, Rao SN. Novel p.P298L SURF1 mutation in thiamine deficient Leigh syndrome patients compromises cytochrome c oxidase activity. Mitochondrion 2020; 53:91-98. [PMID: 32380162 DOI: 10.1016/j.mito.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023]
Abstract
SURF1 is a nuclear gene and encodes for an important assembly factor for cytochrome c oxidase enzyme. A number of mutations in SURF1 gene render cytochrome c oxidase deficiency, a major causative factor for Leigh syndrome. We screened all the 9 exons and exon-intron boundaries of SURF1 gene in 165 Indian Leigh syndrome patients who were thiamine responsive too. Consequently, we identified several novel and reported nucleotide variations in this gene. The nucleotide changes were analysed by using different in-silico tools for predicting their pathogenicity. Based upon the predictions, we further validated the analyzed functional significance of p.N249D and p.P298L mutations in SURF1 protein using COS-7 cells. Though, both the mutations did not affect the localization of SURF1protein into the mitochondria. But, interestingly the novel mutation p.P298L was reported to significantly compromise the COX activity in these cells.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India; CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - G R Chandak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajender Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - S Narasimha Rao
- Government Institute of Child Health, Niloufer Hospital for Women and Children, Red Hills, Hyderabad, India
| |
Collapse
|
31
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules 2020; 10:biom10020320. [PMID: 32079324 PMCID: PMC7072240 DOI: 10.3390/biom10020320] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic respiration and signaling molecules that control various cellular functions. Nrf2 governs the gene expression of endogenous antioxidant synthesis and ROS-eliminating enzymes in response to various electrophilic compounds that inactivate the negative regulator Keap1. Accumulating evidence has shown that mitochondrial ROS (mtROS) activate Nrf2, often mediated by certain protein kinases, and induce the expression of antioxidant genes and genes involved in mitochondrial quality/quantity control. Mild physiological stress, such as caloric restriction and exercise, elicits beneficial effects through a process known as “mitohormesis”. Exercise induces NOX4 expression in the heart, which activates Nrf2 and increases endurance capacity. Mice transiently depleted of SOD2 or overexpressing skeletal muscle-specific UCP1 exhibit Nrf2-mediated antioxidant gene expression and PGC1α-mediated mitochondrial biogenesis. ATF4 activation may induce a transcriptional program that enhances NADPH synthesis in the mitochondria and might cooperate with the Nrf2 antioxidant system. In response to severe oxidative stress, Nrf2 induces Klf9 expression, which represses mtROS-eliminating enzymes to enhance cell death. Nrf2 is inactivated in certain pathological conditions, such as diabetes, but Keap1 down-regulation or mtROS elimination rescues Nrf2 expression and improves the pathology. These reports aid us in understanding the roles of Nrf2 in pathophysiological alterations involving mtROS.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (S.K.); (S.S.); (J.M.)
| | - Sunao Shimizu
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (S.K.); (S.S.); (J.M.)
- Department of Nature & Wellness Research, Innovation Division, Kagome Co., Ltd. Nasushiobara, Tochigi 329-2762, Japan
| | - Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (S.K.); (S.S.); (J.M.)
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (S.K.); (S.S.); (J.M.)
- Correspondence: ; Tel.: +81-172-39-5158
| |
Collapse
|
33
|
Bhattacharya A, Pulliam D, Liu Y, Salmon AB. Mitochondrial-targeted methionine sulfoxide reductase overexpression increases the production of oxidative stress in mitochondria from skeletal muscle. ACTA ACUST UNITED AC 2020; 2:45-51. [PMID: 33829213 PMCID: PMC8023689 DOI: 10.31491/apt.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective: Mitochondrial dysfunction comprises part of the etiology of myriad health issues, particularly those that occur with advancing age. Methionine sulfoxide reductase A (MsrA) is a ubiquitous protein oxidation repair enzyme that specifically and catalytically reduces a specific epimer of oxidized methionine: methionine sulfoxide. In this study, we tested the ways in which mitochondrial bioenergetic functions are affected by increasing MsrA expression in different cellular compartments. Methods: In this study, we tested the function of isolated mitochondria, including free radical generation, ATP production, and respiration, from the skeletal muscle of two lines of transgenic mice with increased MsrA expression: mitochondria-targeted MsrA overexpression or cytosol-targeted MsrA overexpression. Results: Surprisingly, in the samples from mice with mitochondrial-targeted MsrA overexpression, we found dramatically increased free radical production though no specific defect in respiration, ATP production, or membrane potential. Among the electron transport chain complexes, we found the activity of complex I was specifically reduced in mitochondrial MsrA transgenic mice. In mice with cytosolic-targeted MsrA overexpression, we found no significant alteration made to any of these parameters of mitochondrial energetics. Conclusions: There is also a growing amount of evidence that MsrA is a functional requirement for sustaining optimal mitochondrial respiration and free radical generation. MsrA is also known to play a partial role in maintaining normal protein homeostasis by specifically repairing oxidized proteins. Our studies highlight a potential novel role for MsrA in regulating the activity of mitochondrial function through its interaction with the mitochondrial proteome.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio TX, USA.,Department of Cellular & Structural Anatomy, UT Health San Antonio, San Antonio TX, USA.,Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX, USA
| | - Daniel Pulliam
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio TX, USA
