1
|
Zarza X, Shabala L, Fujita M, Shabala S, Haring MA, Tiburcio AF, Munnik T. Extracellular Spermine Triggers a Rapid Intracellular Phosphatidic Acid Response in Arabidopsis, Involving PLDδ Activation and Stimulating Ion Flux. FRONTIERS IN PLANT SCIENCE 2019; 10:601. [PMID: 31178874 PMCID: PMC6537886 DOI: 10.3389/fpls.2019.00601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Polyamines, such as putrescine (Put), spermidine (Spd), and spermine (Spm), are low-molecular-weight polycationic molecules found in all living organisms. Despite the fact that they have been implicated in various important developmental and adaptative processes, their mode of action is still largely unclear. Here, we report that Put, Spd, and Spm trigger a rapid increase in the signaling lipid, phosphatidic acid (PA) in Arabidopsis seedlings but also mature leaves. Using time-course and dose-response experiments, Spm was found to be the most effective; promoting PA responses at physiological (low μM) concentrations. In seedlings, the increase of PA occurred mainly in the root and partly involved the plasma membrane polyamine-uptake transporter (PUT), RMV1. Using a differential 32Pi-labeling strategy combined with transphosphatidylation assays and T-DNA insertion mutants, we found that phospholipase D (PLD), and in particular PLDδ was the main contributor of the increase in PA. Measuring non-invasive ion fluxes (MIFE) across the root plasma membrane of wild type and pldδ-mutant seedlings, revealed that the formation of PA is linked to a gradual- and transient efflux of K+. Potential mechanisms of how PLDδ and the increase of PA are involved in polyamine function is discussed.
Collapse
Affiliation(s)
- Xavier Zarza
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Miki Fujita
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Japan
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Michel A. Haring
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antonio F. Tiburcio
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Teun Munnik,
| |
Collapse
|
2
|
Xiao L, Priest MF, Kozorovitskiy Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 2018; 7:33892. [PMID: 29676731 PMCID: PMC5910020 DOI: 10.7554/elife.33892] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
The experience of rewarding or aversive stimuli is encoded by distinct afferents to dopamine (DA) neurons of the ventral tegmental area (VTA). Several neuromodulatory systems including oxytocin regulate DA neuron excitability and synaptic transmission that process socially meaningful stimuli. We and others have recently characterized oxytocinergic modulation of activity in mouse VTA DA neurons, but the mechanisms underlying oxytocinergic modulation of synaptic transmission in DA neurons remain poorly understood. Here, we find that oxytocin application or optogenetic release decrease excitatory synaptic transmission, via long lasting, presynaptic, endocannabinoid-dependent mechanisms. Oxytocin modulation of excitatory transmission alters the magnitude of short and long-term depression. We find that only some glutamatergic projections to DA neurons express CB1 receptors. Optogenetic stimulation of three major VTA inputs demonstrates that oxytocin modulation is limited to projections that show evidence of CB1R transcripts. Thus, oxytocin gates information flow into reward circuits in a temporally selective and pathway-specific manner. The mammalian brain contains millions of nerve cells or neurons that communicate with each other via a process called neurotransmission. To send a message to its neighbor, a neuron releases a chemical called a neurotransmitter into the space between the cells. The neurotransmitter then binds to receiver proteins on the target cell. Another group of chemicals, known as neuromodulators, regulate this process, adjusting the way that neurons respond to neurotransmitters. In doing so, they help regulate many types of behavior in mammals. The neuromodulator oxytocin, for example, has earned the nickname ‘the love hormone’ because it promotes social behavior and bonding. It does this in part by altering the activity of neurons in a brain region called the ventral tegmental area (VTA). These neurons produce the brain’s main reward signal, dopamine, which is itself a neuromodulator. But exactly how oxytocin affects the activity of dopamine-producing neurons is unclear. By recording from individual neurons in slices of mouse brain tissue, Xiao et al. show that oxytocin filters inputs to dopamine neurons in the VTA. It does this by making the dopamine neurons release another group of reward signals, known as endocannabinoids. These are the brain’s own version of the chemicals found inside cannabis plants. The endocannabinoids bind to neurons that provide input to the VTA dopamine neurons. Some of these input neurons normally activate the VTA by releasing a neurotransmitter called glutamate. However, the binding of endocannabinoids decreases their ability to do this, and thereby lowers the activation of the VTA dopamine neurons. But not all glutamate neurons are sensitive to endocannabinoids. Moreover, oxytocin affects glutamate neurons that fire repeatedly less than it affects those that fire only occasionally. Oxytocin thus acts as a filter. It allows certain inputs – those that are repeatedly active and those that are insensitive to endocannabinoids – to continue activating VTA dopamine neurons. At the same time, it weakens the influence of other inputs. Dopamine release in the VTA drives drug abuse and addiction. Understanding how oxytocin affects VTA neurons may thus open up new avenues for the treatment of addiction disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Michael F Priest
