1
|
Li R, Kirkensgaard JJK, Corredig M. Structural evolution of pea-derived albumins during pH and heat treatment studied with light and X-ray scattering. Food Res Int 2024; 186:114380. [PMID: 38729734 DOI: 10.1016/j.foodres.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.
Collapse
Affiliation(s)
- Ruifen Li
- Department of Food Science & CiFood Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Jacob J K Kirkensgaard
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; Niels Bohr Institute, Universitetsparken 5, 2100 København Ø, Denmark
| | - Milena Corredig
- Department of Food Science & CiFood Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Emkani M, Moundanga S, Oliete B, Saurel R. Protein composition and nutritional aspects of pea protein fractions obtained by a modified isoelectric precipitation method using fermentation. Front Nutr 2023; 10:1284413. [PMID: 38024383 PMCID: PMC10652897 DOI: 10.3389/fnut.2023.1284413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pea albumins are promising for their nutritional, biological, and techno-functional properties. However, this fraction is usually discarded in the industry due to its low protein content compared to globulin fraction and the presence of some anti-nutritional compounds. In the present study, we used an alternative method of pea protein extraction based on alkaline solubilization/isoelectric precipitation in which the reduction of pH was achieved by lactic acid fermentation using specific starters instead of mineral acids. Hence, the main objective of this study was to examine the protein profile and the content of anti-nutritional and nutritional active compounds in pea albumin-rich fractions obtained by the isoelectric extraction method without (control) or with fermentation with different lactic acid bacteria (Streptococcus thermophilus, Lactiplantibacillus plantarum, and their co-culture). Different pea cultivars (Cartouche, Ascension, and Assas) were used here for their differences in protein profile. The results revealed a higher total nitrogen content in albumin-rich fraction for fermented samples and, in particular, for co-culture. The majority of total nitrogen was determined as non-protein (~50%), suggesting the degradation of proteins by LAB to small peptides and amino acids, which were solubilized in the soluble fraction (albumin) as confirmed by size exclusion chromatography (SEC-HPLC) analysis. Moreover, the higher antioxidant activity of fermented albumin samples was attributed to the production of small peptides during extraction. Lactic acid fermentation also resulted in a significant reduction of trypsin inhibitor activity, α-galactoside, and phytic acid content of this fraction compared to control.
Collapse
Affiliation(s)
| | | | | | - Rémi Saurel
- Univ. Bourgogne Franche-Comté, L'Institut Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
3
|
Amat T, Assifaoui A, Schmitt C, Saurel R. Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium. Crit Rev Food Sci Nutr 2023; 63:12036-12058. [PMID: 35852135 DOI: 10.1080/10408398.2022.2098247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, legumes are considered as a good source of plant-based proteins to replace animal ones. They are more favorable regarding environmental aspects and health benefits, therefore many people consider moving toward a greener diet. Interestingly, recent consumer trends are promoting pea and faba bean as alternatives to soybean. Both are rich in protein and a good source of essential nutrients and minerals (calcium). However, these advantages can be partially impaired due to their high phytic acid content. This natural polyphosphate is a major antinutrient in plant-based foods, as it can bind minerals (particularly calcium) and proteins, thereby reducing their digestibility and subsequent bioavailability. Indeed, complexes formed are insoluble and limiting the absorption of nutrients, thus lowering the nutritional value of pulses. To understand and overcome these issues, the present review will refine specific mechanisms involved in assemblies between these three essential compounds in legumes as soluble/insoluble binary or ternary complexes. Molecular interactions are influenced by the environmental medium including pH, ionic strength and molar concentrations modulating the stability of these complexes during protein extraction. Protein/phytic acid/calcium complexes stability is of high relevance for food processing affecting not only structure but also functional and nutritional properties of proteins in legume-based foods.
Collapse
Affiliation(s)
- Tiffany Amat
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Ali Assifaoui
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne 26, Switzerland
| | - Rémi Saurel
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| |
Collapse
|
4
|
Grossmann L. Structural properties of pea proteins ( Pisum sativum) for sustainable food matrices. Crit Rev Food Sci Nutr 2023; 64:8346-8366. [PMID: 37074167 DOI: 10.1080/10408398.2023.2199338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pea proteins are widely used as a food ingredient, especially in sustainable food formulations. The seed itself consists of many proteins with different structures and properties that determine their structure-forming properties in food matrices, such as emulsions, foams, and gels. This review discusses the current insights into the structuring properties of pea protein mixtures (concentrates, isolates) and the resulting individual fractions (globulins, albumins). The structural molecular features of the proteins found in pea seeds are discussed and based on this information, different structural length scales relevant to foods are reviewed. The main finding of this article is that the different pea proteins are able to form and stabilize structural components found in foods such as air-water and oil-water interfaces, gels, and anisotropic structures. Current research reveals that each individual protein fraction has unique structure-forming properties and that tailored breeding and fractionation processes will be required to optimize these properties. Especially the use of albumins, globulins, and mixed albumin-globulins proved to be useful in specific food structures such as foams, emulsions, and self-coacervation, respectively. These new research findings will transform how pea proteins are processed and being used in novel sustainable food formulations in the future.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Impact of process conditions and type of protein on conjugate formation with pectin by vacuum drying. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Archut A, Klost M, Drusch S, Kastner H. Complex coacervation of pea protein and pectin: Contribution of different protein fractions to turbidity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Archut A, Rolin C, Drusch S, Kastner H. Interaction of sugar beet pectin and pea protein: Impact of neutral sugar side chains and acetyl groups. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods 2022; 11:foods11233773. [PMID: 36496583 PMCID: PMC9793753 DOI: 10.3390/foods11233773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
The lack of adequate guidance and control of the extraction conditions as well as the gap between bench- and industrial-scale production, contributes to the poor functionality of commercial pea protein isolate (cPPI). Therefore, pea protein extraction conditions were evaluated and scaled up to maximize protein purity and yield, while maintaining structural integrity, following mild alkaline solubilization with isoelectric precipitation and salt solubilization coupled with membrane filtration. Both extraction methods resulted in high protein yield (>64%) and purity (>87%). Structure-function characterization illustrated the preserved structural integrity of PPI samples and their superior solubility, gelation, and emulsification properties compared to cPPI. Results confirmed, for the first time, that double solubilization at mild pH (7.5) can replace single solubilization at high alkalinity and achieve a similar yield while preserving structural integrity. Additionally, this study demonstrated, the scalability of the benchtop salt extraction coupled with ultrafiltration/diafiltration. Scaling up the production eliminated some structural and functional differences between the salt-extracted PPI and pH-extracted PPI. Scaling-up under mild and controlled conditions resulted in partial denaturation and a low degree of polymerization, coupled with the superior functionality of the produced isolates compared to cPPI. Results of this work can be used as a benchmark to guide the industrial production of functional pea protein ingredients.