| | - Yuhong Liu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio TX, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio TX, USA.,Department of Molecular Medicine, UT Health San Antonio, San Antonio TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio TX, USA
| |
Collapse
|
34
|
Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, Alston CL, Oláhová M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 2020; 43:36-50. [PMID: 31021000 PMCID: PMC7041634 DOI: 10.1002/jimd.12104] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Jack J. Collier
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ruth I. C. Glasgow
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona M. Robertson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
35
|
Forsström S, Jackson CB, Carroll CJ, Kuronen M, Pirinen E, Pradhan S, Marmyleva A, Auranen M, Kleine IM, Khan NA, Roivainen A, Marjamäki P, Liljenbäck H, Wang L, Battersby BJ, Richter U, Velagapudi V, Nikkanen J, Euro L, Suomalainen A. Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA Deletions. Cell Metab 2019; 30:1040-1054.e7. [PMID: 31523008 DOI: 10.1016/j.cmet.2019.08.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 11/28/2022]
Abstract
Mitochondrial dysfunction elicits stress responses that safeguard cellular homeostasis against metabolic insults. Mitochondrial integrated stress response (ISRmt) is a major response to mitochondrial (mt)DNA expression stress (mtDNA maintenance, translation defects), but the knowledge of dynamics or interdependence of components is lacking. We report that in mitochondrial myopathy, ISRmt progresses in temporal stages and development from early to chronic and is regulated by autocrine and endocrine effects of FGF21, a metabolic hormone with pleiotropic effects. Initial disease signs induce transcriptional ISRmt (ATF5, mitochondrial one-carbon cycle, FGF21, and GDF15). The local progression to 2nd metabolic ISRmt stage (ATF3, ATF4, glucose uptake, serine biosynthesis, and transsulfuration) is FGF21 dependent. Mitochondrial unfolded protein response marks the 3rd ISRmt stage of failing tissue. Systemically, FGF21 drives weight loss and glucose preference, and modifies metabolism and respiratory chain deficiency in a specific hippocampal brain region. Our evidence indicates that FGF21 is a local and systemic messenger of mtDNA stress in mice and humans with mitochondrial disease.
Collapse
Affiliation(s)
- Saara Forsström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Christopher B Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Christopher J Carroll
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Molecular and Clinical Sciences Research Institute, St. George's University of London, London SW170RE, UK
| | - Mervi Kuronen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Eija Pirinen
- Clinical and Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Swagat Pradhan
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anastasiia Marmyleva
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Mari Auranen
- Department of Neurosciences, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Iida-Marja Kleine
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Nahid A Khan
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Liya Wang
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | | | - Uwe Richter
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, 00290 Helsinki, Finland
| | - Joni Nikkanen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Liliya Euro
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Neurosciences, Helsinki University Central Hospital, 00290 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
36
|
Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res 2019; 43:286-296. [DOI: 10.1007/s12272-019-01188-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
|
37
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|
38
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
39
|
Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertil Steril 2019; 111:197-204. [DOI: 10.1016/j.fertnstert.2018.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
|
40
|
Wang Y, Li Y, He C, Gou B, Song M. Mitochondrial regulation of cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1853-1864. [PMID: 30593894 DOI: 10.1016/j.bbadis.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Forestry University, Beijing 100083, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Science and Technology of China, Anhui 230026, China
| | - Chuting He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Song M, Vos MB, McClain CJ. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018; 10:E1815. [PMID: 30469339 PMCID: PMC6266129 DOI: 10.3390/nu10111815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Compelling epidemiologic data support the critical role of dietary fructose in the epidemic of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). The metabolic effects of fructose on the development of metabolic syndrome and NAFLD are not completely understood. High fructose intake impairs copper status, and copper-fructose interactions have been well documented in rats. Altered copper-fructose metabolism leads to exacerbated experimental metabolic syndrome and NAFLD. A growing body of evidence has demonstrated that copper levels are low in NAFLD patients. Moreover, hepatic and serum copper levels are inversely correlated with the severity of NAFLD. Thus, high fructose consumption and low copper availability are considered two important risk factors in NAFLD. However, the causal effect of copper-fructose interactions as well as the effects of fructose intake on copper status remain to be evaluated in humans. The aim of this review is to summarize the role of copper-fructose interactions in the pathogenesis of the metabolic syndrome and discuss the potential underlying mechanisms. This review will shed light on the role of copper homeostasis and high fructose intake and point to copper-fructose interactions as novel mechanisms in the fructose induced NAFLD.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology&Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology&Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA.
