1
|
Chaves RP, Dos Santos AKB, Andrade AL, Pinheiro ADA, Silva JMDS, da Silva FMS, de Sousa JP, Barroso Neto IL, Bezerra EHS, Abreu JO, de Carvalho FCT, de Sousa OV, de Sousa BL, da Rocha BAM, Silva ALC, do Nascimento Neto LG, de Vasconcelos MA, Teixeira EH, Carneiro RF, Sampaio AH, Nagano CS. Structural study and antimicrobial and wound healing effects of lectin from Solieria filiformis (Kützing) P.W.Gabrielson. Biochimie 2023; 214:61-76. [PMID: 37301421 DOI: 10.1016/j.biochi.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The SfL-1 isoform from the marine red algae Solieria filiformis was produced in recombinant form (rSfL-1) and showed hemagglutinating activity and inhibition similar to native SfL. The analysis of circular dichroism revealed the predominance of β-strands structures with spectra of βI-proteins for both lectins, which had Melting Temperature (Tm) between 41 °C and 53 °C. The three-dimensional structure of the rSfL-1 was determined by X-ray crystallography, revealing that it is composed of two β-barrel domains formed by five antiparallel β chains linked by a short peptide between the β-barrels. SfL and rSfL-1 were able to agglutinate strains of Escherichia coli and Staphylococcus aureus and did not show antibacterial activity. However, SfL induced a reduction in E. coli biomass at concentrations from 250 to 125 μg mL-1, whereas rSfL-1 induced reduction in all concentrations tested. Additionally, rSfL-1 at concentrations from 250 to 62.5 μg mL-1, showed a statistically significant reduction in the number of colony-forming units, which was not noticed for SfL. Wound healing assay showed that the treatments with SfL and rSfL-1 act in reducing the inflammatory response and in the activation and proliferation of fibroblasts by a larger and fast deposition of collagen.
Collapse
Affiliation(s)
- Renata Pinheiro Chaves
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | | | - Alexandre Lopes Andrade
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Campus do Porangabuçu, Fortaleza, Ceará, Brazil
| | - Aryane de Azevedo Pinheiro
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Campus do Porangabuçu, Fortaleza, Ceará, Brazil; Curso de Medicina, Centro Universitário INTA, UNINTA, Itapipoca, CE, Brazil
| | | | | | - Jucilene Pereira de Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Ito Liberato Barroso Neto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil; Curso de Medicina, Centro Universitário Unichristus, Fortaleza, Ceará, Brazil
| | - Eduardo Henrique Salviano Bezerra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil; Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Cidade Universitária, Campinas, São Paulo, Brazil
| | - Jade Oliveira Abreu
- Instituto de Ciências do Mar - Labomar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Oscarina Viana de Sousa
- Instituto de Ciências do Mar - Labomar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bruno Lopes de Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Limoeiro do Norte, CE, Brazil
| | - Bruno Anderson Matias da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - André Luis Coelho Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga do Nascimento Neto
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Campus do Porangabuçu, Fortaleza, Ceará, Brazil; Curso de Licenciatura em Ciências Biológicas, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Acaraú, Acaraú, CE, Brazil
| | - Mayron Alves de Vasconcelos
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Campus do Porangabuçu, Fortaleza, Ceará, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinopolis, Divinopolis, MG, Brazil
| | - Edson Holanda Teixeira
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Campus do Porangabuçu, Fortaleza, Ceará, Brazil
| | - Rômulo Farias Carneiro
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Priyadarsani Mandhata C, Ranjan Sahoo C, Nath Padhy R. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00040-7. [PMID: 37244763 DOI: 10.1016/j.joim.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 05/29/2023]
Abstract
Acquired immune deficiency syndrome (AIDS) is a worldwide epidemic caused by human immunodeficiency virus (HIV) infection. Newer medicines for eliminating the viral reservoir and eradicating the virus are urgently needed. Attempts to locate relatively safe and non-toxic medications from natural resources are ongoing now. Natural-product-based antiviral candidates have been exploited to a limited extent. However, antiviral research is inadequate to counteract for the resistant patterns. Plant-derived bioactive compounds hold promise as powerful pharmacophore scaffolds, which have shown anti-HIV potential. This review focuses on a consideration of the virus, various possible HIV-controlling methods and the recent progress in alternative natural compounds with anti-HIV activity, with a particular emphasis on recent results from natural sources of anti-HIV agents. Please cite this article as: Mandhata CP, Sahoo CR, Padhy RN. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
3
|
Erickson MA, Logsdon AF, Rhea EM, Hansen KM, Holden SJ, Banks WA, Smith JL, German C, Farr SA, Morley JE, Weaver RR, Hirsch AJ, Kovac A, Kontsekova E, Baumann KK, Omer MA, Raber J. Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 variants of concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer's disease. Brain Behav Immun 2023; 109:251-268. [PMID: 36682515 PMCID: PMC9867649 DOI: 10.1016/j.bbi.2023.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Aric F Logsdon
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth M Rhea
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kim M Hansen
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Sarah J Holden
- Department of Behavioral Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - William A Banks
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Jessica L Smith
- The Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA; Division of Pathobiology and Immunology Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Cody German
- The Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA; Division of Pathobiology and Immunology Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Susan A Farr
- Saint Louis Veterans Affairs Medical Center, Research Service, St. Louis, MO, USA; Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Riley R Weaver
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Alec J Hirsch
- The Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA; Division of Pathobiology and Immunology Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Kontsekova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Kristen K Baumann
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Mohamed A Omer
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jacob Raber
- Department of Behavioral Neurosciences, Oregon Health and Science University, Portland, OR, USA; Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience, Departments of Neurology and Radiation Medicine, Oregon National Primate Research Center, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
4
|
Zhao J, Song E, Huang Y, Yu A, Mechref Y. Variability in the Glycosylation Patterns of gp120 Proteins from Different Human Immunodeficiency Virus Type 1 Isolates Expressed in Different Host Cells. J Proteome Res 2021; 20:4862-4874. [PMID: 34448591 DOI: 10.1021/acs.jproteome.1c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mature HIV-1 envelope (Env) glycoprotein is composed of gp120, the exterior subunit, and gp41, the transmembrane subunit assembled as trimer by noncovalent interaction. There is a great body of literature to prove that gp120 binds to CD4 first, then to the coreceptor. Binding experiments and functional assays have demonstrated that CD4 binding induces conformational changes in gp120 that enable or enhance its interaction with a coreceptor. Previous studies provided different glycomic maps for the HIV-1 gp120. Here, we build on previous work to report that the use of LC-MS/MS, in conjunction with hydrophilic interaction liquid chromatography (HILIC) enrichment to glycosylation sites, associated with the assorted neutralizing or binding events of glycosylation targeted antibodies from different clades or strains. In this study, the microheterogeneity of the glycosylation from 4 different clades of gp120s is deeply investigated. Aberrant glycosylation patterns were detected on gp120 that originated from different clades, viral sequences, and host cells. The results of this study may help provide a better understanding of the mechanism of how the glycans participate in the antibody neutralizing process that targets glycosylation sites.
