1
|
Yang S, Xing J, Liu D, Song Y, Yu H, Xu S, Zuo Y. Review and new insights into the catalytic structural domains of the Fe(ll) and 2-Oxoglutarate families. Int J Biol Macromol 2024; 278:134798. [PMID: 39153678 DOI: 10.1016/j.ijbiomac.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Histone lysine demethylase (KDM), AlkB homolog (ALKBH), and Ten-Eleven Translocation (TET) proteins are members of the 2-Oxoglutarate (2OG) and ferrous iron-dependent oxygenases, each of which harbors a catalytic domain centered on a double-stranded β-helix whose topology restricts the regions directly involved in substrate binding. However, they have different catalytic functions, and the deeply structural biological reasons are not yet clear. In this review, the catalytic domain features of the three protein families are summarized from both sequence and structural perspectives. The construction of the phylogenetic tree and comparison of the structure show ten relatively conserved β-sheets and three key regions with substantial structural differences. We summarize the relationship between three key regions of remarkable differences and the substrate compatibility of the three protein families. This review facilitates research into substrate-selective inhibition and bioengineering by providing new insights into the catalytic domains of KDM, ALKBH, and TET proteins.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Jixiang Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuhua Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
3
|
Benej M, Papandreou I, Denko NC. Hypoxic adaptation of mitochondria and its impact on tumor cell function. Semin Cancer Biol 2024; 100:28-38. [PMID: 38556040 PMCID: PMC11320707 DOI: 10.1016/j.semcancer.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C Denko
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Liu X, Tang J, Wang Z, Zhu C, Deng H, Sun X, Yu G, Rong F, Chen X, Liao Q, Jia S, Liu W, Zha H, Fan S, Cai X, Gui JF, Xiao W. Oxygen enhances antiviral innate immunity through maintenance of EGLN1-catalyzed proline hydroxylation of IRF3. Nat Commun 2024; 15:3533. [PMID: 38670937 PMCID: PMC11053110 DOI: 10.1038/s41467-024-47814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Guangqing Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huangyuan Zha
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Sijia Fan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| |
Collapse
|
5
|
Chen H, Yu S, Ma R, Deng L, Yi Y, Niu M, Xu C, Xiao ZXJ. Hypoxia-activated XBP1s recruits HDAC2-EZH2 to engage epigenetic suppression of ΔNp63α expression and promote breast cancer metastasis independent of HIF1α. Cell Death Differ 2024; 31:447-459. [PMID: 38413797 PMCID: PMC11043437 DOI: 10.1038/s41418-024-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Hu Chen
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Shuhan Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruidong Ma
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liyuan Deng
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Yong Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Zhang F, Zhang B, Wang Y, Jiang R, Liu J, Wei Y, Gao X, Zhu Y, Wang X, Sun M, Kang J, Liu Y, You G, Wei D, Xin J, Bao J, Wang M, Gu Y, Wang Z, Ye J, Guo S, Huang H, Sun Q. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature 2023; 622:834-841. [PMID: 37794190 PMCID: PMC10600011 DOI: 10.1038/s41586-023-06611-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Although haemoglobin is a known carrier of oxygen in erythrocytes that functions to transport oxygen over a long range, its physiological roles outside erythrocytes are largely elusive1,2. Here we found that chondrocytes produced massive amounts of haemoglobin to form eosin-positive bodies in their cytoplasm. The haemoglobin body (Hedy) is a membraneless condensate characterized by phase separation. Production of haemoglobin in chondrocytes is controlled by hypoxia and is dependent on KLF1 rather than the HIF1/2α pathway. Deletion of haemoglobin in chondrocytes leads to Hedy loss along with severe hypoxia, enhanced glycolysis and extensive cell death in the centre of cartilaginous tissue, which is attributed to the loss of the Hedy-controlled oxygen supply under hypoxic conditions. These results demonstrate an extra-erythrocyte role of haemoglobin in chondrocytes, and uncover a heretofore unrecognized mechanism in which chondrocytes survive a hypoxic environment through Hedy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China.
| | - Bo Zhang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Yuying Wang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jin Liu
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Yuexian Wei
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xinyue Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Yichao Zhu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xinli Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mao Sun
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Yingying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Ding Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Jiajia Xin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Junxiang Bao
- Department of Aerospace Hygiene, The Fourth Military Medical University, Xi'an, China
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yu Gu
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Jing Ye
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Shuangping Guo
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, Air Force Medical Center, The Fourth Military Medical University, Xi'an, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Academy of Military Medical Science; Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China.
- Nanhu Laboratory, Jiaxing, China.
| |
Collapse
|
8
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Collier H, Albanese A, Kwok CS, Kou J, Rocha S. Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 2023; 106:110660. [PMID: 36990334 DOI: 10.1016/j.cellsig.2023.110660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.
Collapse
Affiliation(s)
- Harry Collier
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Adam Albanese
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Chun-Sui Kwok
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jiahua Kou
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom.
| |
Collapse
|
10
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
11
|
Mori MP, Penjweini R, Ma J, Alspaugh G, Andreoni A, Kim YC, Wang PY, Knutson JR, Hwang PM. Mitochondrial respiration reduces exposure of the nucleus to oxygen. J Biol Chem 2023; 299:103018. [PMID: 36796514 PMCID: PMC10011062 DOI: 10.1016/j.jbc.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy (FLIM)-based probes demonstrating that the mitochondrial compartment has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin (MB)-mCherry FLIM O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20-40% compared to the cytosol under imposed O2 levels of ∼0.5-18.6%. Pharmacologic inhibition of respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA also replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.