Collapse
|
9
|
Influence of the fractionation method on the protein composition and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Liu N, Song Z, Jin W, Yang Y, Sun S, Zhang Y, Zhang S, Liu S, Ren F, Wang P. Pea albumin extracted from pea (Pisum sativum L.) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Zhang S, Jin W, Zhang W, Ren F, Wang P, Liu N. Pea Albumin Attenuates Dextran Sulfate Sodium-Induced Colitis by Regulating NF-κB Signaling and the Intestinal Microbiota in Mice. Nutrients 2022; 14:3611. [PMID: 36079868 PMCID: PMC9460122 DOI: 10.3390/nu14173611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease remains a global burden with rapidly increasing incidence and prevalence in both industrialized countries and developing countries. In this study, we prepared pea albumin from pea seeds and determined its beneficial effects being anti-inflammatory and on gut microbiota modulation in dextran sulfate sodium (DSS)-challenged mice. METHOD Six-week-old C57BL/6N male mice received an equivalent volume (200 μL) of sterile phosphate balanced solution, 0.375, 0.75, or 1.50 g/kg body weight (BW) of pea albumin that was subjected to 2.0% DSS for 7 days to induce colitis. On day 17 of the experiment, all mice were sacrificed after blood sample collection, and colon tissue and colon contents were collected. BW change curve, colon length, myeloperoxidase (MPO) activity, mucus staining, immunofluorescence staining of T cells and macrophages, cytokines, pro-inflammatory genes expression, nuclear factor-κB (NF-κB) and signal transducer, and activator of transcription 3 (STAT3) signaling pathways as well as 16S DNA sequence were measured. RESULTS Our results show that pea albumin alleviates DSS-induced BW loss, colon length shortening, enhanced MPO activity, cytokines secretion, mucus deficiency, and inflammatory cell infiltration, as well as enhanced pro-inflammatory genes expression. In addition, the overactivation of NF-κB and STAT3 following DSS exposure is attenuated by pea albumin administration. Of particular interest, pea albumin oral administration restored gut microbiota dysbiosis as evidenced by enhanced α-diversity, restored β-diversity, and promoted relative abundance of Lactobacillus and Lachnospiraceae_NK4A136_group. CONCLUSION Taken together, the data provided herein demonstrated that pea albumin plays a protective role in DSS-induced colitis by reducing inflammatory cell infiltration, pro-inflammatory genes expression and pro-inflammatory cytokines release, inactivation of NF-κB signal, and gut microbiota modulation.
Collapse
Affiliation(s)
- Shucheng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhua Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Weibo Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Shen Y, Hong S, Li Y. Pea protein composition, functionality, modification, and food applications: A review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:71-127. [PMID: 35940709 DOI: 10.1016/bs.afnr.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
13
|
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, Pampoulie C, Bradbury I, Jakobsen KS, Jentoft S. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol 2022; 6:469-481. [PMID: 35177802 PMCID: PMC8986531 DOI: 10.1038/s41559-022-01661-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations. Here we investigate the origin and maintenance of these four supergenes through analysis of whole-genome-sequencing data, including a new long-read-based genome assembly for a non-migratory Atlantic cod individual. We corroborate the finding that chromosomal inversions underlie all four supergenes, and we show that they originated at different times between 0.40 and 1.66 million years ago. We reveal gene flux between supergene haplotypes where migratory and stationary Atlantic cod co-occur and conclude that this gene flux is driven by gene conversion, on the basis of an increase in GC content in exchanged sites. Additionally, we find evidence for double crossover between supergene haplotypes, leading to the exchange of an ~275 kilobase fragment with genes potentially involved in adaptation to low salinity in the Baltic Sea. Our results suggest that supergenes can be maintained over long timescales in the same way as hybridizing species, through the selective purging of introduced genetic variation. Atlantic cod carries four supergenes linked to migratory lifestyle and environmental adaptations. Using whole-genome sequencing, the authors show that the genome inversions that underlie the supergenes originated at different times and show gene flux between supergene haplotypes.
Collapse
Affiliation(s)
- Michael Matschiner
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway. .,Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland. .,Natural History Museum, University of Oslo, Oslo, Norway.