Collapse
Affiliation(s)
- Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
5
|
Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan Mimicry in HIV Vaccine Design. J Mol Biol 2019; 431:2223-2247. [PMID: 31028779 PMCID: PMC6556556 DOI: 10.1016/j.jmb.2019.04.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023]
Abstract
Antigenic mimicry is a fundamental tenet of structure-based vaccinology. Vaccine strategies for the human immunodeficiency virus type 1 (HIV-1) focus on the mimicry of its envelope spike (Env) due to its exposed location on the viral membrane and role in mediating infection. However, the virus has evolved to minimize the immunogenicity of conserved epitopes on the envelope spike. This principle is starkly illustrated by the presence of an extensive array of host-derived glycans, which act to shield the underlying protein from antibody recognition. Despite these hurdles, a subset of HIV-infected individuals eventually develop broadly neutralizing antibodies that recognize these virally presented glycans. Effective HIV-1 immunogens are therefore likely to involve some degree of mimicry of both the protein and glycan components of Env. As such, considerable efforts have been made to characterize the structure of the envelope spike and its glycan shield. This review summarizes the recent progress made in this field, with an emphasis on our growing understanding of the factors shaping the glycan shield of Env derived from both virus and soluble immunogens. We argue that recombinant mimics of the envelope spike are currently capable of capturing many features of the native viral glycan shield. Finally, we explore strategies through which the immunogenicity of Env glycans may be enhanced in the development of future immunogens.
Collapse
Affiliation(s)
- Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Thakur K, Kaur T, Kaur M, Hora R, Singh J. Exploration of carbohydrate binding behavior and anti-proliferative activities of Arisaema tortuosum lectin. BMC Mol Biol 2019; 20:15. [PMID: 31064325 PMCID: PMC6505227 DOI: 10.1186/s12867-019-0132-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lectins have come a long way from being identified as proteins that agglutinate cells to promising therapeutic agents in modern medicine. Through their specific binding property, they have proven to be anti-cancer, anti-insect, anti-viral agents without affecting the non-target cells. The Arisaema tortuosum lectin (ATL) is a known anti-insect and anti-cancer candidate, also has interesting physical properties. In the present work, its carbohydrate binding behavior is investigated in detail, along with its anti-proliferative property. RESULTS The microcalorimetry of ATL with a complex glycoprotein asialofetuin demonstrated trivalency contributed by multiple binding sites and enthalpically driven spontaneous association. The complex sugar specificity of ATL towards multiple sugars was also demonstrated in glycan array analysis in which the trimannosyl pentasaccharide core N-glycan [Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ] was the highest binding motif. The high binding glycans for ATL were high mannans, complex N-glycans, core fucosylated N-glycans and glycans with terminal lactosamine units attached to pentasaccharide core. ATL induced cell death in IMR-32 cells was observed as time dependent loss in cell number, formation of apoptotic bodies and DNA damage. As a first report of molecular cloning of ATL, the in silico analysis of its cDNA revealed ATL to be a β-sheet rich heterotetramer. A homology model of ATL showed beta prism architecture in each monomer with 85% residues in favoured region of Ramachandran plot. CONCLUSIONS Detailed exploration of carbohydrate binding behavior indicated ATL specificity towards complex glycans, while no binding to simple sugars, including mannose. Sequence analysis of ATL cDNA revealed that during the tandem evolutionary events, domain duplication and mutations lead to the loss of mannose specificity, acquiring of new sugar specificity towards complex sugars. It also resulted in the formation of a two-domain single chain polypeptide with both domains having different binding sites due to mutations within the consensus carbohydrate recognition sites [QXDXNXVXY]. This unique sugar specificity can account for its significant biological properties. Overall finding of present work signifies anti-cancer, anti-insect and anti-viral potential of ATL making it an interesting molecule for future research and/or theragnostic applications.
Collapse
Affiliation(s)
- Kshema Thakur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
- Present Address: Department of Biochemistry, Dr. Y.S.P. Govt. Medical College, Distt. Sirmaur, Nahan, H.P 173001 India
| | - Tarnjeet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rachna Hora
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
7
|
Dey S, Bajaj SO, Tsai TI, Lo HJ, Wu K, Wong CH. Synthesis of Modular Building Blocks using Glycosyl Phosphate Donors for the Construction of Asymmetric N-Glycans. Tetrahedron 2018; 74:6003-6011. [PMID: 30983640 PMCID: PMC6456066 DOI: 10.1016/j.tet.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosyl phosphates are known as versatile donors for the synthesis of complex oligosaccharides both chemically and enzymatically. Herein, we report the stereoselective construction of modular building blocks for the synthesis of N-glycan using glycosyl phosphates as donors. We have synthesized four trisaccharide building blocks with orthogonal protecting groups, namely, Manβ2GlcNAc(OAc)3β6GlcNAc (9), Manβ2GlcNAc-β6GlcNAc(OAc)3 (15), Manβ2GlcNAc(OAc)3β4GlcNAc (18) and Manβ2GlcNAcβ4GlcNAc(OAc) (22) for further selective elongation using glycosyltransferases. The glycosylation reaction using glycosyl phosphate was found to be high yielding with shorter reaction time. Initially, The phthalimide protected glucosamine donor was exploited to ensure the formation of β-glycosidic linkage and later converted to the N-acetyl group before the enzymatic synthesis. The selective deprotection of O-benzyl group was performed prior to enzymatic synthesis to avoid its negative interference.
Collapse
Affiliation(s)
- Supriya Dey
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Sumit O Bajaj
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- Corden Pharma Colorado Inc., 2075 55 Street, Boulder, CO, USA, 80301
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Hong-Jay Lo
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Kevin Wu
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- The Genomics Research Center, Academia Sinica, No. 128, Academia Rd., Section 2, Nankang District, Taipei, 115, Taiwan
| |
Collapse
|
8
|
Byrne G, O’Rourke SM, Alexander DL, Yu B, Doran RC, Wright M, Chen Q, Azadi P, Berman PW. CRISPR/Cas9 gene editing for the creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation. PLoS Biol 2018; 16:e2005817. [PMID: 30157178 PMCID: PMC6133382 DOI: 10.1371/journal.pbio.2005817] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/11/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023] Open
Abstract
Over the last decade, multiple broadly neutralizing monoclonal antibodies (bN-mAbs) to the HIV-1 envelope protein (Env) gp120 have been described. Many of these recognize epitopes consisting of both amino acid and glycan residues. Moreover, the glycans required for binding of these bN-mAbs are early intermediates in the N-linked glycosylation pathway. This type of glycosylation substantially alters the mass and net charge of Envs compared to molecules with the same amino acid sequence but possessing mature, complex (sialic acid-containing) carbohydrates. Since cell lines suitable for biopharmaceutical production that limit N-linked glycosylation to mannose-5 (Man5) or earlier intermediates are not readily available, the production of vaccine immunogens displaying these glycan-dependent epitopes has been challenging. Here, we report the development of a stable suspension-adapted Chinese hamster ovary (CHO) cell line that limits glycosylation to Man5 and earlier intermediates. This cell line was created using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system and contains a mutation that inactivates the gene encoding Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1). Monomeric gp120s produced in the MGAT1- CHO cell line exhibit improved binding to prototypic glycan-dependent bN-mAbs directed to the V1/V2 domain (e.g., PG9) and the V3 stem (e.g., PGT128 and 10-1074) while preserving the structure of the important glycan-independent epitopes (e.g., VRC01). The ability of the MGAT1- CHO cell line to limit glycosylation to early intermediates in the N-linked glycosylation pathway without impairing the doubling time or ability to grow at high cell densities suggests that it will be a useful substrate for the biopharmaceutical production of HIV-1 vaccine immunogens.