Collapse
Affiliation(s)
- Mateus Prates Mori
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry and Molecular Medicine, University of California, Davis, California, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
12
|
Intermittent hypoxia enhances the expression of hypoxia inducible factor HIF1A through histone demethylation. J Biol Chem 2022; 298:102536. [PMID: 36174675 PMCID: PMC9597902 DOI: 10.1016/j.jbc.2022.102536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The cellular response to hypoxia is regulated through enzymatic oxygen sensors, including the prolyl hydroxylases, which control degradation of the well-known hypoxia inducible factors (HIFs). Other enzymatic oxygen sensors have been recently identified, including members of the KDM histone demethylase family. Little is known about how different oxygen-sensing pathways interact and if this varies depending on the form of hypoxia, such as chronic or intermittent. In this study, we investigated how two proposed cellular oxygen-sensing systems, HIF-1 and KDM4A, KDM4B, and KDM4C, respond in cells exposed to rapid forms of intermittent hypoxia (minutes) and compared to chronic hypoxia (hours). We found that intermittent hypoxia increases HIF-1α protein through a pathway distinct from chronic hypoxia, involving the KDM4A, KDM4B, and KDM4C histone lysine demethylases. Intermittent hypoxia increases the quantity and activity of KDM4A, KDM4B, and KDM4C, resulting in a decrease in histone 3 lysine 9 (H3K9) trimethylation near the HIF1A locus. We demonstrate that this contrasts with chronic hypoxia, which decreases KDM4A, KDM4B, and KDM4C activity, leading to hypertrimethylation of H3K9 globally and at the HIF1A locus. Altogether, we found that demethylation of histones bound to the HIF1A gene in intermittent hypoxia increases HIF1A mRNA expression, which has the downstream effect of increasing overall HIF-1 activity and expression of HIF target genes. This study highlights how multiple oxygen-sensing pathways can interact to regulate and fine tune the cellular hypoxic response depending on the period and length of hypoxia.
Collapse
|
13
|
Abe K, Li J, Liu YY, Brent GA. Thyroid Hormone-mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. J Endocr Soc 2022; 6:bvac139. [PMID: 36817622 PMCID: PMC9562813 DOI: 10.1210/jendso/bvac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Thyroid hormone has been shown to have a protective role in neuronal injury, although the mechanisms have not been established. The cellular response to stress that promotes adaptation and survival has been shown to involve epigenetic modifications. Objective We hypothesized that the neuroprotective role of thyroid hormone was associated with epigenetic modifications of histone proteins. We used hypoxic neurons as a model system for hypoxia-induced brain injury. Methods Mouse primary cortical neurons were exposed to 0.2% oxygen for 7 hours, with or without, treatment with triiodothyronine (T3). We analyzed the expression of histone-modifying enzymes by RNA-seq and the post-translationally modified histone 3 proteins by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results We found that methylation of H3K27, associated with inactive promoters, was highly induced in hypoxic neurons, and this histone methylation was reduced by T3 treatment. H3K4 methylation is the hallmark of active promoters. The expression of 3 (Set1db, Kmta2c, and Kmt2e) out of 6 H3K4 methyltransferases was downregulated by hypoxia and expression was restored by T3 treatment. H3K4me3 protein, measured by ELISA, was increased 76% in T3-treated hypoxic neurons compared with the levels without T3 treatment. H3K56ac plays a critical role in transcription initiation and was markedly increased in T3-treated hypoxic neurons compared with those without T3 treatment, indicating stimulation of gene transcription. Additionally, T3 treatment restored hypoxia-induced downregulation of histone acetyltransferase, Kat6a, Kat6b, and Crebbp, which function as transcription factors. Conclusion These findings indicate that T3 treatment mitigates hypoxia-induced histone modifications and protects neurons from hypoxia-induced injury.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jianrong Li
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yan Yun Liu
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gregory A Brent
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
14
|
Physiological Function of the Dynamic Oxygen Signaling Pathway at the Maternal-fetal Interface. J Reprod Immunol 2022; 151:103626. [DOI: 10.1016/j.jri.2022.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
15
|
Gond MK, Pandey SK, Singh R, Bharty MK, Manna PP, Singh VK, Maiti B, Prasad LB, Butcher RJ. In vitro and In silico anticancer activities of Mn( ii), Co( ii), and Ni( ii) complexes: synthesis, characterization, crystal structures, and DFT studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj00264g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complexes 1, 2 and 3 showed significant activity against K562, MCF-7, and DL cancer cell lines. Complexes 1–3 showed higher growth inhibition than metal salts or ligands in tumour cell growth and colony formation. Complex 1 exhibited higher anticancer activity than cisplatin.