| | - Julia Maria Isis Barth
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Ole Kristian Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Helle Tessand Baalsrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marine Servane Ono Brieuc
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ian Bradbury
- Fisheries and Oceans Canada, St John's, Newfoundland and Labrador, Canada
| | - Kjetill Sigurd Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Möller AC, Li J, van der Goot AJ, van der Padt A. A water-only process to fractionate yellow peas into its constituents. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Molecular Interactions of Pea Globulin, Albumin and Glutelin With Curcumin: Formation and Gastric Release Mechanisms of Curcumin-loaded Bio-nanocomplexes. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Taylor SL, Marsh JT, Koppelman SJ, Kabourek JL, Johnson PE, Baumert JL. A perspective on pea allergy and pea allergens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Robinson GHJ, Domoney C. Perspectives on the genetic improvement of health- and nutrition-related traits in pea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:353-362. [PMID: 33250319 PMCID: PMC7801860 DOI: 10.1016/j.plaphy.2020.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 05/27/2023]
Abstract
Pea (Pisum sativum L.) is a widely grown pulse crop that is a source of protein, starch and micronutrients in both human diets and livestock feeds. There is currently a strong global focus on making agriculture and food production systems more sustainable, and pea has one of the smallest carbon footprints of all crops. Multiple genetic loci have been identified that influence pea seed protein content, but protein composition is also important nutritionally. Studies have previously identified gene families encoding individual seed protein classes, now documented in a reference pea genome assembly. Much is also known about loci affecting starch metabolism in pea, with research especially focusing on improving concentrations of resistant starch, which has a positive effect on maintaining blood glucose homeostasis. Diversity in natural germplasm for micronutrient concentrations and mineral hyperaccumulation mutants have been discovered, with quantitative trait loci on multiple linkage groups identified for seed micronutrient concentrations. Antinutrients, which affect nutrient bioavailability, must also be considered; mutants in which the concentrations of important antinutrients including phytate and trypsin inhibitors are reduced have already been discovered. Current knowledge on the genetics of nutritional traits in pea will greatly assist with crop improvement for specific end uses, and further identification of genes involved will help advance our knowledge of the control of the synthesis of seed compounds.
Collapse
Affiliation(s)
- Gabriel H J Robinson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
18
|
Ducrocq M, Boire A, Anton M, Micard V, Morel MH. Rubisco: A promising plant protein to enrich wheat-based food without impairing dough viscoelasticity and protein polymerisation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Berrazaga I, Bourlieu-Lacanal C, Laleg K, Jardin J, Briard-Bion V, Dupont D, Walrand S, Micard V. Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins. PLoS One 2020; 15:e0232425. [PMID: 32365065 PMCID: PMC7197814 DOI: 10.1371/journal.pone.0232425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this work was to evaluate the impact of incorporating different legume flours (faba bean, lentil or split pea flours) on the pasta protein network and its repercussion on in vitro protein digestibility, in comparison with reference dairy proteins. Kinetics and yields of protein hydrolysis in legume enriched pasta and, for the first time, the peptidomes generated by the pasta at the end of the in vitro gastric and intestinal phases of digestion are presented. Three isoproteic (21%) legume enriched pasta with balanced essential amino acids, were made from wheat semolina and 62% to 79% of legume flours (faba bean or F-pasta; lentil or L-pasta and split pea or P-pasta). Pasta were prepared following the conventional pastification steps (hydration, mixing, extrusion, drying, cooking). Amino acid composition and protein network structure of the pasta were determined along with their culinary and rheological properties and residual trypsin inhibitor activity (3-5% of the activity initially present in raw legume flour). F- and L-pasta had contrasted firmness and proportion of covalently linked proteins. F-pasta had a generally weaker protein network and matrix structure, however far from the weakly linked soluble milk proteins (SMP) and casein proteins, which in addition contained no antitrypsin inhibitors and more theoretical cleavage sites for digestive enzymes. The differences in protein network reticulation between the different pasta and between pasta and dairy proteins were in agreement in each kinetic phase with the yield of the in vitro protein hydrolysis, which reached 84% for SMP, and 66% for casein at the end of intestinal phase, versus 50% for L- and P-pasta and 58% for F-pasta. The peptidome of legume enriched pasta is described for the first time and compared with the peptidome of dairy proteins for each phase of digestion. The gastric and intestinal phases were important stages of peptide differentiation between legumes and wheat. However, peptidome analysis revealed no difference in wheat-derived peptides in the three pasta diets regardless of the digestion phase, indicating that there was a low covalent interaction between wheat gluten and legume proteins.
Collapse
Affiliation(s)
- Insaf Berrazaga
- IATE Agropolymers Engineering and Emerging Technologies, Université Montpellier, CIRAD INRA, Montpellier SupAgro, Montpellier, France
- UNH, Unité de Nutrition Humaine, CRNH, Université Clermont Auvergne, INRA, Auvergne, Clermont-Ferrand, France
| | - Claire Bourlieu-Lacanal
- IATE Agropolymers Engineering and Emerging Technologies, Université Montpellier, CIRAD INRA, Montpellier SupAgro, Montpellier, France
| | - Karima Laleg
- IATE Agropolymers Engineering and Emerging Technologies, Université Montpellier, CIRAD INRA, Montpellier SupAgro, Montpellier, France
- UNH, Unité de Nutrition Humaine, CRNH, Université Clermont Auvergne, INRA, Auvergne, Clermont-Ferrand, France
| | - Julien Jardin
- UMR 1253 STLO Science et Technologie du Lait et de l'Œuf, Agrocampus Ouest, INRA, Rennes, France
| | - Valérie Briard-Bion
- UMR 1253 STLO Science et Technologie du Lait et de l'Œuf, Agrocampus Ouest, INRA, Rennes, France
| | - Didier Dupont
- UMR 1253 STLO Science et Technologie du Lait et de l'Œuf, Agrocampus Ouest, INRA, Rennes, France
| | - Stéphane Walrand
- UNH, Unité de Nutrition Humaine, CRNH, Université Clermont Auvergne, INRA, Auvergne, Clermont-Ferrand, France
- Service de Nutrition Clinique, Centre Hospitalier Universitaire (CHU) Gabriel Montpied, Clermont-Ferrand, France
| | - Valérie Micard
- IATE Agropolymers Engineering and Emerging Technologies, Université Montpellier, CIRAD INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
20
|