Collapse
Affiliation(s)
- Gabriel Byrne
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David L. Alexander
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Yu
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Rachel C. Doran
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Qiushi Chen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
9
|
Affiliation(s)
- David J. Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
10
|
Mazalovska M, Kouokam JC. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3750646. [PMID: 29854749 PMCID: PMC5964492 DOI: 10.1155/2018/3750646] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus-acquired immunodeficiency syndrome (HIV/AIDS) remains a global health problem. Current therapeutics specifically target the viral pathogen at various stages of its life cycle, although complex interactions between HIV and other pathogenic organisms are evident. Targeting HIV and concomitant infectious pathogens simultaneously, both by therapeutic regimens and in prevention strategies, would help contain the AIDS pandemic. Lectins, a ubiquitous group of proteins that specifically bind glycosylated molecules, are interesting compounds that could be used for this purpose, with demonstrated anti-HIV properties. In addition, potential coinfecting pathogens, including other enveloped viruses, bacteria, yeasts and fungi, and protozoa, display sugar-coated macromolecules on their surfaces, making them potential targets of lectins. This review summarizes the currently available findings suggesting that lectins should be further developed to simultaneously fight the AIDS pandemic and concomitant infections in HIV infected individuals.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Abstract
Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.
Collapse
Affiliation(s)
- Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; ,
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, International AIDS Vaccine Initiative Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, USA; , .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
12
|
GalNAc-Specific Soybean Lectin Inhibits HIV Infection of Macrophages through Induction of Antiviral Factors. J Virol 2018; 92:JVI.01720-17. [PMID: 29263266 DOI: 10.1128/jvi.01720-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/14/2017] [Indexed: 01/31/2023] Open
Abstract
Although it has been shown that some mannose-binding lectins (MBLs) exhibit significant activity against HIV infection, little is known about whether N-acetylgalactosamine (GalNAc)-binding lectins have the ability to inhibit HIV infection. Here, we demonstrate that a soybean-derived lectin (SBL) with GalNAc-binding affinity could potently suppress HIV infection of macrophages in a dose-dependent fashion. Unlike the MBLs, which block HIV only through binding to the glycosylated envelope proteins (gp120 and gp41) of the virus, SBL inhibited HIV at multiple steps of the virus infection/replication cycle. SBL could activate the beta interferon (IFN-β)-STAT signaling pathway, resulting in the upregulation of a number of antiviral interferon-stimulated genes (ISGs) in macrophages. In addition, SBL treatment of macrophages induced the production of C-C chemokines, which bind to HIV entry coreceptor CCR5. Deglycosylation of cell surface galactosyl moieties or presaturation of GalNAc-binding capacity could compromise SBL-mediated induction of the antiviral factors. Furthermore, SBL exerted its anti-HIV activity in the low nanomolar range with no mitogenic effect on CD4+ T cells, a major advantage in the development of SBL as a potential anti-HIV agent compared with MBLs. These data indicate a necessity to further investigate SBL as an alternative and cost-effective anti-HIV natural product.IMPORTANCE Mannose-binding lectins (MBLs) can block the attachment of HIV to target cells and have been suggested as anti-HIV microbicides. However, the mitogenic effect of MBLs on CD4+ T cells limits this potential in clinical settings. Lectins with galactose (Gal)- or N-acetylgalactosamine (GalNAc)-binding specificity are another important category of carbohydrate-binding proteins (CBP). Compared to high-mannose N-linked glycans, GalNAc-type glycans present much less in HIV gp120 or gp41 glycosylation. Here, we demonstrate that GalNAc-specific soybean lectin (SBL) triggers antiviral signaling via recognition of the cell surface galactosyl group of macrophages, which results in the suppression of HIV at multiple steps. More importantly, SBL has no mitogenic effect on the activation of CD4+ T cells, a major advantage in the development of Gal/GalNAc-specific lectins as naturopathic anti-HIV agents.
Collapse
|
13
|
S. Coulibaly F, N. Thomas D, C. Youan BB. Anti-HIV lectins and current delivery strategies. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Thakur K, Kaur T, Singh J, Rabbani G, Khan RH, Hora R, Kaur M. Sauromatum guttatum lectin: Spectral studies, lectin-carbohydrate interaction, molecular cloning and in silico analysis. Int J Biol Macromol 2017; 104:1267-1279. [DOI: 10.1016/j.ijbiomac.2017.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
|
15
|
Coulibaly FS, Ezoulin MJM, Purohit SS, Ayon NJ, Oyler NA, Youan BBC. Layer-by-Layer Engineered Microbicide Drug Delivery System Targeting HIV-1 gp120: Physicochemical and Biological Properties. Mol Pharm 2017; 14:3512-3527. [PMID: 28830144 DOI: 10.1021/acs.molpharmaceut.7b00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to engineer a model anti-HIV microbicide (tenofovir) drug delivery system targeting HIV-1 envelope glycoprotein gp120 (HIV-1 g120) for the prevention of HIV sexual transmission. HIV-1 g120 and mannose responsive particles (MRP) were prepared through the layer-by-layer coating of calcium carbonate (CaCO3) with concanavalin A (Con A) and glycogen. MRP average particle size ranged from 881.7 ± 15.45 nm to 1130 ± 15.72 nm, depending on the number of Con A layers. Tenofovir encapsulation efficiency in CaCO3 was 74.4% with drug loading of 16.3% (w/w). MRP was non-cytotoxic to Lactobacillus crispatus, human vaginal keratinocytes (VK2), and murine macrophage RAW 264.7 cells and did not induce any significant proinflammatory nitric oxide release. Overall, compared to control, no statistically significant increase in proinflammatory cytokine IL-1α, IL-1β, IL-6, MKC, IL-7, and interferon-γ-inducible protein 10 (IP10) levels was observed. Drug release profiles in the presence of methyl α-d-mannopyranoside and recombinant HIV-1 envelope glycoprotein gp120 followed Hixson-Crowell and Hopfenberg kinetic models, indicative of a surface-eroding system. The one Con A layer containing system was found to be the most sensitive (∼2-fold increase in drug release vs control SFS:VFS) at the lowest HIV gp120 concentration tested (25 μg/mL). Percent mucoadhesion, tested ex vivo on porcine vaginal tissue, ranged from 10% to 21%, depending on the number of Con A layers in the formulation. Collectively, these data suggested that the proposed HIV-1 g120 targeting, using MRP, potentially represent a safe and effective template for vaginal microbicide drug delivery, if future preclinical studies are conclusive.