| |
Collapse
|
42
|
SURF1 mutations in Chinese patients with Leigh syndrome: Novel mutations, mutation spectrum, and the functional consequences. Gene 2018; 674:15-24. [DOI: 10.1016/j.gene.2018.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023]
|
43
|
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr 2018; 64:1-12. [PMID: 30705506 PMCID: PMC6348405 DOI: 10.3164/jcbn.18-37] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have clarified the importance of mitochondria in various age-related degenerative diseases, including late-onset Alzheimer’s disease and Parkinson’s disease. Although mitochondrial disturbances can be involved in every step of disease progression, several observations have demonstrated that a subtle mitochondrial functional disturbance is observed preceding the actual appearance of pathophysiological alterations and can be the target of early therapeutic intervention. The signals from damaged mitochondria are transferred to the nucleus, leading to the altered expression of nuclear-encoded genes, which includes mitochondrial proteins (i.e., mitochondrial retrograde signaling). Mitochondrial retrograde signaling improves mitochondrial perturbation (i.e., mitohormesis) and is considered a homeostatic stress response against intrinsic (ex. aging or pathological mutations) and extrinsic (ex. chemicals and pathogens) stimuli. There are several branches of the mitochondrial retrograde signaling, including mitochondrial unfolded protein response (UPRMT), but recent observations increasingly show the importance of the ISR-ATF4 pathway in mitochondrial retrograde signaling. Furthermore, Nrf2, a master regulator of the oxidative stress response, interacts with ATF4 and cooperatively upregulates a battery of antioxidant and antiapoptotic genes while repressing the ATF4-mediated proapoptotic gene, CHOP. In this review article, we summarized the upstream and downstream mechanisms of ATF4 activation during mitochondrial stresses and disturbances and discuss therapeutic intervention against degenerative diseases by using Nrf2 activators.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
44
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Deepa SS, Pharaoh G, Kinter M, Diaz V, Fok WC, Riddle K, Pulliam D, Hill S, Fischer KE, Soto V, Georgescu C, Wren JD, Viscomi C, Richardson A, Van Remmen H. Lifelong reduction in complex IV induces tissue-specific metabolic effects but does not reduce lifespan or healthspan in mice. Aging Cell 2018; 17:e12769. [PMID: 29696791 PMCID: PMC6052393 DOI: 10.1111/acel.12769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1−/− mice. The lack of deleterious phenotypes in Surf1−/− mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1−/− vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1−/− mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1−/− mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1−/− adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1−/− mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1−/− mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan.
Collapse
Affiliation(s)
- Sathyaseelan S. Deepa
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
| | - Gavin Pharaoh
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
- Department of Physiology; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
| | - Michael Kinter
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
| | - Vivian Diaz
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center San Antonio; San Antonio Texas
| | - Wilson C. Fok
- Division of Hematology; Department of Medicine; Washington University in St. Louis; St. Louis Missouri
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
| | - Daniel Pulliam
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center San Antonio; San Antonio Texas
| | - Shauna Hill
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center San Antonio; San Antonio Texas
| | | | - Vanessa Soto
- Department of Cellular and Structural Biology; Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center San Antonio; San Antonio Texas
| | - Constantin Georgescu
- Arthritis & Clinical Immunology Research Program; Division of Genomics and Data Sciences; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
| | - Jonathan D. Wren
- Arthritis & Clinical Immunology Research Program; Division of Genomics and Data Sciences; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
| | - Carlo Viscomi
- MRC-Mitochondrial Biology Unit; University of Cambridge; Cambridge UK
| | - Arlan Richardson
- Department of Geriatric Medicine; Reynolds Oklahoma Center on Aging; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
- Oklahoma City VA Medical Center; Oklahoma City Oklahoma
| | - Holly Van Remmen
- Aging and Metabolism Research Program; Oklahoma Medical Research Foundation; Oklahoma City Oklahoma
- Department of Physiology; University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma
- Oklahoma City VA Medical Center; Oklahoma City Oklahoma
| |
Collapse
|
46
|
Wang T, Babayev E, Jiang Z, Li G, Zhang M, Esencan E, Horvath T, Seli E. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell 2018; 17:e12784. [PMID: 29851234 PMCID: PMC6052477 DOI: 10.1111/acel.12784] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Caseinolytic peptidase P mediates degradation of unfolded mitochondrial proteins and activates mitochondrial unfolded protein response (mtUPR) to maintain protein homeostasis. Clpp−/− female mice generate a lower number of mature oocytes and two‐cell embryos, and no blastocysts. Clpp−/− oocytes have smaller mitochondria, with lower aspect ratio (length/width), and decreased expression of genes that promote fusion. A 4‐fold increase in atretic follicles at 3 months, and reduced number of primordial follicles at 6–12 months are observed in Clpp−/− ovaries. This is associated with upregulation of p‐S6, p‐S6K, p‐4EBP1 and p‐AKT473, p‐mTOR2481 consistent with mTORC1 and mTORC2 activation, respectively, and Clpp−/− oocyte competence is partially rescued by mTOR inhibitor rapamycin. Our findings demonstrate that CLPP is required for oocyte and embryo development and oocyte mitochondrial function and dynamics. Absence of CLPP results in mTOR pathway activation, and accelerated depletion of ovarian follicular reserve.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
