1
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Oliver SV, Brooke BD. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2014; 7:390. [PMID: 25150975 PMCID: PMC4161849 DOI: 10.1186/1756-3305-7-390] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles arabiensis is a major malaria vector in Africa. Adult females are likely to imbibe multiple blood meals during their lifetime. This results in regular exposure to potential toxins and blood-meal induced oxidative stress. Defence responses to these stressors may affect other factors of epidemiological significance, such as insecticide resistance and longevity. The aims of this study were to examine the effect of multiple blood-feeding on insecticide tolerance/resistance with increasing age, to assess the underlying biochemical mechanisms for the responses recorded, and to assess the effect of multiple blood-feeding on the life histories of adult females drawn from insecticide resistant and susceptible laboratory reared An. arabiensis. Methods Laboratory reared An. arabiensis females from an insecticide resistant and an insecticide susceptible colony were offered either a single blood meal or multiple blood meals at 3-day intervals. Their tolerance or resistance to insecticide was then monitored by WHO bioassay four hours post blood-feeding. The biochemical basis of the phenotypic response was assessed by examining the effect of blood on detoxification enzyme activity and the effect of blood-meals on detoxification enzyme activity in ageing mosquitoes. Results Control cohorts that were not offered any blood meals showed steadily decreasing levels of insecticide tolerance/resistance with age, whereas a single blood meal significantly increased tolerance/resistance primarily at the age of three days. The expression of resistance/tolerance in those cohorts fed multiple blood meals generally showed the least variation with age. These results were consistent following exposure to DDT and pyrethroids but not to malathion. Multiple blood-meals also maintained the DDT and permethrin resistant phenotype, even after treatment females had stopped taking blood-meals. Biochemical analysis suggests that this phenotypic effect in resistant females may be mediated by the maintenance of increased glutathione s-transferase activity as a consequence of multiple blood-feeding. Multiple blood-feeding increased the longevity of insecticide resistant females regardless of their mating status, but only increased the longevity of unmated susceptible females. Conclusion These data suggest that multiple blood-feeding confers a competitive advantage to insecticide resistant females by increased longevity and maintenance of the expression of resistance with age.
Collapse
Affiliation(s)
- Shüné V Oliver
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases/NHLS, Sandringham, Johannesburg, South Africa.
| | | |
Collapse
|
3
|
van 't Erve TJ, Wagner BA, Ryckman KK, Raife TJ, Buettner GR. The concentration of glutathione in human erythrocytes is a heritable trait. Free Radic Biol Med 2013; 65:742-749. [PMID: 23938402 PMCID: PMC3859832 DOI: 10.1016/j.freeradbiomed.2013.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/17/2022]
Abstract
Glutathione (GSH) is a ubiquitous, redox-active, small molecule that is critical to cellular and organism health. In red blood cells (RBCs), the influence of the environment (e.g., diet and lifestyle) on GSH levels has been demonstrated in numerous studies. However, it remains unknown if levels of GSH are determined principally by environmental factors or if there is a genetic component, i.e., heritability. To investigate this we conducted a twin study. Twin studies are performed by comparing the similarity in phenotypes between mono- and dizygotic twin pairs. We determined the heritability of GSH, as well as its oxidation product glutathione disulfide (GSSG), the sum of GSH equivalents (tGSH), and the status of the GSSG/2GSH couple (marker of oxidation status, Ehc) in RBCs. In our study population we found that the estimated heritability for the intracellular concentration of GSH in RBCs was 57 %; for GSSG it was 51 %, tGSH 63 %, and Ehc 70 %. We conclude that a major portion of the phenotype of these traits is controlled genetically. We anticipate that these heritabilities will also be reflected in other cell types. The discovery that genetics plays a major role in the innate levels of redox-active species in RBCs is paradigm shifting and opens new avenues of research in the field of redox biology. Inherited RBC antioxidant levels may be important disease modifiers. By identifying the relative contributions of genes and the environment to antioxidant variation between individuals, new therapeutic strategies can be developed. Understanding the genetic determinants of these inherited traits may allow personalized approaches to relevant therapies.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Interdisciplinary Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Kelli K Ryckman
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Thomas J Raife