Collapse
Affiliation(s)
- Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Miezan J M Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Sudhaunshu S Purohit
- Department of Chemistry, University of Missouri-Kansas City , 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City , 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| |
Collapse
|
16
|
Mitchell DA, Zhang Q, Voorhaar L, Haddleton DM, Herath S, Gleinich AS, Randeva HS, Crispin M, Lehnert H, Wallis R, Patterson S, Becer CR. Manipulation of cytokine secretion in human dendritic cells using glycopolymers with picomolar affinity for DC-SIGN. Chem Sci 2017; 8:6974-6980. [PMID: 29147524 PMCID: PMC5642150 DOI: 10.1039/c7sc01515a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/11/2017] [Indexed: 12/25/2022] Open
Abstract
The human C-type lectin DC-SIGN (CD209) is a significant receptor on the surface of dendritic cells (DCs) - crucial components of host defense that bridge the innate and adaptive immune systems. A range of linear glycopolymers, constructed via controlled radical polymerization techniques have been shown to interact with DC-SIGN with affinities in the physiologically active range. However, these first generation glycopolymers possess limited structural definition and their effects on DCs were not known. Here we report the development of star-shaped mannose glycopolymers with the aim of targeting the clustered domain arrangement of DC-SIGN and these were shown to bind with picomolar affinity. Increased secretion of IL-10 with simultaneous decrease in secreted IL-12p70 occurred in activated DCs incubated with star-shaped glycopolymers - a cytokine secretion pattern characteristic of wound-healing tissue environments. Incorporating stellar architecture into glycopolymer design could be key to developing selective and very high-affinity therapeutic materials with distinct immunomodulatory and tissue repair potential.
Collapse
Affiliation(s)
- Daniel A Mitchell
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom . .,University Hospital Coventry , Warwickshire NHS Trust , Coventry CV2 2DX , United Kingdom
| | - Qiang Zhang
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Lenny Voorhaar
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - David M Haddleton
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Shan Herath
- Chelsea & Westminster Hospital , Imperial College School of Medicine , London SW10 9NH , United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom .
| | - Harpal S Randeva
- Clinical Sciences Research Laboratories , University of Warwick , Coventry CV2 2DX , United Kingdom . .,University Hospital Coventry , Warwickshire NHS Trust , Coventry CV2 2DX , United Kingdom
| | - Max Crispin
- Glycobiology Institute , University of Oxford , Oxford OX1 3QU , United Kingdom
| | | | - Russell Wallis
- Department of Biochemistry , University of Leicester , Leicester LE1 9HN , United Kingdom
| | - Steven Patterson
- Chelsea & Westminster Hospital , Imperial College School of Medicine , London SW10 9NH , United Kingdom
| | - C Remzi Becer
- School of Engineering and Materials Science , Queen Mary University , London E1 4NS , United Kingdom .
| |
Collapse
|
17
|
Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. J Virol 2017; 91:JVI.02428-16. [PMID: 28202756 DOI: 10.1128/jvi.02428-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/02/2017] [Indexed: 02/02/2023] Open
Abstract
HIV-1 envelope glycoprotein (Env) glycosylation is important because individual glycans are components of multiple broadly neutralizing antibody epitopes, while shielding other sites that might otherwise be immunogenic. The glycosylation on Env is influenced by a variety of factors, including the genotype of the protein, the cell line used for its expression, and the details of the construct design. Here, we used a mass spectrometry (MS)-based approach to map the complete glycosylation profile at every site in multiple HIV-1 Env trimers, accomplishing two goals. (i) We determined which glycosylation sites contain conserved glycan profiles across many trimeric Envs. (ii) We identified the variables that impact Env's glycosylation profile at sites with divergent glycosylation. Over half of the gp120 glycosylation sites on 11 different trimeric Envs have a conserved glycan profile, indicating that a native consensus glycosylation profile does indeed exist among trimers. We showed that some soluble gp120s and gp140s exhibit highly divergent glycosylation profiles compared to trimeric Env. We also assessed the impact of several variables on Env glycosylation: truncating the full-length Env; producing Env, instead of the more virologically relevant T lymphocytes, in CHO cells; and purifying Env with different chromatographic platforms, including nickel-nitrilotriacetic acid (Ni-NTA), 2G12, and PGT151 affinity. This report provides the first consensus glycosylation profile of Env trimers, which should serve as a useful benchmark for HIV-1 vaccine developers. This report also defines the sites where glycosylation may be impacted when Env trimers are truncated or produced in CHO cells.IMPORTANCE A protective HIV-1 vaccine will likely include a recombinant version of the viral envelope glycoprotein (Env). Env is highly glycosylated, and yet vaccine developers have lacked guidance on how to assess whether their immunogens have optimal glycosylation. The following important questions are still unanswered. (i) What is the "target" glycosylation profile, when the goal is to generate a natively glycosylated protein? (ii) What variables exert the greatest influence on Env glycosylation? We identified numerous sites on Env where the glycosylation profile does not deviate in 11 different Env trimers, and we investigated the impact on the divergent glycosylation profiles of changing the genotype of the Env sequence, the construct design, the purification method, and the producer cell type. The data presented here give vaccine developers a "glycosylation target" for their immunogens, and they show how protein production variables can impact Env glycosylation.
Collapse
|
18
|
HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. J Virol 2016; 90:11132-11144. [PMID: 27707925 PMCID: PMC5126371 DOI: 10.1128/jvi.01542-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV envelope glycoprotein (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing, resulting in numerous underprocessed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also acts as a target for anti-HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and numbers of potential N-linked glycosylation sites (PNGSs). Here, using longitudinal Env sequences from a clade C-infected individual (CAP256), we measured the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS number and positioning, we show that the intrinsic mannose patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of the glycan density on the processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for anti-HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies. IMPORTANCE Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs) is likely to be a key component of a successful vaccine response. The HIV envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated anti-HIV bnAbs and is therefore under constant pressure from the host immune system, leading to changes in both glycan site frequency and location. This study aimed to determine whether these genetic changes impacted the eventual processing of glycans on the HIV Env and the susceptibility of the virus to neutralization. We show that despite this variation in glycan site positioning and frequency over the course of HIV infection, the mannose patch is a conserved feature throughout, making it a stable target for HIV vaccine design.
Collapse
|
19
|
Panico M, Bouché L, Binet D, O’Connor MJ, Rahman D, Pang PC, Canis K, North SJ, Desrosiers RC, Chertova E, Keele BF, Bess JW, Lifson JD, Haslam SM, Dell A, Morris HR. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci Rep 2016; 6:32956. [PMID: 27604319 PMCID: PMC5015092 DOI: 10.1038/srep32956] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.
Collapse
Affiliation(s)
- Maria Panico
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Laura Bouché
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Michael-John O’Connor
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| | - Dinah Rahman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Kevin Canis
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Simon J. North
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Howard R. Morris
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey, JE2 7LA, UK
| |
Collapse
|
20
|
Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. Eur J Med Chem 2015; 106:34-43. [DOI: 10.1016/j.ejmech.2015.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
|
21
|
Doores KJ. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J 2015; 282:4679-91. [PMID: 26411545 PMCID: PMC4950053 DOI: 10.1111/febs.13530] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
Abstract
The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.