Collapse
Affiliation(s)
- M. K. Gond
- Department of Chemistry, Banaras Hindu University, Varanasi-221005, India
| | | | - R. Singh
- Department of Zoology Banaras Hindu University, Varanasi-221005, India
| | - Manoj K. Bharty
- Department of Chemistry, Banaras Hindu University, Varanasi-221005, India
| | | | - V. K. Singh
- School of Biotechnology, Banaras Hindu University, Varanasi-221005, India
| | - B. Maiti
- Department of Chemistry, Banaras Hindu University, Varanasi-221005, India
| | - L. B. Prasad
- Department of Chemistry, Banaras Hindu University, Varanasi-221005, India
| | - R. J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| |
Collapse
|
16
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
17
|
Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021; 10:2371. [PMID: 34572020 PMCID: PMC8472468 DOI: 10.3390/cells10092371] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
| | - Monika Golinska
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
| |
Collapse
|
18
|
Nanduri J, Wang N, Wang BL, Prabhakar NR. Lysine demethylase KDM6B regulates HIF-1α-mediated systemic and cellular responses to intermittent hypoxia. Physiol Genomics 2021; 53:385-394. [PMID: 34297635 PMCID: PMC8887999 DOI: 10.1152/physiolgenomics.00045.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA). Rodents treated with IH exhibit hypertension. Hypoxia-inducible factor (HIF)-1-dependent transcriptional activation of NADPH oxidases (Nox) and the resulting increase in reactive oxygen species (ROS) levels is a major molecular mechanism underlying IH/OSA-induced hypertension. Jumanji C (JmjC)-containing histone lysine demethylases (JmjC-KDMs) are coactivators of HIF-1-dependent transcriptional activation. In the present study, we tested the hypothesis that JmjC-KDMs are required for IH-evoked HIF-1 transcriptional activation of Nox4 and the ensuing hypertension. Studies were performed on pheochromocytoma (PC)12 cells and rats. IH increased KDM6B protein and enzyme activity in PC12 cells in an HIF-1-independent manner as evidenced by unaltered KDM6B activation by IH in HIF-1α shRNA-treated cells. Cells treated with IH showed increased HIF-1-dependent Nox4 transcription as indicated by increased HIF-1α binding to hypoxia-responsive element (HRE) sequence of the Nox4 gene promoter demonstrated by chromatin immunoprecipitation (ChiP) assay. Pharmacological blockade of KDM6B with GSKJ4, a specific KDM6 inhibitor, or genetic silencing of KDM6B with shRNA abolished IH-induced Nox4 transcriptional activation by blocking HIF-1α binding to the promoter of the Nox4 gene. Treating IH-exposed rats with GSKJ4 showed: 1) absence of KDM6B activation and HIF-1-dependent Nox4 transcription in the adrenal medullae, and 2) absence of elevated plasma catecholamines and hypertension. Collectively, these findings indicate that KDM6B functions as a coactivator of HIF-1-mediated Nox4 transactivation and demonstrates a hitherto uncharacterized role for KDMs in IH-induced hypertension by HIF-1.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Benjamin L. Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Cade BE, Lee J, Sofer T, Wang H, Zhang M, Chen H, Gharib SA, Gottlieb DJ, Guo X, Lane JM, Liang J, Lin X, Mei H, Patel SR, Purcell SM, Saxena R, Shah NA, Evans DS, Hanis CL, Hillman DR, Mukherjee S, Palmer LJ, Stone KL, Tranah GJ, Abecasis GR, Boerwinkle EA, Correa A, Cupples LA, Kaplan RC, Nickerson DA, North KE, Psaty BM, Rotter JI, Rich SS, Tracy RP, Vasan RS, Wilson JG, Zhu X, Redline S. Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program. Genome Med 2021; 13:136. [PMID: 34446064 PMCID: PMC8394596 DOI: 10.1186/s13073-021-00917-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.
Collapse
Affiliation(s)
- Brian E. Cade
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Jiwon Lee
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA
| | - Tamar Sofer
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Heming Wang
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Man Zhang
- grid.411024.20000 0001 2175 4264Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Han Chen
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Sina A. Gharib
- grid.34477.330000000122986657Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195 USA
| | - Daniel J. Gottlieb
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, Boston, MA 02132 USA
| | - Xiuqing Guo
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jacqueline M. Lane
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Jingjing Liang
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xihong Lin
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Hao Mei
- grid.410721.10000 0004 1937 0407Department of Data Science, University of Mississippi Medical Center, Jackson, MS 29216 USA
| | - Sanjay R. Patel
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Shaun M. Purcell
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Richa Saxena
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Neomi A. Shah
- grid.59734.3c0000 0001 0670 2351Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel S. Evans
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Craig L. Hanis
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - David R. Hillman
- grid.3521.50000 0004 0437 5942Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009 Australia
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia Australia ,grid.1014.40000 0004 0367 2697Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia Australia
| | - Lyle J. Palmer
- grid.1010.00000 0004 1936 7304School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Katie L. Stone
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Gregory J. Tranah
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | | | - Gonçalo R. Abecasis
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
| | - Eric A. Boerwinkle
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adolfo Correa
- grid.410721.10000 0004 1937 0407Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216 USA ,Jackson Heart Study, Jackson, MS 39216 USA
| | - L. Adrienne Cupples
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA
| | - Robert C. Kaplan
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461 USA
| | - Deborah A. Nickerson
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Northwest Genomics Center, Seattle, WA 98105 USA
| | - Kari E. North
- grid.410711.20000 0001 1034 1720Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514 USA
| | - Bruce M. Psaty
- grid.34477.330000000122986657Cardiovascular Health Study, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101 USA ,grid.488833.c0000 0004 0615 7519Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - Jerome I. Rotter
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Stephen S. Rich
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Russell P. Tracy
- grid.59062.380000 0004 1936 7689Department of Pathology, University of Vermont, Colchester, VT 05405 USA
| | - Ramachandran S. Vasan
- grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA ,grid.189504.10000 0004 1936 7558Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118 USA
| | - James G. Wilson
- grid.410721.10000 0004 1937 0407Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Xiaofeng Zhu
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Susan Redline
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.239395.70000 0000 9011 8547Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | | |
Collapse
|
20
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2021; 42:2459-2472. [PMID: 34383231 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
21
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
PBRM1 Cooperates with YTHDF2 to Control HIF-1α Protein Translation. Cells 2021; 10:cells10061425. [PMID: 34200988 PMCID: PMC8228889 DOI: 10.3390/cells10061425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
PBRM1, a component of the chromatin remodeller SWI/SNF, is often deleted or mutated in human cancers, most prominently in renal cancers. Core components of the SWI/SNF complex have been shown to be important for the cellular response to hypoxia. Here, we investigated how PBRM1 controls HIF-1α activity. We found that PBRM1 is required for HIF-1α transcriptional activity and protein levels. Mechanistically, PBRM1 is important for HIF-1α mRNA translation, as absence of PBRM1 results in reduced actively translating HIF-1α mRNA. Interestingly, we found that PBRM1, but not BRG1, interacts with the m6A reader protein YTHDF2. HIF-1α mRNA is m6A-modified, bound by PBRM1 and YTHDF2. PBRM1 is necessary for YTHDF2 binding to HIF-1α mRNA and reduction of YTHDF2 results in reduced HIF-1α protein expression in cells. Our results identify a SWI/SNF-independent function for PBRM1, interacting with HIF-1α mRNA and the epitranscriptome machinery. Furthermore, our results suggest that the epitranscriptome-associated proteins play a role in the control of hypoxia signalling pathways.