- Department of Pathology, Carver College of Medicine, and The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Rajarapu SP, Mittapalli O. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:66-72. [DOI: 10.1016/j.cbpb.2013.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
|
5
|
Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, White T, Terpstra M. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR IN BIOMEDICINE 2011; 24:888-94. [PMID: 21834011 PMCID: PMC3118919 DOI: 10.1002/nbm.1646] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 05/14/2023]
Abstract
In this study, ascorbate (Asc) and glutathione (GSH) concentrations were quantified noninvasively using double-edited (1)H MRS at 4 T in the occipital cortex of healthy young [age (mean ± standard deviation) = 20.4 ± 1.4 years] and elderly (age = 76.6 ± 6.1 years) human subjects. Elderly subjects had a lower GSH concentration than younger subjects (p < 0.05). The Asc concentration was not significantly associated with age. Furthermore, the lactate (Lac) concentration was higher in elderly than young subjects. Lower GSH and higher Lac concentrations are indications of defective protection against oxidative damage and impaired mitochondrial respiration. The extent to which the observed concentration differences could be associated with physiological differences and methodological artifacts is discussed. In conclusion, GSH and Asc concentrations were compared noninvasively for the first time in young vs elderly subjects.
Collapse
Affiliation(s)
- Uzay E Emir
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Moustafa SA. Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats. Toxicol Appl Pharmacol 2004; 201:149-55. [PMID: 15541754 DOI: 10.1016/j.taap.2004.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
It is well documented that oxidative stress is a basic mechanism behind the development of diabetic retinopathy (DR). The current study was undertaken to elucidate the possible role of zinc as an antioxidant and a biological membrane stabilizer in the protection against (DR). Male Wistar rats weighing 250 +/- 50 g were made diabetic by injection with a single ip dose of alloxan (100 mg/kg). Another group of rats was simultaneously treated with alloxan (100 mg/kg) and a single ip dose of zinc chloride (ZnCl2) (5 mg/kg). Blood and tissue samples were collected at 24, 48, and 72 h post-treatment in both groups. Diabetic state was confirmed by the determination of plasma glucose levels (significantly elevated at any time of the experiment when compared with controls receiving vehicle). Plasma insulin was significantly increased 24 h after treatment in both alloxan and alloxan plus ZnCl2-treated groups, and then decreased markedly 48 and 72 h post treatment in both groups. Alloxan treatment depleted both retinal and liver glutathione contents. The decrease in retinal and liver GSH in alloxan-treated rats was accompanied with a sustained increase in their thiobarbituric acid (TBA) content. Simultaneous treatment of rats with alloxan and ZnCl2 blunted the sustained increment in plasma glucose induced by alloxan. The combined administration of alloxan and zinc reversed the depleting effect on retinal and hepatic GSH in alloxan-treated rats and reduced the elevations in TBA content of both retinas and livers. At variance with many other antioxidants the current results clearly indicate the beneficial effects of Zn in both controlling hyperglycemia and the protection of the retina against oxidative stress in diabetes which may help set a new direction toward the development of effective treatments of DR.
Collapse
Affiliation(s)
- Sohair A Moustafa
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
7
|
Bains JS, Shaw CA. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:335-58. [PMID: 9495562 DOI: 10.1016/s0165-0173(97)00045-3] [Citation(s) in RCA: 524] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been implicated in both normal aging and in various neurodegenerative disorders and may be a common mechanism underlying various forms of cell death including necrosis, apoptosis, and excitotoxicity. In this review, we develop the hypothesis that oxidative stress-mediated neuronal loss may be initiated by a decline in the antioxidant molecule glutathione (GSH). GSH plays multiple roles in the nervous system including free radical scavenger, redox modulator of ionotropic receptor activity, and possible neurotransmitter. GSH depletion can enhance oxidative stress and may also increase the levels of excitotoxic molecules; both types of action can initiate cell death in distinct neuronal populations. Evidence for a role of oxidative stress and diminished GSH status is presented for Lou Gehrig's disease (ALS), Parkinson's disease, and Alzheimer's disease. Potential links to the Guamanian variant of these diseases (ALS-PD complex) are discussed. In context to the above, we provide a GSH-depletion model of neurodegenerative disorders, suggest experimental verifications of this model, and propose potential therapeutic approaches for preventing or halting these diseases.