Collapse
Affiliation(s)
- Katie J Doores
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, UK
| |
Collapse
|
22
|
Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope. J Virol 2015; 89:8932-44. [PMID: 26085151 DOI: 10.1128/jvi.01190-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gp120/gp41 HIV-1 envelope glycoprotein (Env) is highly glycosylated, with up to 50% of its mass consisting of N-linked glycans. This dense carbohydrate coat has emerged as a promising vaccine target, with its glycans acting as epitopes for a number of potent and broadly neutralizing antibodies (bnAbs). Characterizing the glycan structures present on native HIV-1 Env is thus a critical goal for the design of Env immunogens. In this study, we used a complementary, multistep approach involving ion mobility mass spectrometry and high-performance liquid chromatography to comprehensively characterize the glycan structures present on HIV-1 gp120 produced in peripheral blood mononuclear cells (PBMCs). The capacity of different expression systems, including pseudoviral particles and recombinant cell surface trimers, to reproduce native-like glycosylation was then assessed. A population of oligomannose glycans on gp120 was reproduced across all expression systems, supporting this as an intrinsic property of Env that can be targeted for vaccine design. In contrast, Env produced in HEK 293T cells failed to accurately reproduce the highly processed complex-type glycan structures observed on PBMC-derived gp120, and in particular the precise linkage of sialic acid residues that cap these glycans. Finally, we show that unlike for gp120, the glycans decorating gp41 are mostly complex-type sugars, consistent with the glycan specificity of bnAbs that target this region. These findings provide insights into the glycosylation of native and recombinant HIV-1 Env and can be used to inform strategies for immunogen design and preparation. IMPORTANCE Development of an HIV vaccine is desperately needed to control new infections, and elicitation of HIV bnAbs will likely be an important component of an effective vaccine. Increasingly, HIV bnAbs are being identified that bind to the N-linked glycans coating the HIV envelope glycoproteins gp120 and gp41, highlighting them as important targets for vaccine design. It is therefore important to characterize the glycan structures present on native, virion-associated gp120 and gp41 for development of vaccines that accurately mimic native-Env glycosylation. In this study, we used a number of analytical techniques to precisely study the structures of both the oligomannose and complex-type glycans present on native Env to provide a reference for determining the ability of potential HIV immunogens to accurately replicate the glycosylation pattern on these native structures.
Collapse
|
23
|
Férir G, Gordts SC, Schols D. HIV-1 and its resistance to peptidic carbohydrate-binding agents (CBAs): an overview. Molecules 2014; 19:21085-112. [PMID: 25517345 PMCID: PMC6270665 DOI: 10.3390/molecules191221085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/16/2022] Open
Abstract
The glycoproteins on the surfaces of enveloped viruses, such as HIV, can be considered as a unique target for antiviral therapy. Different carbohydrate-binding agents (CBAs) target specific glycans present on viral glycoproteins of enveloped viruses. It has been shown that long-term CBA pressure in vitro can result in mutant HIV-1 isolates with several N-linked glycan deletions on gp120. These studies demonstrated that mainly high-mannose type glycans are deleted. However, interestingly, N241, N262 and N356 on gp120 have never been found to be affected after prolonged CBA exposure. Here, we review the mutation and (cross)-resistance profiles of eleven specific generated CBA-resistant HIV-1 strains. We observed that the broad-neutralizing anti-carbohydrate binding mAb 2G12 became completely inactive against all the generated CBA-resistant HIV-1 clade B isolates. In addition, all of the CBAs discussed in this review, with the exception of NICTABA, interfered with the binding of 2G12 mAb to gp120 expressed on HIV-1-infected T cells. The cross-resistance profiles of mutant HIV-1 strains are varying from increased susceptibility to very high resistance levels, even among different classes of CBAs with dissimilar sugar specificities or binding moieties [e.g., α(1,3), α(1,2), α(1,6)]. Recent studies demonstrated promising results in non-topical formulations (e.g., intranasally or subcutaneously), highlighting their potential for prevention (microbicides) and antiviral therapy.
Collapse
Affiliation(s)
- Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10. Leuven B-3000, Belgium.
| |
Collapse
|
24
|
Horiya S, MacPherson IS, Krauss IJ. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 2014; 10:990-9. [PMID: 25393493 PMCID: PMC4431543 DOI: 10.1038/nchembio.1685] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly neutralizing antibodies (bnAbs), some of which neutralize up to 90% of HIV strains. These antibodies bind conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided exciting clues about the design of potentially effective vaccines. Carbohydrates have a key role in this field, as a large fraction of bnAbs bind carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Iain S MacPherson
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
25
|
Bailey JJ, Bundle DR. Synthesis of high-mannose 1-thio glycans and their conjugation to protein. Org Biomol Chem 2014; 12:2193-213. [PMID: 24549150 DOI: 10.1039/c3ob42194e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oligosaccharides Man4 and Man5, substructures of the high-mannose glycans of HIV glycoprotein gp120, were synthesized with a terminal 1-thiomannopyranose residue. The anomeric thiol can be readily converted to an azidomethyl aglycone through reaction with dichloromethane and displacement with sodium azide. The resulting oligomannans were then conjugated to ubiquitin utilizing thiol alkylation or azide/alkyne reactive tethers of minimal length. By combining high efficiency conjugation reactions and a short tether, we sought to establish conjugation conditions that would permit high density clustering of oligomannans in conjugate vaccines that could produce antibodies able to bind gp120 and potentially neutralize virus. LC-UV-MS was used to separate, identify and quantify the ubiquitin glycoconjugates with differing degrees of oligomannan incorporation. Binding of the HIV protective monoclonal antibody 2G12 and concanavalin A to microtitre plates coated with glycoconjugates was measured by ELISA.
Collapse
Affiliation(s)
- Justin J Bailey
- Alberta Glycomics Centre and the Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | |
Collapse
|
26
|
Pereira PR, Winter HC, Verícimo MA, Meagher JL, Stuckey JA, Goldstein IJ, Paschoalin VMF, Silva JT. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:20-30. [PMID: 25448725 DOI: 10.1016/j.bbapap.2014.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Abstract
The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response.
Collapse
Affiliation(s)
- Patrícia R Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil.
| | - Harry C Winter
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mauricio A Verícimo
- Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro 4020141, Brazil.
| | - Jennifer L Meagher
- Center for Structural Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jeanne A Stuckey
- Center for Structural Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Irwin J Goldstein
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vânia M F Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil.
| | - Joab T Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
27
|
Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith PD, Mestecky J, Novak J. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014; 11:23. [PMID: 25120578 PMCID: PMC4130436 DOI: 10.1186/1742-6405-11-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
Collapse
|
28
|
Crispin M, Harvey DJ, Bitto D, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J Proteome Res 2014; 13:1702-12. [PMID: 24467287 PMCID: PMC4428802 DOI: 10.1021/pr401162k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cross-species
viral transmission subjects parent and progeny alphaviruses
to differential post-translational processing of viral envelope glycoproteins.