Collapse
|
23
|
Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases and their functions in cancer. Int J Cancer 2021; 148:2375-2388. [PMID: 33128779 DOI: 10.1002/ijc.33375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022]
Abstract
Histone lysine demethylases (KDMs) are enzymes that remove the methylation marks on lysines in nucleosomes' histone tails. These changes in methylation marks regulate gene transcription during both development and malignant transformation. Depending on which lysine residue is targeted, the effect of a given KDM on gene transcription can be either activating or repressing, and KDMs can regulate the expression of both oncogenes and tumour suppressors. Thus, the functions of KDMs can be regarded as both oncogenic and tumour suppressive, contingent on cell context and the enzyme isoform. Finally, KDMs also demethylate nonhistone proteins and have a variety of demethylase-independent functions. These epigenetic and other mechanisms that KDMs control make them important regulators of malignant tumours. Here, we present an overview of eight KDM subfamilies, their most-studied lysine targets and selected recent data on their roles in cancer stem cells, tumour aggressiveness and drug tolerance.
Collapse
Affiliation(s)
- Jayden Sterling
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ramzi H Abbassi
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lenka Munoz
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Wang S, Wang Y, Zhu H, Chen M, Zhang L. Expression pattern of histone lysine-specific demethylase 6B in gastric cancer. Oncol Lett 2021; 21:491. [PMID: 33968207 PMCID: PMC8100944 DOI: 10.3892/ol.2021.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/17/2021] [Indexed: 11/06/2022] Open
Abstract
Over the last few decades, predictive markers for the prognosis of gastric cancer have not been extensively investigated. The present study aimed to evaluate the expression profile of histone demethylase lysine (K)-specific demethylase 6B (KDM6B) in gastric cancer and healthy control tissues, as well as its value in prognosis prediction as a clinical marker. Within the framework of these criteria, the diagnostic role of KMD6B for gastric cancer was investigated, which may provide insights into novel treatment targets. Immunohistochemistry was applied to detect KMD6B expression in 100 gastric cancer tissues and matching para-cancerous tissues to analyze the association between KMD6B expression and clinicopathological features. Based on the follow-up data, the value of KMD6B in prognosis assessment was further explored. The role of KMD6B in gastric cancer cell proliferation, cell cycle distribution and the expression of cell cycle-associated proteins was investigated by inhibiting KMD6B activity using the specific inhibitor GSK J4. KMD6B was mostly distributed in cytoplasm and nucleus in gastric cancer tissue. The expression level was significantly higher in cancer tissues compared with that in the corresponding non-cancerous tissues. The expression of KMD6B was significantly associated with sex, lymph node and distant metastasis status and clinical stage (P<0.05). Cell proliferation was significantly decreased with the inhibition of KMD6B activity, and the cell cycle in HGC27 cells was arrested in the G2/M phase after being treated with GSK J4 for 24 h. The expression of cyclin B and Cdc2 were significantly decreased, while p21 was upregulated. It was concluded that the dysregulated expression of KMD6B is associated with the malignant progression of gastric cancer and could be a potential marker for prognosis. Blocking the demethylase activity of KMD6B induced G2/M arrest and inhibited the proliferation of gastric cancer cells, suggesting that KMD6B is a potential novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Shujun Wang
- Department of Gastroenterology, Cixi People's Hospital, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Yiping Wang
- Department of Gastroenterology, Cixi People's Hospital, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Hui Zhu
- Department of Gastroenterology, Cixi People's Hospital, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Miaohui Chen
- Department of Gastroenterology, Cixi People's Hospital, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Liang Zhang
- Department of Gastroenterology, Cixi People's Hospital, Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| |
Collapse
|
25
|
Yu W, Lutz C, Krämer A, Schmidt-Zachmann MS. The JmjC-domain protein NO66/RIOX-1 affects the balance between proliferation and maturation in acute myeloid leukemia. Exp Cell Res 2021; 402:112566. [PMID: 33745927 DOI: 10.1016/j.yexcr.2021.112566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
As epigenetic regulators are frequently dysregulated in acute myeloid leukemia (AML) we determined expression levels of the JmjC-protein NO66 in AML cell lines and sub fractions of healthy human hematopoietic cells. NO66 is absent in the AML cell lines KG1/KG1a which consist of cells with the immature CD34+/CD38- phenotype and is regarded as a "stem cell-like" model system. Similarly, NO66 is not detectable in CD34+/CD38- cells purified from healthy donors but is clearly expressed in the more committed CD34+/CD38+ cell population. Loss of NO66 expression in KG1/KG1a cells is due to hyper-methylation of its promoter and is released by DNA-methyltransferase inhibitors. In KG1a cells stably expressing exogenous wild type (KG1a66wt) or enzymatically inactive mutant (KG1a66mut) NO66, respectively, the wild type protein inhibited proliferation and rDNA transcription. Gene expression profiling revealed that the expression of NO66 induces a transcriptional program enriched for genes with roles in proliferation and maturation (e.g.EPDR1, FCER1A, CD247, MYCN, SNORD13). Genes important for the maintenance of stem cell properties are downregulated (e.g. SIRPA, Lin28B, JAML). Our results indicate that NO66 induces lineage commitment towards myeloid progenitor cell fate and suggest that NO66 contributes to loss of stem cell properties.