Popp J, Trendelenburg V, Niggemann B, Randow S, Völker E, Vogel L, Reuter A, Spiric J, Schiller D, Beyer K, Holzhauser T. Pea (Pisum sativum) allergy in children: Pis s 1 is an immunodominant major pea allergen and presents IgE binding sites with potential diagnostic value. Clin Exp Allergy 2020; 50:625-635. [PMID: 32078204 DOI: 10.1111/cea.13590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/07/2020] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Food allergy to pea (Pisum sativum) has been rarely studied in children at the clinical and molecular levels. OBJECTIVE To elucidate the allergenic relevance and diagnostic value of pea 7S globulin Pis s 1, nsLTP, and 2S albumins PA1 and PA2 in children. METHODS Children with pea-specific IgE ≥ 0.35 kUA /L and clinical evidence of pea allergy or tolerance were included in the study. IgE binding against pea total protein extract, recombinant (r) rPis s 1, rPA1, rPA2, and natural nsLTP was analysed using IgE immunoblot/inhibition. Mediator release potency was investigated in passively sensitized rat basophil leukaemia (RBL) 2H3-cells. IgE binding to synthetic overlapping peptides of Pis s 1 was detected on multipeptide microarrays. RESULTS 19 pea-sensitized children were included, 14 with doctors' diagnosed allergy and 5 with tolerance to pea (median age 3.5 and 4.5 years, respectively). 11/14 (78%) pea-allergic and 1/5 (20%) tolerant children were sensitized to Pis s 1. Under the reducing conditions of immunoblot analysis, IgE binding to rPA1 was negligible, sensitization to rPA2 and nsLTP undetectable. Compared to pea total protein extract, rPis s 1 displayed on average 58% IgE binding capacity and a 20-fold higher mediator release potency. Selected Pis s 1-related peptides displayed IgE binding in pea-allergic but not in pea-tolerant children. CONCLUSIONS AND CLINICAL RELEVANCE In this study group, Pis s 1 is a major immunodominant allergen in pea-allergic children. Evidence for sensitization to nsLTP and 2S albumins was low but requires further verification with regard to conformational epitopes. Recombinant Pis s 1 and related peptides which were exclusively recognized by pea-allergic children may improve in vitro diagnosis of pea allergy once verified in prospective studies with larger study groups.
Collapse
Affiliation(s)
- Jasmin Popp
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Valérie Trendelenburg
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bodo Niggemann
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Randow
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Elke Völker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jelena Spiric
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Dirk Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Kirsten Beyer
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
21
|
Chudzik-Kozłowska J, Wasilewska E, Złotkowska D. Evaluation of Immunoreactivity of Pea ( Pisum sativum) Albumins in BALB/c and C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3891-3902. [PMID: 32178513 DOI: 10.1021/acs.jafc.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green pea (Pisum sativum) is a component of European cuisine; however, an estimated 0.8% of Europeans suffer from allergies to pea proteins. We examined the immunoreactive potential of pea albumins (PA) in BALB/c and C57BL/6 mice. Mice were orally gavaged with PA or glycated pea albumins (G-PA) for 10 consecutive days, in combination with an adjuvant. Both PA and G-PA increased PA-specific serum antibody titers to about 212 for anti-PA IgG, ∼27 for anti-PA IgA, and ∼27.8 for anti-PA IgA in fecal extracts (p < 0.001). On day 42 postexposure, the antibodies titers decreased and were greater in BALB/c compared to C57BL/6 mice (p < 0.05). Distribution of CD4+ and CD8+ T cells in lymphoid tissues presented strain-specific differences. PA was found to induce lymphocyte proliferation; however, G-PA did not. Both PA and G-PA changed CD4+ and CD8+ T cells percentages in some lymphoid tissues; however, this did not impact cytokines production by splenocyte cultures evidenced by the stimulation of Th1, Th2, and Th17 cells. The observed immunomodulatory properties of PA and G-PA and lack of a sign of allergic reaction render them suitable for supplements in personalized diets, but further research is needed to precisely understand this activity.
Collapse
Affiliation(s)
- Justyna Chudzik-Kozłowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| |
Collapse
|
22
|
Yang S, Li X, Hua Y, Chen Y, Kong X, Zhang C. Selective Complex Coacervation of Pea Whey Proteins with Chitosan To Purify Main 2S Albumins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1698-1706. [PMID: 31986048 DOI: 10.1021/acs.jafc.9b06311] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins of pea whey were separated by 1-D electrophoresis and 2-D electrophoresis and identified by MALDI-TOF/TOF-MS. In addition to lectin, pea albumin 2 (PA2) and pea albumin 1a (PA1a) were identified as the main 2S albumins. The complex behavior of pea whey proteins with chitosan as a function of pH and protein to polysaccharide ratio was studied by turbidimetric titration, zeta potential, and Tricine-SDS-PAGE. During pH titration, the zeta potential reveals that at maximum turbidity (pHmax), charge neutrality was fulfilled. The maximal protein recovery was obtained at a mass ratio of 1:1. After coacervation with chitosan, lectin was not involved in the formation of complexes and PA2 transferred into complex preferentially as compared to PA1a. The weak binding affinity and high hydrophilicity of PA1a made it selectively dissolve out from the PA2/PA1a complex at acidic pH conditions. After removal of chitosan and small molar weight peptides, high-purity PA2 and PA1a (>90% by SEC-HPLC) could be obtained. This work provides a novel strategy for the purification of proteins from a multiprotein pea whey system.
Collapse
Affiliation(s)
- Shunuan Yang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi 214122 , China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| |
Collapse
|
23
|
Sharma SC, Kumar A, Vashisht S, Salunke DM. High resolution structural and functional analysis of a hemopexin motif protein from Dolichos. Sci Rep 2019; 9:19828. [PMID: 31882615 PMCID: PMC6934871 DOI: 10.1038/s41598-019-56257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
It is increasingly evident that seed proteins exhibit specific functions in plant physiology. However, many proteins remain yet to be functionally characterized. We have screened the seed proteome of Dolichos which lead to identification and purification of a protein, DC25. The protein was monomeric and highly thermostable in extreme conditions of pH and salt. It was crystallized and structure determined at 1.28 Å resolution using x-ray crystallography. The high-resolution structure of the protein revealed a four-bladed β-propeller hemopexin-type fold containing pseudo four-fold molecular symmetry at the central channel. While the structure exhibited homology with 2S albumins, variations in the loops connecting the outermost strands and the differences in surface-charge distribution may be relevant for distinct functions. Comparative study of the protein with other seed hemopexins revealed the presence of four conserved water molecules in between the blades which cross-link them and maintain the tertiary structure. The protein exhibited intrinsic peroxidase activity, which could be inhibited by binding of a heme analog. The identification of redox-sensitive cysteine and inhibition of peroxidase activity by iodoacetamide facilitated characterization of the possible active site. The determined peroxidase activity of DC25 may be responsible for rescuing germinating seeds from oxidative stress.