Collapse
Affiliation(s)
- J S Bains
- Department of Ophthalmology, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
8
|
Julius M, Lang CA, Gleiberman L, Harburg E, DiFranceisco W, Schork A. Glutathione and morbidity in a community-based sample of elderly. J Clin Epidemiol 1994; 47:1021-6. [PMID: 7730904 DOI: 10.1016/0895-4356(94)90117-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study examined the association of blood glutathione level, a potential marker of physiological/functional aging, with a number of biomedical/psychological traits in a subgroup (N = 33) of a representative sample of community-based elderly. Higher glutathione levels were associated with fewer number of illnesses (p < 0.05), higher levels of self-rated health (p < 0.01), lower cholesterol (p < 0.05), lower body mass index, and lower blood pressures. Subjects with diagnoses of arthritis, diabetes, or heart disease (as assessed by physicians) had at least marginally significant lower glutathione levels than those who were disease free. Glutathione, together with age and a measure of suppressed anger, accounted for 39% of the variance of an index of morbidity. Glutathione, by itself, accounted for 24% of the variance. To our knowledge, this is the first evidence of an association of higher glutathione levels with higher levels of physical health in a sample of community-based elderly. Further studies in large samples are needed to investigate glutathione as a potential overall health risk factor for morbidity among the elderly.
Collapse
Affiliation(s)
- M Julius
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Previous results indicate that aging is associated with a general deficiency of glutathione (GSH). As fasting is also known to lower hepatic GSH levels, we investigated the combined effects of aging and 24 hr of food deprivation on liver, kidney and blood GSH and cyst(e)ine levels in C57BL/6N mice of ages 6 (young), 12 (mature) and 24 (old) months. No age-related differences in baseline hepatic GSH were observed in these mice, consistent with previous findings where the deficiency in liver is not apparent until about 29 months of age. By 6 hr of fasting, an age-related reduction in hepatic GSH was evident, culminating in a 4-fold greater decrease during maturation, and a 5-fold greater decrease during aging (P < 0.001) compared to young animals. Liver weight also declined, decreasing total liver GSH content by 24% in young, 44% in mature, and 56% in old mice. Renal GSH and hepatic cyst(e)ine concentrations were unaffected by fasting. In young and mature mice, depletion of hepatic GSH was accompanied by a concomitant increase in blood GSH and kidney cyst(e)ine levels after 6 hr of fasting, suggesting enhancement of hepatic GSH efflux. However, in old animals, GSH depletion was associated with decreased blood GSH and kidney cyst(e)ine. Altogether, these results suggest that the stress of fasting reveals aging changes in hepatic GSH homeostasis occurring well before the GSH deficiency of aging is observed. These aging changes are likely due to decreased GSH turnover resulting from impaired biosynthesis.
Collapse
Affiliation(s)
- B L Vogt
- American Health Foundation, Valhalla, NY 10595
| | | |
Collapse
|
10
|
Abstract
The incidence and mortality rates from most cancers increase exponentially with age. It is likely that this aging phenomenon is partially due to specific changes that occur in the host resulting in an increased susceptibility to neoplasia. Our hypothesis is that one such host factor is a deficiency in GSH, based on the importance of this compound in the detoxification of a wide variety of exogenous and endogenous carcinogens and free radicals, as well as in the maintenance of immune function.
Collapse
Affiliation(s)
- J P Richie
- American Health Foundation, Valhalla, New York 10595
| |
Collapse
|
11
|
|