Collapse
Affiliation(s)
- Weijia Yu
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Germany.
| | - Christoph Lutz
- Department of Internal Medicine V, University of Heidelberg, Germany.
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Germany; Department of Internal Medicine V, University of Heidelberg, Germany.
| | - Marion S Schmidt-Zachmann
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Germany.
| |
Collapse
|
26
|
Chou FS, Newton K, Wang PS. Quantifying Fetal Reprogramming for Biomarker Development in the Era of High-Throughput Sequencing. Genes (Basel) 2021; 12:329. [PMID: 33668810 PMCID: PMC7996299 DOI: 10.3390/genes12030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational hypertensive disorders continue to threaten the well-being of pregnant women and their offspring. The only current definitive treatment for gestational hypertensive disorders is delivery of the fetus. The optimal timing of delivery remains controversial. Currently, the available clinical tools do not allow for assessment of fetal stress in its early stages. Placental insufficiency and fetal growth restriction secondary to gestational hypertensive disorders have been shown to have long-term impacts on offspring health even into their adulthood, becoming one of the major focuses of research in the field of developmental origins of health and disease. Fetal reprogramming was introduced to describe the long-lasting effects of the toxic intrauterine environment on the growing fetus. With the advent of high-throughput sequencing, there have been major advances in research attempting to quantify fetal reprogramming. Moreover, genes that are found to be differentially expressed as a result of fetal reprogramming show promise in the development of transcriptional biomarkers for clinical use in detecting fetal response to placental insufficiency. In this review, we will review key pathophysiology in the development of placental insufficiency, existing literature on high-throughput sequencing in the study of fetal reprogramming, and considerations regarding research design from our own experience.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Krystel Newton
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Pei-Shan Wang
- PXT Research & Data Analytics, LLC, Rancho Cucamonga, CA 91739, USA;
| |
Collapse
|
27
|
Gene transcription and chromatin regulation in hypoxia. Biochem Soc Trans 2021; 48:1121-1128. [PMID: 32369557 PMCID: PMC7329336 DOI: 10.1042/bst20191106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Oxygen sensing is an essential feature of metazoan biology and reductions in oxygen availability (hypoxia) have both physiological and pathophysiological implications. Co-ordinated mechanisms have evolved for sensing and responding to hypoxia, which involve diverse biological outputs, with the main aim of restoring oxygen homeostasis. This includes a dynamic gene transcriptional response, the central drivers of which are the hypoxia-inducible factor (HIF) family of transcription factors. HIFs are regulated in an oxygen-dependent manner and while their role in hypoxia is well established, it is apparent that other key players are required for gene expression control in hypoxia. In this review, we highlight the current understanding of the known and potential molecular mechanisms underpinning gene transcriptional responses to hypoxia in mammals, with a focus on oxygen-dependent effects on chromatin structure.
Collapse
|
28
|
Chopra A, Adhikary H, Willmore WG, Biggar KK. Insights into The Function and Regulation of Jumonji C Lysine Demethylases as Hypoxic Responsive Enzymes. Curr Protein Pept Sci 2021; 21:642-654. [PMID: 31889485 DOI: 10.2174/1389203721666191231104225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
Cellular responses to hypoxia (low oxygen) are governed by oxygen sensitive signaling pathways. Such pathways, in part, are controlled by enzymes with oxygen-dependent catalytic activity, of which the role of prolyl 4-hydroxylases has been widely reviewed. These enzymes inhibit hypoxic response by inducing the oxygen-dependent degradation of hypoxia-inducible factor 1α, the master regulator of the transcriptional hypoxic response. Jumonji C domain-containing lysine demethylases are similar enzymes which share the same oxygen-dependent catalytic mechanism as prolyl 4- hydroxylases. Traditionally, the role of lysine demethylases has been studied in relation to demethylation activity against histone substrates, however, within the past decade an increasing number of nonhistone protein targets have been revealed, some of which have a key role in survival in the hypoxic tumor microenvironment. Within this review, we highlight the involvement of methyllysine in the hypoxic response with a focus on the HIF signaling pathway, the regulation of demethylase activity by oxygen, and provide insights into notable areas of future hypoxic demethylase research.