Collapse
Affiliation(s)
- Sarita Chandan Sharma
- 0000 0004 1774 5631grid.502122.6Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001 India ,0000 0001 0571 5193grid.411639.8Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka 576104 India
| | - Ashish Kumar
- 0000 0004 1774 5631grid.502122.6Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001 India
| | - Sharad Vashisht
- 0000 0004 1774 5631grid.502122.6Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001 India
| | - Dinakar M. Salunke
- 0000 0004 0498 7682grid.425195.eInternational Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| |
Collapse
|
24
|
Yang P, Li Z, Wu C, Luo Y, Li J, Wang P, Gao X, Gao J, Feng B. Identification of Differentially Expressed Genes Involved in the Molecular Mechanism of Pericarp Elongation and Differences in Sucrose and Starch Accumulation between Vegetable and Grain Pea ( Pisum sativum L.). Int J Mol Sci 2019; 20:E6135. [PMID: 31817460 PMCID: PMC6941006 DOI: 10.3390/ijms20246135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Pea (Pisum sativum L.), as a major source of plant protein, is becoming one of the major cultivated crop species worldwide. In pea, the pericarp is an important determinant of the morphological characteristics and seed yield. To investigate the molecular mechanism of pericarp elongation as well as sucrose and starch accumulation in the pods of different pea cultivars, we performed transcriptomic analysis of the pericarp of two types of pea cultivar (vegetable pea and grain pea) using RNA-seq. A total of 239.44 Gb of clean sequence data were generated, and were aligned to the reference genome of Pisum sativum L. In the two samples, 1935 differentially expressed genes (DEGs) were identified. Among these DEGs, three antioxidant enzyme superoxide dismutase (SOD) were detected to have higher expression levels in the grain pea pericarps at the pod-elongating stages. Otherwise, five peroxidase (POD)-encoding genes were detected to have lower expression levels in the vegetative pericarps at the development stage of pea pod growth. Furthermore, genes related to starch and sucrose metabolism in the pea pod, such as SUS, INV, FBA, TPI, ADPase, SBE, SSS, and GBSS, were found to be differentially expressed. The RNA-seq data were validated through real-time quantitative RT-PCR of 13 randomly selected genes. Our findings provide the gene expression profile of, as well as differential expression information on, the two pea cultivars, which will lay the foundation for further studies on pod development and nutrition accumulation in the pea and provide valuable information for pea cultivar improvement.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Zhonghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Caoyang Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Y.); (Z.L.); (C.W.); (Y.L.); (J.L.); (P.W.); (X.G.); (J.G.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
25
|
Robinson GHJ, Balk J, Domoney C. Improving pulse crops as a source of protein, starch and micronutrients. NUTR BULL 2019; 44:202-215. [PMID: 31598097 PMCID: PMC6772023 DOI: 10.1111/nbu.12399] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement.
Collapse
Affiliation(s)
- G. H. J. Robinson
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - J. Balk
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| | - C. Domoney
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
26
|
Djemaoune Y, Cases E, Saurel R. The Effect of High-Pressure Microfluidization Treatment on the Foaming Properties of Pea Albumin Aggregates. J Food Sci 2019; 84:2242-2249. [PMID: 31329282 DOI: 10.1111/1750-3841.14734] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
The effect of dynamic high-pressure treatment, also named microfluidization, on the surface properties of thermal pea albumin aggregates (AA) and their foaming ability was investigated at pH 3, 5, and 7. The solubility of albumin particles was not affected by the increase in microfluidization pressure from 70 to 130 MPa. Particle charge depended only on the pH, whereas protein surface hydrophobicity was stable at pH 5, decreased at pH 3, but increased at pH 7 after microfluidization treatment and with the applied pressure. Surface tension of AA measured at air/water interface was favorably affected by the microfluidization treatment at each pH preferentially due to size reduction and increased flexibility of protein particles. The foaming capacity and stability of AA depended on the pH conditions and the microfluidization treatment. The high-pressure treatment had little influence in foaming properties at acidic pHs, probably related to a more compact form of AA at these pHs. At neutral pH, the foaming properties of pea AA were strongly influenced by their surface properties and size associated with significant modifications in AA structure with microfluidization. Changes in albumin aggregate characteristics with pH and microfluidization pressure are also expected to modulate other techno-functional properties, such as emulsifying property. PRACTICAL APPLICATION: Albumins are known for their interesting nutritional values because they are rich in essential amino acids. This fraction is not currently marketed as a protein isolate for human consumption, but can be considered as a potential new vegetable protein ingredient. This document demonstrated that heat treatment or dynamic high-pressure technology can control the foaming properties of this protein for possible use in expanded foods.
Collapse
Affiliation(s)
- Yanis Djemaoune
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
- Centre de Recherche-Développement de l'Intendance (DCI/MDN), Algiers, 16000, Algeria
| | - Eliane Cases
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Rémi Saurel
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| |
Collapse
|
27
|
Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Ma Z, Boye JI, Hu X. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Res Int 2017; 92:64-78. [PMID: 28290299 DOI: 10.1016/j.foodres.2016.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/18/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022]
Abstract
Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (To), peak (Tp), and conclusion (Tc) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities.