Alphavirus biogenesis has been extensively studied, and the Semliki
Forest virus E1 and E2 glycoproteins have been shown to exhibit differing
degrees of processing of N-linked glycans. However the composition
of these glycans, including that arising from different host cells,
has not been determined. Here we determined the chemical composition
of the glycans from the prototypic alphavirus, Semliki Forest virus,
propagated in both arthropod and rodent cell lines, by using ion-mobility
mass spectrometry and collision-induced dissociation analysis. We
observe that both the membrane-proximal E1 fusion glycoprotein and
the protruding E2 attachment glycoprotein display heterogeneous glycosylation
that contains N-linked glycans exhibiting both limited and extensive
processing. However, E1 contained predominantly highly processed glycans
dependent on the host cell, with rodent and mosquito-derived E1 exhibiting
complex-type and paucimannose-type glycosylation, respectively. In
contrast, the protruding E2 attachment glycoprotein primarily contained
conserved under-processed oligomannose-type structures when produced
in both rodent and mosquito cell lines. It is likely that glycan processing
of E2 is structurally restricted by steric-hindrance imposed by local
viral protein structure. This contrasts E1, which presents glycans
characteristic of the host cell and is accessible to enzymes. We integrated
our findings with previous cryo-electron microscopy and crystallographic
analyses to produce a detailed model of the glycosylated mature virion
surface. Taken together, these data reveal the degree to which virally
encoded protein structure and cellular processing enzymes shape the
virion glycome during interspecies transmission of Semliki Forest
virus.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681. [PMID: 24385630 DOI: 10.1126/science.1235681] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation plays a key role in a wide range of biological processes. Specific modification to a glycan's structure can directly modulate its biological function. Glycans are not only essential to glycoprotein folding, cellular homeostasis, and immune regulation but are involved in multiple disease conditions. An increased molecular and structural understanding of the mechanistic role that glycans play in these pathological processes has driven the development of therapeutics and illuminated novel targets for drug design. This knowledge has enabled the treatment of metabolic disorders and the development of antivirals and shaped cancer and viral vaccine strategies. Furthermore, an understanding of glycosylation has led to the development of specific drug glycoforms, for example, monoclonal antibodies, with enhanced potency.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
30
|
Wood NT, Fadda E, Davis R, Grant OC, Martin JC, Woods RJ, Travers SA. The influence of N-linked glycans on the molecular dynamics of the HIV-1 gp120 V3 loop. PLoS One 2013; 8:e80301. [PMID: 24303005 PMCID: PMC3841175 DOI: 10.1371/journal.pone.0080301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
N-linked glycans attached to specific amino acids of the gp120 envelope trimer of a HIV virion can modulate the binding affinity of gp120 to CD4, influence coreceptor tropism, and play an important role in neutralising antibody responses. Because of the challenges associated with crystallising fully glycosylated proteins, most structural investigations have focused on describing the features of a non-glycosylated HIV-1 gp120 protein. Here, we use a computational approach to determine the influence of N-linked glycans on the dynamics of the HIV-1 gp120 protein and, in particular, the V3 loop. We compare the conformational dynamics of a non-glycosylated gp120 structure to that of two glycosylated gp120 structures, one with a single, and a second with five, covalently linked high-mannose glycans. Our findings provide a clear illustration of the significant effect that N-linked glycosylation has on the temporal and spatial properties of the underlying protein structure. We find that glycans surrounding the V3 loop modulate its dynamics, conferring to the loop a marked propensity towards a more narrow conformation relative to its non-glycosylated counterpart. The conformational effect on the V3 loop provides further support for the suggestion that N-linked glycosylation plays a role in determining HIV-1 coreceptor tropism.
Collapse
Affiliation(s)
- Natasha T. Wood
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| | - Elisa Fadda
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Ireland
| | - Robert Davis
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
| | - Oliver C. Grant
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Joanne C. Martin
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Robert J. Woods
- Complex Carbohydrate Research Centre, University of Georgia, Athens, Georgia, United States of America
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| | - Simon A. Travers
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
31
|
Shivatare SS, Chang SH, Tsai TI, Ren CT, Chuang HY, Hsu L, Lin CW, Li ST, Wu CY, Wong CH. Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. J Am Chem Soc 2013; 135:15382-91. [PMID: 24032650 DOI: 10.1021/ja409097c] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural diversity of glycoproteins often comes from post-translational glycosylation with heterogeneous N-glycans. Understanding the complexity of glycans related to various biochemical processes demands a well-defined synthetic sugar library. We report herein a unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α-2,3 linkages. Moreover, using sialyltransferases to install sialic acid can minimize synthetic steps through the use of shared intermediates to simplify the complicated procedures associated with conventional sialic acid chemistry. Furthermore, these synthetic complex oligosaccharides were compiled to create a glycan array for the profiling of HIV-1 broadly neutralizing antibodies PG9 and PG16 that were isolated from HIV infected donors. From the study of antibody PG16, we identified potential natural and unnatural glycan ligands, which may facilitate the design of carbohydrate-based immunogens and hasten the HIV vaccine development.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Genomics Research Center, Academia Sinica , 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Titov DV, Gening ML, Tsvetkov YE, Nifantiev NE. Conjugates of cyclooligosaccharide scaffolds and carbohydrate ligands: Methods for synthesis and the interaction with lectins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:509-46. [DOI: 10.1134/s1068162013050142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y, Zhang B, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Amin MN, Wang LX, Burton DR, Koff WC, Nabel GJ, Mascola JR, Bewley CA, Kwong PD. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 2013; 20:804-13. [PMID: 23708607 PMCID: PMC4046252 DOI: 10.1038/nsmb.2600] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/02/2013] [Indexed: 11/08/2022]
Abstract
HIV-1 uses a diverse N-linked-glycan shield to evade recognition by antibody. Select human antibodies, such as the clonally related PG9 and PG16, recognize glycopeptide epitopes in the HIV-1 V1-V2 region and penetrate this shield, but their ability to accommodate diverse glycans is unclear. Here we report the structure of antibody PG16 bound to a scaffolded V1-V2, showing an epitope comprising both high mannose-type and complex-type N-linked glycans. We combined structure, NMR and mutagenesis analyses to characterize glycan recognition by PG9 and PG16. Three PG16-specific residues, arginine, serine and histidine (RSH), were critical for binding sialic acid on complex-type glycans, and introduction of these residues into PG9 produced a chimeric antibody with enhanced HIV-1 neutralization. Although HIV-1-glycan diversity facilitates evasion, antibody somatic diversity can overcome this and can provide clues to guide the design of modified antibodies with enhanced neutralization.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. A Blueprint for HIV Vaccine Discovery. Cell Host Microbe 2013; 12:396-407. [PMID: 23084910 DOI: 10.1016/j.chom.2012.09.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models, and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lech PJ, Tobin GJ, Bushnell R, Gutschenritter E, Pham LD, Nace R, Verhoeyen E, Cosset FL, Muller CP, Russell SJ, Nara PL. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies. PLoS One 2013; 8:e52306. [PMID: 23300970 PMCID: PMC3536790 DOI: 10.1371/journal.pone.0052306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022] Open
Abstract
The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs.
Collapse
Affiliation(s)
- Patrycja J Lech
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Travers SA. Conservation, Compensation, and Evolution of N-Linked Glycans in the HIV-1 Group M Subtypes and Circulating Recombinant Forms. ISRN AIDS 2012; 2012:823605. [PMID: 24052884 PMCID: PMC3765798 DOI: 10.5402/2012/823605] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/25/2012] [Indexed: 01/17/2023]
Abstract
The “glycan shield” exposed on the surface of the HIV-1 gp120 env glycoprotein has been previously proposed as a novel target for anti-HIV treatments. While such targeting of these glycans provides an exciting prospect for HIV treatment, little is known about the conservation and variability of glycosylation patterns within and between the various HIV-1 group M subtypes and circulating recombinant forms. Here, we present evidence of strong strain-specific glycosylation patterns and show that the epitope for the 2G12 neutralising antibody is poorly conserved across HIV-1 group M. The unique glycosylation patterns within the HIV-1 group M subtypes and CRFs appear to explain their varying susceptibility to neutralisation by broadly cross-neutralising (BCN) antibodies. Compensatory glycosylation at linearly distant yet three-dimensionally proximal amino acid positions appears to maintain the integrity of the glycan shield while conveying resistance to neutralisation by BCN antibodies. We find that highly conserved clusters of glycosylated residues do exist on the gp120 trimer surface and suggest that these positions may provide an exciting target for the development of BCN anticarbohydrate therapies.