Collapse
Affiliation(s)
- Anand Chopra
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Hemanta Adhikary
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - William G Willmore
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
29
|
Chung YJ, Swietach P, Curtis MK, Ball V, Robbins PA, Lakhal-Littleton S. Iron-Deficiency Anemia Results in Transcriptional and Metabolic Remodeling in the Heart Toward a Glycolytic Phenotype. Front Cardiovasc Med 2021; 7:616920. [PMID: 33553263 PMCID: PMC7859254 DOI: 10.3389/fcvm.2020.616920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency is the most prevalent micronutrient disorder globally. When severe, iron deficiency leads to anemia, which can be deleterious to cardiac function. Given the central role of iron and oxygen in cardiac biology, multiple pathways are expected to be altered in iron-deficiency anemia, and identifying these requires an unbiased approach. To investigate these changes, gene expression and metabolism were studied in mice weaned onto an iron-deficient diet for 6 weeks. Whole-exome transcriptomics (RNAseq) identified over 1,500 differentially expressed genes (DEGs), of which 22% were upregulated and 78% were downregulated in the iron-deficient group, relative to control animals on an iron-adjusted diet. The major biological pathways affected were oxidative phosphorylation and pyruvate metabolism, as well as cardiac contraction and responses related to environmental stress. Cardiac metabolism was studied functionally using in vitro and in vivo methodologies. Spectrometric measurement of the activity of the four electron transport chain complexes in total cardiac lysates showed that the activities of Complexes I and IV were reduced in the hearts of iron-deficient animals. Pyruvate metabolism was assessed in vivo using hyperpolarized 13C magnetic resonance spectroscopy (MRS) of hyperpolarized pyruvate. Hearts from iron-deficient and anemic animals showed significantly decreased flux through pyruvate dehydrogenase and increased lactic acid production, consistent with tissue hypoxia and induction of genes coding for glycolytic enzymes and H+-monocarboxylate transport-4. Our results show that iron-deficiency anemia results in a metabolic remodeling toward a glycolytic, lactic acid-producing phenotype, a hallmark of hypoxia.
Collapse
Affiliation(s)
- Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Vicky Ball
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A. Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
31
|
Hammarlund EU, Flashman E, Mohlin S, Licausi F. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 2020; 370:370/6515/eaba3512. [PMID: 33093080 DOI: 10.1126/science.aba3512] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Oxygen-sensing mechanisms of eukaryotic multicellular organisms coordinate hypoxic cellular responses in a spatiotemporal manner. Although this capacity partly allows animals and plants to acutely adapt to oxygen deprivation, its functional and historical roots in hypoxia emphasize a broader evolutionary role. For multicellular life-forms that persist in settings with variable oxygen concentrations, the capacity to perceive and modulate responses in and between cells is pivotal. Animals and higher plants represent the most complex life-forms that ever diversified on Earth, and their oxygen-sensing mechanisms demonstrate convergent evolution from a functional perspective. Exploring oxygen-sensing mechanisms across eukaryotic kingdoms can inform us on biological innovations to harness ever-changing oxygen availability at the dawn of complex life and its utilization for their organismal development.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden. .,Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sofie Mohlin
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. .,PlantLab, Institute of Life Sciences, Scuola Superiore, Sant'Anna, 56124 Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
33
|
Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H. Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 2020; 133:jcs243444. [PMID: 32576661 PMCID: PMC7390643 DOI: 10.1242/jcs.243444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
| | - Yuto Kina
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, PO Box 338, Bode 36, 6700 AH Wageningen, The Netherlands
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
34
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
35
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
36
|
Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 2020; 21:268-283. [PMID: 32144406 PMCID: PMC7222024 DOI: 10.1038/s41580-020-0227-y] [Citation(s) in RCA: 664] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Molecular oxygen (O2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress.
Collapse
Affiliation(s)
- Pearl Lee
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Protein lysine methylation in the regulation of anoxia tolerance in the red eared slider turtle, Trachemys scripta elegans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100660. [PMID: 32066095 DOI: 10.1016/j.cbd.2020.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022]
Abstract
The red eared slider turtle (Trachemys scripta elegans) is a champion vertebrate facultative anaerobe, capable of surviving for several months under conditions of exceptionally low oxygen availability. The ability of the turtle to facilitate this impressive tolerance to oxygen restriction is accomplished through a dramatic reduction in non-essential cellular processes. This is done in an attempt to conserve limited ATP stores and match demand in the anoxic state, with ATP supplied primarily through anaerobic glycolysis. Determining both the non-essential and the essential cellular processes that are deemed to be anoxia-responsive in the turtle has been an intense area of study over the past few decades. As a result, recent advancements have established the influence of global metabolic controls, such as post-transcriptional and post-translational regulation of gene expression in anoxia adaptation. A remaining question is whether or not epigenetic-level regulatory mechanisms are also utilized to allow for local control over gene expression. Recently, research has begun to document lysine methylation as an anoxia-responsive post-translational histone modification, as the activities of a number of methyl-lysine regulatory enzymes are extraordinarily sensitive to oxygen availability. As a result, oxygen-dependent methyl-lysine regulatory enzymes have been of particular interest to several recent studies of animal oxygen sensitivity, including the freshwater turtle. This review will introduce the concept of lysine methylation as an oxygen-sensitive protein modification as well as a prospectus on how this modification may contribute to anoxia tolerance in the turtle.