Collapse
Affiliation(s)
- Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Joyce I Boye
- Food Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd West, St. Hyacinthe, Quebec J2S 8E3, Canada
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
29
|
Ye Q, Biviano M, Mettu S, Zhou M, Dagastine R, Ashokkumar M. Modification of pea protein isolate for ultrasonic encapsulation of functional liquids. RSC Adv 2016. [DOI: 10.1039/c6ra17585f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study reports on the ultrasonic processing of pea protein isolate (PPI) in phosphate-buffered saline (PBS, pH 7.4) and Tris/HCl (pH 8) buffer systems in order to modify its properties for use in the encapsulation of functional liquids.
Collapse
Affiliation(s)
- Qianyu Ye
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Matthew Biviano
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | - Srinivas Mettu
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | - Meifang Zhou
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Raymond Dagastine
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | | |
Collapse
|
30
|
Djoullah A, Djemaoune Y, Husson F, Saurel R. Native-state pea albumin and globulin behavior upon transglutaminase treatment. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Rubio LA, Pérez A, Ruiz R, Guzmán MÁ, Aranda-Olmedo I, Clemente A. Characterization of pea (Pisum sativum) seed protein fractions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:280-7. [PMID: 23744804 DOI: 10.1002/jsfa.6250] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. RESULTS Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ± 0.04, 0.88 ± 0.04 and 0.41 ± 0.23 for legumins, vicilins and albumins respectively. CONCLUSION Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins.
Collapse
Affiliation(s)
- Luis A Rubio
- Physiology and Biochemistry of Animal Nutrition (EEZ, CSIC), Profesor Albareda 1, E-18008, Granada, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Scarafoni A, Gualtieri E, Barbiroli A, Carpen A, Negri A, Duranti M. Biochemical and functional characterization of an albumin protein belonging to the hemopexin superfamily from Lens culinaris seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9637-9644. [PMID: 21819123 DOI: 10.1021/jf202026d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present paper reports the purification and biochemical characterization of an albumin identified in mature lentil seeds with high sequence similarity to pea PA2. These proteins are found in many edible seeds and are considered potentially detrimental for human health due to the potential allergenicity and lectin-like activity. Thus, the description of their possible presence in food and the assessment of the molecular properties are relevant. The M(r), pI, and N-terminal sequence of this protein have been determined. The work included the study of (i) the binding properties to hemine to assess the presence of hemopexin structural domains and (ii) the binding properties of the protein to thiamin. In addition, the structural changes induced by heating have been evaluated by means of spectroscopic techniques. Denaturation temperature has also been determined. The present work provides new insights about the structural molecular features and the ligand-binding properties and dynamics of this kind of seed albumin.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Department of AgriFood Molecular Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Gaur V, Chanana V, Jain A, Salunke DM. The structure of a haemopexin-fold protein from cow pea (Vigna unguiculata) suggests functional diversity of haemopexins in plants. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:193-200. [PMID: 21301085 PMCID: PMC3034607 DOI: 10.1107/s1744309110051250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/06/2010] [Indexed: 11/10/2022]
Abstract
The haemopexin fold is present in almost all life forms and is utilized for carrying out diverse physiological functions. The structure of CP4, a haemopexin-fold protein from cow pea (Vigna unguiculata), was determined at 2.1 Å resolution. The protein exists as a monomer both in solution and in the crystal. The structure revealed a typical four-bladed β-propeller topology. The protein exhibits 42% sequence similarity to LS-24 from Lathyrus sativus, with substantial differences in the surface-charge distribution and in the oligomeric state. A structure-based sequence analysis of haemopexin-fold proteins of plant and mammalian origin established a sequence signature associated with the haemopexin motif. This signature sequence enabled the identification of other proteins with possible haemopexin-like topology of both plant and animal origin. Although CP4 shares a structural fold with LS-24 and other haemopexins, biochemical studies indicated possible functional differences between CP4 and LS-24. While both of these proteins exhibit spermine-binding potential, CP4 does not bind to haem, unlike LS-24.
Collapse
Affiliation(s)
- Vineet Gaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Veenu Chanana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Abha Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Dinakar M. Salunke
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
- Regional Centre for Biotechnology, 180 Udyog Vihar Phase I, Gurgaon 122 016, India
| |
Collapse
|
34
|
Gaur V, Qureshi IA, Singh A, Chanana V, Salunke DM. Crystal structure and functional insights of hemopexin fold protein from grass pea. PLANT PHYSIOLOGY 2010; 152:1842-50. [PMID: 20147493 PMCID: PMC2850029 DOI: 10.1104/pp.109.150680] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/08/2010] [Indexed: 05/15/2023]
Abstract
A regulatory protein from grass pea (Lathyrus sativus), LS-24, a close homolog of albumin 2 from garden pea (Pisum sativum) that is associated with polyamine biosynthesis, was characterized and the structure of a hemopexin-type fold among plant proteins illustrated. Crystal structure of LS-24 determined at 2.2 A resolution by multiple isomorphous replacement phasing showed four-bladed beta-propeller structure having a pseudo 4-fold molecular symmetry along a metal ion-binding central channel. The structure represents typical mammalian hemopexin fold with discernible features correlated with the possible functional variations. The protein was found to exist in the dimeric state. While LS-24 dimer binds to spermine in the crystal structure as well as in solution, binding of heme in solution resulted in the dissociation of the dimer into monomers with concomitant release of bound spermine. Interactions of heme and spermine with LS-24 bear physiological implications. While binding of spermine to LS-24 can be linked with polyamine biosynthesis that of heme correlates with oxidative stress. Mutually exclusive binding of heme and spermine in different oligomeric states suggest a role for LS-24 in sensing oxidative stress through a ligand-regulated monomer-dimer transition switch.