Collapse
Affiliation(s)
- Simon A Travers
- Medical Research Council Unit for Bioinformatics Capacity Development, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Belville 7535, South Africa
| |
Collapse
|
37
|
Yu B, Morales JF, O'Rourke SM, Tatsuno GP, Berman PW. Glycoform and net charge heterogeneity in gp120 immunogens used in HIV vaccine trials. PLoS One 2012; 7:e43903. [PMID: 22928048 PMCID: PMC3425498 DOI: 10.1371/journal.pone.0043903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The RV144 clinical trial showed for the first time that vaccination could provide modest but significant protection from HIV-1 infection. To understand the protective response, and to improve upon the vaccine's efficacy, it is important to define the structure of the immunogens used in the prime/boost regimen. Here we examined the heterogeneity in net charge, attributable to glycoform variation, of the gp120 immunogens contained in the AIDSVAX B/E vaccine. METHODOLOGY/PRINCIPAL FINDINGS Isoelectric focusing and glycosidase digestion were used to assess variation in net charge of the gp120s contained in the AIDSVAX B/E vaccine used in the RV144 trial. We observed 16 variants of MN-rgp120 and 24 variants of A244-rgp120. Glycoform variation in gp120 produced in Chinese hamster ovary cells was compared to glycoform variation in gp120 produced in the 293F human embryonic kidney cell line, often used for neutralization assays. We found that gp120 variants produced in CHO cells were distinctly more acidic than gp120 variants produced in 293 cells. The effect of glycoform heterogeneity on antigenicity was assessed using monoclonal antibodies. The broadly neutralizing PG9 MAb bound to A244-rgp120, but not to MN-rgp120, whether produced in CHO or in 293. However, PG9 was able to bind with high affinity to MN-rgp120 and A244-rgp120 produced in 293 cells deficient in N-acetylglucosaminyltransferase I. CONCLUSIONS/SIGNIFICANCE MN- and A244-rgp120 used in the RV144 trial exhibited extensive heterogeneity in net charge due to variation in sialic acid-containing glycoforms. These differences were cell line-dependent, affected the antigenicity of recombinant envelope proteins, and may affect assays used to measure neutralization. These studies, together with recent reports documenting broadly neutralizing antibodies directed against carbohydrate epitopes of gp120, suggest that glycoform variation is a key variable to be considered in the production and evaluation of subunit vaccines designed to prevent HIV infection.
Collapse
Affiliation(s)
- Bin Yu
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Javier F. Morales
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M. O'Rourke
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Gwen P. Tatsuno
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
38
|
Kong L, Julien JP, Calarese D, Scanlan C, Lee HK, Rudd P, Wong CH, Dwek RA, Burton DR, Wilson IA. Toward a Carbohydrate-Based HIV-1 Vaccine. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1102.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Leopold Kong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Daniel Calarese
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher Scanlan
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hing-Ken Lee
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Pauline Rudd
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Chi-Huey Wong
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Raymond A. Dwek
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Arnáiz B, Martínez-Ávila O, Falcon-Perez JM, Penadés S. Cellular Uptake of Gold Nanoparticles Bearing HIV gp120 Oligomannosides. Bioconjug Chem 2012; 23:814-25. [DOI: 10.1021/bc200663r] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Blanca Arnáiz
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Olga Martínez-Ávila
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Juan M. Falcon-Perez
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Soledad Penadés
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| |
Collapse
|
40
|
Gold manno-Glyconanoparticles for Intervening in HIV gp120 Carbohydrate-Mediated Processes. Methods Enzymol 2012; 509:21-40. [DOI: 10.1016/b978-0-12-391858-1.00002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011; 6:e23521. [PMID: 21858152 PMCID: PMC3156772 DOI: 10.1371/journal.pone.0023521] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/19/2011] [Indexed: 01/04/2023] Open
Abstract
The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.
Collapse
Affiliation(s)
- Camille Bonomelli
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - D. Cameron Dunlop
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Victoria Thaney
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Christopher N. Scanlan
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J Virol 2011; 85:8270-84. [PMID: 21653661 DOI: 10.1128/jvi.05053-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of HIV-1 envelope carbohydrates is critical to understanding their roles in HIV-1 transmission as well as in binding of envelope to HIV-1 antibodies. However, direct analysis of protein glycosylation by glycopeptide-based mass mapping approaches involves structural simplification of proteins with the use of a protease followed by an isolation and/or enrichment step before mass analysis. The successful completion of glycosylation analysis is still a major analytical challenge due to the complexity of samples, wide dynamic range of glycopeptide concentrations, and glycosylation heterogeneity. Here, we use a novel experimental workflow that includes an up-front complete or partial enzymatic deglycosylation step before trypsin digestion to characterize the glycosylation patterns and maximize the glycosylation coverage of two recombinant HIV-1 transmitted/founder envelope oligomers derived from clade B and C viruses isolated from acute infection and expressed in 293T cells. Our results show that both transmitted/founder Envs had similar degrees of glycosylation site occupancy as well as similar glycan profiles. Compared to 293T-derived recombinant Envs from viruses isolated from chronic HIV-1, transmitted/founder Envs displayed marked differences in their glycosylation site occupancies and in their amounts of complex glycans. Our analysis reveals that the glycosylation patterns of transmitted/founder Envs from two different clades (B and C) are more similar to each other than they are to the glycosylation patterns of chronic HIV-1 Envs derived from their own clades.
Collapse
|
43
|
Marradi M, Di Gianvincenzo P, Enríquez-Navas PM, Martínez-Ávila OM, Chiodo F, Yuste E, Angulo J, Penadés S. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol 2011; 410:798-810. [PMID: 21440555 DOI: 10.1016/j.jmb.2011.03.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
After three decades of research, an effective vaccine against the pandemic AIDS caused by human immunodeficiency virus (HIV) is not still available, and a deeper understanding of HIV immunology, as well as new chemical tools that may contribute to improve the currently available arsenal against the virus, is highly wanted. Among the few broadly neutralizing human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies, 2G12 is the only carbohydrate-directed one. 2G12 recognizes a cluster of high-mannose glycans on the viral envelope glycoprotein gp120. This type of glycan has thus been envisaged as a target to develop an HIV vaccine that is capable of eliciting 2G12-like antibodies. Herein we show that gold nanoparticles coated with self-assembled monolayers of synthetic oligomannosides [manno-gold glyconanoparticles (GNPs)], which are present in gp120, are able to bind 2G12 with high affinity and to interfere with 2G12/gp120 binding, as determined by surface plasmon resonance and saturation transfer difference NMR spectroscopy. Cellular neutralization assays demonstrated that GNPs coated with a linear tetramannoside could block the 2G12-mediated neutralization of a replication-competent virus under conditions that resemble the ones in which normal serum prevents infection of the target cell. Dispersibility in water and physiological media, absence of cytotoxicity, and the possibility of inserting more than one component into the same nanoparticle make manno-GNPs versatile, polyvalent, and multifunctional systems that may aid efforts to develop new multifaceted strategies against HIV.