Collapse
|
38
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Iacopino S, Licausi F. The Contribution of Plant Dioxygenases to Hypoxia Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:1008. [PMID: 32733514 PMCID: PMC7360844 DOI: 10.3389/fpls.2020.01008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 05/08/2023]
Abstract
Dioxygenases catalyze the incorporation of one or two oxygen atoms into target organic substrates. Besides their metabolic role, these enzymes are involved in plant signaling pathways as this reaction is in several instances required for hormone metabolism, to control proteostasis and regulate chromatin accessibility. For these reasons, alteration of dioxygenase expression or activity can affect plant growth, development, and adaptation to abiotic and biotic stresses. Moreover, the requirement of co-substrates and co-factors, such as oxygen, 2-oxoglutarate, and iron (Fe2+), invests dioxygenases with a potential role as cellular sensors for these molecules. For example, inhibition of cysteine deoxygenation under hypoxia elicits adaptive responses to cope with oxygen shortage. However, biochemical and molecular evidence regarding the role of other dioxygenases under low oxygen stresses is still limited, and thus further investigation is needed to identify additional sensing roles for oxygen or other co-substrates and co-factors. Here, we summarize the main signaling roles of dioxygenases in plants and discuss how they control plant growth, development and metabolism, with a focus on the adaptive responses to low oxygen conditions.
Collapse
Affiliation(s)
- Sergio Iacopino
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- *Correspondence: Francesco Licausi,
| |
Collapse
|
40
|
Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P. Epigenetic Metalloenzymes. Curr Med Chem 2019; 26:2748-2785. [PMID: 29984644 DOI: 10.2174/0929867325666180706105903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.
Collapse
Affiliation(s)
- Christophe Blanquart
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Camille Linot
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Philippe Bertrand
- Réseau Epigénétique du Cancéropôle Grand Ouest, France.,Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B27, 86073, Poitiers cedex 09, France
| |
Collapse
|
41
|
Batie M, Rocha S. JmjC histone demethylases act as chromatin oxygen sensors. Mol Cell Oncol 2019; 6:1608501. [PMID: 31211238 PMCID: PMC6548480 DOI: 10.1080/23723556.2019.1608501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022]
Abstract
Oxygen sensing is important in physiology but also in disease. We find that hypoxia (oxygen deficiency) triggers rapid and hypoxia-inducible factor (HIF)-independent histone methylation changes which are reversible upon reoxygenation. Hypoxia-induced histone methylation genomic distribution precedes transcriptional changes and is mimicked by specific Jumonji-C (JmjC) histone demethylase depletion. Oxygen sensing by JmjC histone demethylases is required for the cellular response to hypoxia.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Heinrich EC, Wu L, Lawrence ES, Cole AM, Anza-Ramirez C, Villafuerte FC, Simonson TS. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet 2019; 83:171-176. [PMID: 30719713 PMCID: PMC7920394 DOI: 10.1111/ahg.12299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
EGLN1 encodes the hypoxia-inducible factor (HIF) pathway prolyl hydroxylase 2 (PHD2) that serves as an oxygen-sensitive regulator of HIF activity. The EGLN1 locus exhibits a signature of positive selection in Tibetan and Andean populations and is associated with hemoglobin concentration in Tibetans. Recent reports provide evidence for functional roles of protein-coding variants within the first exon of EGLN1 (rs186996510, rs12097901) that are linked to an adaptive signal in Tibetans, yet whether these same variants are present and contribute to adaptation in Andean highlanders is unknown. We determined the frequencies of these adaptive Tibetan alleles in Quechua Andeans resident at high altitude (4,350 m) in addition to individuals of Nepali ancestry resident at sea level. The rs186996510 C (minor) allele previously found at high frequency in Tibetans is absent in Andean (G: 100%) and rare among Nepali (C: 11.8%, G: 88.2%) cohorts. The minor G allele of rs12097901 is found at similarly low frequencies in Andeans (G: 12.7%, C: 87.3%) and Nepalis (G: 23.5%, C: 76.5%) compared to Tibetans. These results suggest that adaptation involving EGLN1 in Andeans involves different mechanisms than those described in Tibetans. The precise Andean adaptive variants remain to be determined.
Collapse
Affiliation(s)
- Erica C. Heinrich
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Lu Wu
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Elijah S. Lawrence
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Amy M. Cole
- Department of Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia Anza-Ramirez
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | | | - Tatum S. Simonson
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Chung YJ, Luo A, Park KC, Loonat AA, Lakhal-Littleton S, Robbins PA, Swietach P. Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump activity. JCI Insight 2019; 4:125618. [PMID: 30779710 PMCID: PMC6483648 DOI: 10.1172/jci.insight.125618] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency is present in ~50% of heart failure (HF) patients. Large multicenter trials have shown that treatment of iron deficiency with i.v. iron benefits HF patients, but the underlying mechanisms are not known. To investigate the actions of iron deficiency on the heart, mice were fed an iron-depleted diet, and some received i.v. ferric carboxymaltose (FCM), an iron supplementation used clinically. Iron-deficient animals became anemic and had reduced ventricular ejection fraction measured by magnetic resonance imaging. Ca2+ signaling, a pathway linked to the contractile deficit in failing hearts, was also significantly affected. Ventricular myocytes isolated from iron-deficient animals produced smaller Ca2+ transients from an elevated diastolic baseline but had unchanged sarcoplasmic reticulum (SR) Ca2+ load, trigger L-type Ca2+ current, or cytoplasmic Ca2+ buffering. Reduced fractional release from the SR was due to downregulated RyR2 channels, detected at protein and message levels. The constancy of diastolic SR Ca2+ load is explained by reduced RyR2 permeability in combination with right-shifted SERCA activity due to dephosphorylation of its regulator phospholamban. Supplementing iron levels with FCM restored normal Ca2+ signaling and ejection fraction. Thus, 2 Ca2+-handling proteins previously implicated in HF become functionally impaired in iron-deficiency anemia, but their activity is rescued by i.v. iron supplementation.