Collapse
Affiliation(s)
| | | | | | | | - Dinakar M. Salunke
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
35
|
|
36
|
PEDROCHE JUSTO, YUST MARIAM, MEGIAS CRISTINA, LQARI HASSANE, GIRON-CALLE JULIO, ALAIZ MANUEL, MILLAN FRANCISCO, VIOQUE JAVIER. BINDING TO CHICKPEA (CICER ARIETINUM L.) PA2 ALBUMIN ENHANCES HEMIN-DEPENDENT OXIDATIVE REACTIONS. J Food Biochem 2006. [DOI: 10.1111/j.1745-4514.2006.00070.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Vermeirssen V, van der Bent A, Van Camp J, van Amerongen A, Verstraete W. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 2004; 86:231-9. [PMID: 15134838 DOI: 10.1016/j.biochi.2004.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/20/2004] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
Angiotensin I converting enzyme (ACE) inhibitory peptides can induce antihypertensive effects after oral administration. By means of an ACE inhibitory peptide database, containing about 500 reported sequences and their IC(50) values, the different proteins in pea and whey were quantitatively evaluated as precursors for ACE inhibitory peptides. This analysis was combined with experimental data from the evolution in ACE inhibitory activity and protein degradation during in vitro gastrointestinal digestion. Pea proteins produced similar in silico scores and were degraded early in the in vitro digestion. High ACE inhibitory activity was observed after the simulated stomach phase and augmented slightly in the simulated small intestine phase. The major whey protein beta-lactoglobulin obtained the highest in silico scores, which corresponded with the fact that degradation of this protein in vitro only occurred from the simulated small intestine phase on and resulted in a 10-fold increase in the ACE inhibitory activity. Whey protein obtained total in silico scores of about 124 ml/mg, compared to 46 ml/mg for pea protein, indicating that whey protein would be a richer source of ACE inhibitory peptides than pea protein. Although beta-lactoglobulin is only partially digested, a higher ACE inhibitory activity was indeed found in the whey (IC(50) = 0.048 mg/ml) compared to the pea digest (IC(50) = 0.076 mg/ml). In silico gastrointestinal digestion of the highest scoring proteins in pea and whey, vicilin and albumin PA2, and beta-lactoglobulin, respectively, directly released a number of potent ACE inhibitory peptides. Several other ACE inhibitory sequences resisted in silico digestion by gastrointestinal proteases. Briefly, the quantitative in silico analysis will facilitate the study of precursor proteins on a large scale and the specific release of bioactive peptides.
Collapse
Affiliation(s)
- Vanessa Vermeirssen
- Laboratory of Microbial Ecology and Technology, and Department of Food Technology and Nutrition, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
38
|
Abstract
Dry beans are an important source of proteins, carbohydrates, dietary fiber, and certain minerals and vitamins in the human food supply. Among dry beans, Phaseolus beans are cultivated and consumed in the greatest quantity on a worldwide basis. Typically, most dry beans contain 15 to 25% protein on a dry weight basis (dwb). Water-soluble albumins and salt-soluble globulins, respectively, account for up to 10 to 30% and 45 to 70% of the total proteins (dwb). Dry bean albumins are typically composed of several different proteins, including lectins and enzyme inhibitors. A single 7S globulin dominates dry bean salt soluble fraction (globulins) and may account for up to 50 to 55% of the total proteins in the dry beans (dwb). Most dry bean proteins are deficient in sulfur amino acids, methionine, and cysteine, and therefore are of lower nutritional quality when compared with the animal proteins. Despite this limitation, dry beans make a significant contribution to the human dietary protein intake. In bean-based foods, dry bean proteins also serve additional functions that may include surface activity, hydration, and hydration-related properties, structure, and certain organoleptic properties. This article is intended to provide an overview of dry bean protein functionality with emphases on nutritional quality and hydration-related properties.
Collapse
Affiliation(s)
- S K Sathe
- Department of Nutrition, Food and Excercise Science, Florida State University, Tallahassee 32306-1493, USA
| |
Collapse
|
39
|
The Biochemistry and Cell Biology of Embryo Storage Proteins. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Affiliation(s)
- R K Bush
- William S. Middleton V.A. Hospital, Madison, Wisconsin, USA
| | | |
Collapse
|
41
|
Nong VH, Schlesier B, Bassüner R, Repik A, Horstmann C, Müntz K. Narbonin, a novel 2S protein from Vicia narbonensis L. seeds: cDNA, gene structure and developmentally regulated formation. PLANT MOLECULAR BIOLOGY 1995; 28:61-72. [PMID: 7787188 DOI: 10.1007/bf00042038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
cDNA and genomic clones encoding narbonin, a 2S globulin from the seed of narbon bean (Vicia narbonensis L.), were obtained using the polymerase chain reaction (PCR) and sequenced. The full-length cDNA as well as genomic clones contain a single open reading frame (ORF) of 873 bp that encodes a protein with 291 amino acids comprising the mature narbonin polypeptide (M(r) ca. 33 100) and an initiation methionine. The deduced amino acid sequence lacks a transient N-terminal signal peptide. The genomic clones do not contain any intron. No homology was found to nucleic acid and protein sequences so far registered in sequence data libraries. The biosynthesis of narbonin during embryogenesis is developmentally-regulated and its pattern of synthesis closely resembles that of typical seed storage globulins. However, during seed germination narbonin was degraded very slowly, indicating that it may have other function than storage protein. Southern analysis suggests the existence of a small narbonin gene family. Narbonin genes were also found in four different species of the genus Vicia as well as in other legumes such as Canavalia ensiformis and Glycine max. In Escherichia coli a recombinant narbonin was produced which yielded crystals like those prepared from narbonin purified from seeds.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Fabaceae/genetics
- Fabaceae/growth & development
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genome, Plant
- Globulins/genetics
- Globulins/isolation & purification
- Globulins/metabolism
- Molecular Sequence Data
- Plant Proteins, Dietary/genetics
- Plant Proteins, Dietary/isolation & purification
- Plant Proteins, Dietary/metabolism
- Plants, Medicinal
- Polymerase Chain Reaction
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Seeds/chemistry
- Seeds/genetics
- Seeds/growth & development
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- V H Nong
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Raina A, Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc Natl Acad Sci U S A 1992; 89:11774-8. [PMID: 1465397 PMCID: PMC50639 DOI: 10.1073/pnas.89.24.11774] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An albumin with a well-balanced amino acid composition and high levels of the essential amino acids was purified to homogeneity from the mature seeds of Amaranthus hypochondriacus. The amino acid composition of this protein is comparable to the World Health Organization recommended values for a highly nutritional protein. The protein is a 35-kDa monomer with four isoforms that can be separated by chromatofocusing. Antibodies raised against one of the isoforms, AmA1, cross-reacted with the other three isoforms. Affinity-purified AmA1 antibodies were used to isolate cDNA clones from a developing-seed expression library. The six immunopositive recombinants obtained were found to be related. The cDNA of the largest clone (1.2 kilobases) has a single major open reading frame corresponding to a 304-amino acid polypeptide. The clone was confirmed by hybrid-selected translation and immunoprecipitation. The size of the immunoprecipitated product was identical to the mature protein. Analysis of RNA and protein in developing seeds showed that AmA1 is synthesized during early embryogenesis, reaching a maximum by midmaturation. No RNA was detected in 1-day-old seedlings although the protein showed delayed breakdown on germination. Expression of the AmA1 gene was found to be seed-specific, as no protein or RNA was detected in other plant tissues.