Collapse
Affiliation(s)
- Marco Marradi
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, E-20009 San Sebastián, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
45
|
Gour N, Mondal S, Verma S. Synthesis and self-assembly of a neoglycopeptide: morphological studies and ultrasound-mediated DNA encapsulation. J Pept Sci 2010; 17:148-53. [DOI: 10.1002/psc.1334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 11/08/2022]
|
46
|
Kong L, Sheppard NC, Stewart-Jones GBE, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD, Jeffs SA, Jones IM, Sattentau QJ. Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J Mol Biol 2010; 403:131-147. [PMID: 20800070 PMCID: PMC2950005 DOI: 10.1016/j.jmb.2010.08.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/19/2022]
Abstract
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.
Collapse
Affiliation(s)
- Leopold Kong
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil C Sheppard
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Guillaume B E Stewart-Jones
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Cynthia L Robson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Hongying Chen
- School of Biological Sciences, University of Reading, Reading RG6 6UR, UK
| | - Xiaodong Xu
- School of Biological Sciences, University of Reading, Reading RG6 6UR, UK
| | - George Krashias
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Camille Bonomelli
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Christopher N Scanlan
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon A Jeffs
- Wright-Fleming Institute, Division of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Reading RG6 6UR, UK
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
47
|
Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc Natl Acad Sci U S A 2010; 107:13800-5. [PMID: 20643940 DOI: 10.1073/pnas.1006498107] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The envelope spike of HIV is one of the most highly N-glycosylated structures found in nature. However, despite extensive research revealing essential functional roles in infection and immune evasion, the chemical structures of the glycans on the native viral envelope glycoprotein gp120--as opposed to recombinantly generated gp120--have not been described. Here, we report on the identity of the N-linked glycans from primary isolates of HIV-1 (clades A, B, and C) and from the simian immunodeficiency virus. MS analysis reveals a remarkably simple and highly conserved virus-specific glycan profile almost entirely devoid of medial Golgi-mediated processing. In stark contrast to recombinant gp120, which shows extensive exposure to cellular glycosylation enzymes (>70% complex type glycans), the native envelope shows barely detectable processing beyond the biosynthetic intermediate Man5GlcNAc2 (<2% complex type glycans). This oligomannose (Man5-9GlcNAc2) profile is conserved across primary isolates and geographically divergent clades but is not reflected in the current generation of gp120 antigens used for vaccine trials. In the context of vaccine design, we also note that Manalpha1-->2Man-terminating glycans (Man6-9GlcNAc2) of the type recognized by the broadly neutralizing anti-HIV antibody 2G12 are 3-fold more abundant on the native envelope than on the recombinant monomer and are also found on isolates not neutralized by 2G12. The Manalpha1-->2Man residues of gp120 therefore provide a vaccine target that is physically larger and antigenically more conserved than the 2G12 epitope itself. This study revises and extends our understanding of the glycan shield of HIV with implications for AIDS vaccine design.
Collapse
|
48
|
HIV-1 gp120 determinants proximal to the CD4 binding site shift protective glycans that are targeted by monoclonal antibody 2G12. J Virol 2010; 84:9608-12. [PMID: 20610714 DOI: 10.1128/jvi.00185-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 R5 envelopes vary considerably in their capacities to exploit low CD4 levels on macrophages for infection and in their sensitivities to the CD4 binding site (CD4bs) monoclonal antibody (MAb) b12 and the glycan-specific MAb 2G12. Here, we show that nonglycan determinants flanking the CD4 binding loop, which affect exposure of the CD4bs, also modulate 2G12 neutralization. Our data indicate that such residues act via a mechanism that involves shifts in the orientation of proximal glycans, thus modulating the sensitivity of 2G12 neutralization and affecting the overall presentation and structure of the glycan shield.
Collapse
|
49
|
Raska M, Takahashi K, Czernekova L, Zachova K, Hall S, Moldoveanu Z, Elliott MC, Wilson L, Brown R, Jancova D, Barnes S, Vrbkova J, Tomana M, Smith PD, Mestecky J, Renfrow MB, Novak J. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem 2010; 285:20860-9. [PMID: 20439465 PMCID: PMC2898351 DOI: 10.1074/jbc.m109.085472] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/28/2010] [Indexed: 01/18/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.
Collapse
Affiliation(s)
- Milan Raska
- From the Departments of Immunology and
- the Departments of Microbiology
| | | | | | | | | | | | | | | | | | | | | | - Jana Vrbkova
- Mathematical Analysis and Applications of Mathematics, Palacky University in Olomouc, Olomouc 77100, Czech Republic
| | | | - Phillip D. Smith
- Medicine, and
- the Veterans Affairs Medical Center, Birmingham, Alabama 35205, and
| | - Jiri Mestecky
- the Departments of Microbiology
- Medicine, and
- the Institute of Microbiology and Immunology, First Faculty of Medicine, Charles University, Prague, Czech Republic 12108
| | - Matthew B. Renfrow
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | |
Collapse
|
50
|
Binley JM, Ban YEA, Crooks ET, Eggink D, Osawa K, Schief WR, Sanders RW. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol 2010; 84:5637-55. [PMID: 20335257 PMCID: PMC2876609 DOI: 10.1128/jvi.00105-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/15/2010] [Indexed: 11/20/2022] Open
Abstract
Complex N-glycans flank the receptor binding sites of the outer domain of HIV-1 gp120, ostensibly forming a protective "fence" against antibodies. Here, we investigated the effects of rebuilding this fence with smaller glycoforms by expressing HIV-1 pseudovirions from a primary isolate in a human cell line lacking N-acetylglucosamine transferase I (GnTI), the enzyme that initiates the conversion of oligomannose N-glycans into complex N-glycans. Thus, complex glycans, including those that surround the receptor binding sites, are replaced by fully trimmed oligomannose stumps. Conversely, the untrimmed oligomannoses of the silent domain of gp120 are likely to remain unchanged. For comparison, we produced a mutant virus lacking a complex N-glycan of the V3 loop (N301Q). Both variants exhibited increased sensitivities to V3 loop-specific monoclonal antibodies (MAbs) and soluble CD4. The N301Q virus was also sensitive to "nonneutralizing" MAbs targeting the primary and secondary receptor binding sites. Endoglycosidase H treatment resulted in the removal of outer domain glycans from the GnTI- but not the parent Env trimers, and this was associated with a rapid and complete loss in infectivity. Nevertheless, the glycan-depleted trimers could still bind to soluble receptor and coreceptor analogs, suggesting a block in post-receptor binding conformational changes necessary for fusion. Collectively, our data show that the antennae of complex N-glycans serve to protect the V3 loop and CD4 binding site, while N-glycan stems regulate native trimer conformation, such that their removal can lead to global changes in neutralization sensitivity and, in extreme cases, an inability to complete the conformational rearrangements necessary for infection.
Collapse
Affiliation(s)
- James M Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|