Collapse
Affiliation(s)
- Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Antao Luo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, Meng YJ, Meier SR, Jennings RB, Creech AL, Herbert ZT, McBrayer SK, Olenchock BA, Jaffe JD, Haigis MC, Beroukhim R, Signoretti S, Koivunen P, Kaelin WG. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 2019; 363:1217-1222. [PMID: 30872525 DOI: 10.1126/science.aaw1026] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.
Collapse
Affiliation(s)
- Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Tuomas Laukka
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Matti Myllykoski
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michael Y Tolstorukov
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yuzhong Jeff Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,The Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Meier
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Creech
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zachary T Herbert
- Molecular Biology Core Facility, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin A Olenchock
- Division of Cardiovascular Medicine, Department of Medicine, The Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jacob D Jaffe
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
45
|
Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 2019; 363:1222-1226. [DOI: 10.1126/science.aau5870] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the life of most multicellular organisms. Cells possess enzymes called molecular dioxygenases that depend on oxygen for activity. A subclass of molecular dioxygenases is the histone demethylase enzymes, which are characterized by the presence of a Jumanji-C (JmjC) domain. Hypoxia can alter chromatin, but whether this is a direct effect on JmjC-histone demethylases or due to other mechanisms is unknown. Here, we report that hypoxia induces a rapid and hypoxia-inducible factor–independent induction of histone methylation in a range of human cultured cells. Genomic locations of histone-3 lysine-4 trimethylation (H3K4me3) and H3K36me3 after a brief exposure of cultured cells to hypoxia predict the cell’s transcriptional response several hours later. We show that inactivation of one of the JmjC-containing enzymes, lysine demethylase 5A (KDM5A), mimics hypoxia-induced cellular responses. These results demonstrate that oxygen sensing by chromatin occurs via JmjC-histone demethylase inhibition.
Collapse
|
46
|
|
47
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
48
|
Okamura Y, Mekata T, Elshopakey GE, Itami T. Molecular characterization and gene expression analysis of hypoxia-inducible factor and its inhibitory factors in kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 79:168-174. [PMID: 29753689 DOI: 10.1016/j.fsi.2018.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
In shrimp aquaculture, overcrowded farming causes fluctuations in dissolved oxygen concentrations. Low-oxygen conditions (hypoxia) affect shrimp growth. Hypoxia-inducible factor (HIF) is a transcriptional factor in the basic helix-loop-helix/PAS family and is activated in response to hypoxic stress. However, little is known about HIF and other inhibitors of the HIF pathway in crustaceans. In this study, we cloned MjHIF-1α, an inhibitory factor, MjFIH-1 (factor inhibiting HIF-1α), and MjVHL (Von Hippel-Lindau tumor suppressor) from kuruma shrimp (Marsupenaeus japonicus). MjVHL is the first crustacean VHL ortholog to be cloned. MjHIF-1α, MjFIH-1, and MjVHL exhibit significant sequence similarity and share key functional domains with previously described vertebrate and invertebrate genes. As a result of gene expression analysis in various tissues, MjHIF-1α and MjVHL were more highly expressed in the intestine than in any other organ tissues. In hypoxia experiments, HIF-induced expression levels of MjHIF-1α in the hypoxic group increased significantly for 24 h after initiating hypoxia stimulation and expression of MjVHL decreased significantly for 6 h after hypoxia stimulation (P < 0.05).
Collapse
Affiliation(s)
- Yo Okamura
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | - Tohru Mekata
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Mie, 516-0193, Japan.
| | - Gehad Elsaid Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Toshiaki Itami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
49
|
Hu Y, Yang G, Zhang D, Liu Y, Li Y, Lin G, Guo Z, Wang S, Zhuang Z. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel) 2018; 10:toxins10070301. [PMID: 30036940 PMCID: PMC6070901 DOI: 10.3390/toxins10070301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
Aspergillus flavus produces mycotoxins especially aflatoxin B1 and infects crops worldwide. As a PHD transcription factor, there is no report on the role of Rum1 in the virulence of Aspergillus spp. yet. This study explored the biological function of Rum1 in A. flavus through the construction of rum1 deletion mutants and rum1 complementation strains with the method of homologous recombination. It was found, in the study, that Rum1 negatively regulates conidiation through abaA and brlA, positively regulates sclerotia formation through nsdC, nsdD, and sclR, triggers aflatoxin biological synthesis, and enhances the activity of amylase. Our findings suggested that Rum1 plays a major role in the growth of mycelia, conidia, and sclerotia production along with aflatoxin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Yule Hu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guang Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Danping Zhang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yaju Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Xiamen Genokon Medical Genokon Company, Xiamen 361115, China.
| | - Guanglan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiqiang Guo
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
50
|
Batie M, Del Peso L, Rocha S. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines 2018; 6:biomedicines6020047. [PMID: 29690561 PMCID: PMC6027312 DOI: 10.3390/biomedicines6020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia or reduced oxygen availability has been studied extensively for its ability to activate specific genes. Hypoxia-induced gene expression is mediated by the HIF transcription factors, but not exclusively so. Despite the extensive knowledge about how hypoxia activates genes, much less is known about how hypoxia promotes gene repression. In this review, we discuss the potential mechanisms underlying hypoxia-induced transcriptional repression responses. We highlight HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level. Lastly, we discuss recent evidence regarding the involvement of transcriptional repressor complexes in hypoxia.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| | - Luis Del Peso
- Department of Biochemistry, Institute of Biomedical Research, Autonomous Madrid University, Arturo Duperier, 4. 28029 Madrid, Spain.
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| |
Collapse
|