- Department of Obstetrics, Gynecology and Reproductive Center; Shengjing Hospital of China Medical University; Shenyang China
| | - Elnur Babayev
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
| | - Zongliang Jiang
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
| | - Guangxin Li
- Department of Surgery; Yale School of Medicine; New Haven Connecticut
| | - Man Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
| | - Ecem Esencan
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
| | - Tamas Horvath
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
- Department of Comparative Medicine; Yale School of Medicine; New Haven Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven Connecticut
| |
Collapse
|
47
|
Abstract
Mitochondria are sensitive to numerous environmental stresses, which can lead to activation of mitochondrial stress responses (MSRs). Of particular recent interest has been the mitochondrial unfolded protein response (UPRmt), activated to restore protein homeostasis (proteostasis) upon mitochondrial protein misfolding. Several axes of the UPRmt have been described, creating some confusion as to the nature of the different responses. While distinct molecularly, these different axes are likely mutually beneficial and activated in parallel. This review aims at describing and distinguishing the different mammalian MSR/UPRmt axes to define key processes and members and to examine the involvement of protein misfolding.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Hill S, Sataranatarajan K, Van Remmen H. Role of Signaling Molecules in Mitochondrial Stress Response. Front Genet 2018; 9:225. [PMID: 30042784 PMCID: PMC6048194 DOI: 10.3389/fgene.2018.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are established essential regulators of cellular function and metabolism. Mitochondria regulate redox homeostasis, maintain energy (ATP) production through oxidative phosphorylation, buffer calcium levels, and control cell death through apoptosis. In addition to these critical cell functions, recent evidence supports a signaling role for mitochondria. For example, studies over the past few years have established that peptides released from the mitochondria mediate stress responses such as the mitochondrial unfolded protein response (UPRMT) through signaling to the nucleus. Mitochondrial damage or danger associated molecular patterns (DAMPs) provide a link between mitochondria, inflammation and inflammatory disease processes. Additionally, a new class of peptides generated by the mitochondria affords protection against age-related diseases in mammals. In this short review, we highlight the role of mitochondrial signaling and regulation of cellular activities through the mitochondrial UPRMT that signals to the nucleus to affect homeostatic responses, DAMPs, and mitochondrial derived peptides.
Collapse
Affiliation(s)
- Shauna Hill
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Cell Systems & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States.,Department of Pathology, University of Washington, Seattle, WA, United States
| | | | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Oklahoma City VA Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
49
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Duan Y, Sun L, Liu J, Fu W, Wang S, Ni Y, Zhao R. Effects of tonic immobility and corticosterone on mitochondria metabolism in pectoralis major muscle of broiler chickens. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tonic immobility (TI), which can be divided into short (STI) or long (LTI) duration, is a trait related to fear and stress response. In a previous study, we found that in broilers that LTI phenotype and chronic corticosterone (CORT) administration caused retarded growth and lower muscle weight compared with their control counterparts. The aim of this study is to determine whether the mitochondrial DNA (mtDNA) copy number and mitochondrial oxidative phosphorylation (OXPHOS), the vital factors involved in regulating energy homeostasis, have been changed by LTI or CORT treatment. The results showed that STI broilers had higher mtDNA copy number and cytochrome c oxidase (COX) enzyme activity compared with LTI broilers. Analysis of mtDNA-encoded OXPHOS genes revealed that the mRNA expression of the COX subunit 1, 2, NADH dehydrogenase (ND) subunits 1, 3 and 6, were also increased in STI broilers compared with LTI broilers. Regarding the transcriptional regulation of mtDNA-encoded OXPHOS genes, no difference was found in the methylation of the mitochondria control region between the TI phenotypes or the CORT treatments. The PGC-1α protein level was higher in STI broilers, but the av uncoupling proteins, did not show significant difference at the protein level between TI phenotypes. These results suggest that the mitochondrial function in pectoralis major muscle of STI broilers is better than that of LTI counterparts. However, chronic CORT administration did not affect the mitochondrial metabolism, indicating the mitochondrial insensitivity to CORT treatment in pectoralis major muscle.
Collapse
|