Collapse
Affiliation(s)
- A Raina
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
43
|
Immunological investigations on distribution of the S2 albumin in the Leguminosae (Papilionoideae). BIOCHEM SYST ECOL 1992. [DOI: 10.1016/0305-1978(92)90021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Determination of basic components in white wines by HPLC, FT-IR spectroscopy, and electrophoretic techniques. J Food Compost Anal 1992. [DOI: 10.1016/0889-1575(92)90042-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Lord EM, Sanders LC. Roles for the extracellular matrix in plant development and pollination: a special case of cell movement in plants. Dev Biol 1992; 153:16-28. [PMID: 1516746 DOI: 10.1016/0012-1606(92)90088-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pattern formation in plants is now thought to be primarily dependent on positional information during development. We discuss the prevalent theories on how position is deciphered by cells in an organism and highlight the recent advances implicating molecules of the cell wall or extracellular matrix (ECM) in this process. We compare the functions of the ECM in plants and animals and describe the various cell and substrate adhesion molecules of the animal ECM which play a role in morphogenesis and cell movement. We propose that analogous molecules may occur in plants and provide evidence for the presence of a substrate adhesion molecule like vitronectin in plants and algae. We provide a model for how substrate adhesion molecules may be involved in a special case of cell movement in plants, pollination.
Collapse
Affiliation(s)
- E M Lord
- Department of Botany and Plant Sciences, University of California, Riverside 92521
| | | |
Collapse
|
46
|
Abstract
Vitronectin (complement S-protein), a plasma and tissue glycoprotein of 75 kDa, shares the amino-terminal somatomedin B domain with the membrane glycoprotein PC1 of plasma cells and several hemopexin-type repeats with hemopexin and the non-catalytic carboxy-terminal domain of collagenases. It serves as a ligand for certain integrin receptors, binds to distinct members of the serpin family and inhibits the pore-forming cytolytic reaction of the terminal complement pathway. Computer-assisted data base searches revealed the presence of a single somatomedin B domain in the recently cloned placental protein 11, and four hemopexin-type repeats in the cytosolic plant protein PA2, the major albumin of pea seeds, whose function is unknown. Our finding shows that hemopexin-type repeats are present in extracellular as well as in cytosolic proteins and most likely originated before the divergence of the animal and plant kindoms.
Collapse
Affiliation(s)
- D Jenne
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
47
|
Decherf-Hamey S, Mimouni B, Raymond J, Azanza JL. Partial characterization of polypeptide components of sunflower (Helianthus annuus L.) seed albumin fraction. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/food.19900340425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Ros G, Rincón F. Indices of quality and maturity for different commercial sizes of pea seed for canning. Food Chem 1990. [DOI: 10.1016/0308-8146(90)90201-e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Barratt DH, Domoney C, Wang TL. Purification and partial characterisation of two abscisic-acid-responsive proteins induced in cultured embryos ofPisum sativum L. PLANTA 1989; 180:16-23. [PMID: 24201839 DOI: 10.1007/bf02411405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/1989] [Accepted: 07/20/1989] [Indexed: 06/02/2023]
Abstract
When pea (Pisum sativum L.) embryos were cultured on low osmotica, with or without added abscisic acid (ABA), there was very little change in the total mRNA translation products resolved by one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The only marked alteration was an increase in production of two low-molecular-weight proteins. The purification and partial characterisation of these two ABA-responsive seed proteins (ABR17 and ABR18) is described. Both proteins were purified to homoeneity, as judged by SDS-PAGE, from embryos cultured in the presence of ABA. Antisera were raised against both proteins. Each serum cross-reacted with the other protein, indicating that the proteins are closely related. Their apparent molecular masses (Mrs) were estimated to be 17200 (ABR17) and 18100 (ABR18) by SDS-PAGE, and 26000 by gel filtration. Both proteins were heterogeneous on isoelectric focusing. Neither protein was detected (by immunoblotting or immunoprecipitation of cell-free translation products) in embryos grown in vivo at early to mid-development stages but both were present in embryos late in development. These proteins appear to be produced late in seed development but are capable of being induced early in development by culturing embryos in vitro and are markedly enhanced by ABA.
Collapse
Affiliation(s)
- D H Barratt
- Department of Agricultural Sciences, University of Bristol, AFRC Institute of Arable Crops Research, Long Ashton Research Station, BS18 9AF, Bristol, UK
| | | | | |
Collapse
|
50
|
Rao R, Costa A, Croy RRD, Boulter D, Gatehouse JA. Variation in polypeptides of the major albumin protein of pea (Pisum sativum L.) : Inheritance and molecular analysis. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf00261188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|