- Department of Neurobiology, Northwestern University, Evanston, United States
| | | |
Collapse
|
3
|
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C. PLoS One 2015; 10:e0144432. [PMID: 26658739 PMCID: PMC4676720 DOI: 10.1371/journal.pone.0144432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
Collapse
|
4
|
Etkovitz N, Rubinstein S, Daniel L, Breitbart H. Role of PI3-kinase and PI4-kinase in actin polymerization during bovine sperm capacitation. Biol Reprod 2007; 77:263-73. [PMID: 17494916 DOI: 10.1095/biolreprod.106.056705] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have recently demonstrated the involvement of phospholipase D (PLD) in actin polymerization during mammalian sperm capacitation. In the present study, we investigated the involvement of phosphatidylinositol 3- and 4-kinases (PI3K and PI4K) in actin polymerization, as well as the production of PIP(2(4,5)), which is a known cofactor for PLD activation, during bovine sperm capacitation. PIK3R1 (p85 alpha regulatory subunit of PI3K) and PIKCB (PI4K beta) in bovine sperm were detected by Western blotting and immunocytochemistry. Wortmannin (WT) inhibited PI3K and PI4K type III at concentrations of 10 nM and 10 microM, respectively. PI4K activity and PIP(2(4,5)) production were blocked by 10 microM WT but not by 10 nM WT, whereas PI3K activity and PIP(3(3,4,5)) production were blocked by 10 nM WT. Moreover, spermine, which is a known PI4K activator and a component of semen, activated sperm PI4K, resulting in increased cellular PIP(2(4,5)) and F-actin formation. The increases in PIP(2(4,5)) and F-actin intracellular levels during sperm capacitation were mediated by PI4K but not by PI3K activity. Activation of protein kinase A (PKA) by dibutyryl cAMP enhanced PIP(2(4,5)), PIP(3(3,4,5)), and F-actin formation, and these effects were mediated through PI3K. On the other hand, activation of PKC by phorbol myristate acetate enhanced PIP(2(4,5)) and F-actin formation mediated by PI4K activity, while the PI3K activity and intracellular PIP(3(3,4,5)) levels were reduced. These results suggest that two alternative pathways lead to PI4K activation: indirect activation by PKA, which is mediated by PI3K; and activation by PKC, which is independent of PI3K activity. Our results also suggest that spermine, which is present in the ejaculate, regulates PI4K activity during the capacitation process in vivo.
Collapse
Affiliation(s)
- Nir Etkovitz
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
5
|
Tsvilovskyy VV, Zholos AV, Bolton TB. Effects of polyamines on the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle myocytes. Br J Pharmacol 2004; 143:968-75. [PMID: 15557285 PMCID: PMC1575962 DOI: 10.1038/sj.bjp.0706010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effects of extracellular and intracellular polyamines (PAs), spermine and putrescine, on the cation current (mI(CAT)) evoked either by activating muscarinic receptors with carbachol or by intracellularly applied GTPgammaS (in the absence of carbachol) were studied using patch-clamp recording techniques in single guinea-pig ileal myocytes. Extracellular spermine and putrescine rapidly and reversibly inhibited mI(CAT) in a concentration- and voltage-dependent manner with the IC(50) values at -40 mV of about 1 and 5 mM, respectively. Membrane depolarization relieved the blocking action of PAs although cation conductance activation curve remained N-shaped. The inhibition was similar for both carbachol- and GTPgammaS-evoked currents, suggesting that the cation channel rather than the muscarinic receptor was the primary site of the PA action. In outside-out membrane patches, both cation channel unitary conductance and open probability were reduced. In perforated-patch experiments used to retain cytoplasmic PAs sustained 100 microM carbachol-induced mI(CAT) was significantly smaller (478 +/- 76 pA, n = 7) compared to that recorded using conventional whole-cell configuration with nominally PA-free pipette solution (1314 +/- 76 pA, n = 12), but comparable in size to mI(CAT) with 0.3 mM spermine in the pipette solution (509 +/- 41 pA, n = 19). Intracellular putrescine inhibited mI(CAT) less potently compared to spermine. In conclusion, these results show a novel role of intestinal PAs in mI(CAT) inhibition, which can contribute to their well-known suppressing effect on the gastrointestinal smooth muscle excitability and contractility.
Collapse
Affiliation(s)
- Volodymyr V Tsvilovskyy
- Laboratory of Molecular Pharmacology of Cellular Receptors and Ion Channels, A.A. Bogomoletz Institute of Physiology, Kiev, 01024 Ukraine
| | - Alexander V Zholos
- Laboratory of Molecular Pharmacology of Cellular Receptors and Ion Channels, A.A. Bogomoletz Institute of Physiology, Kiev, 01024 Ukraine
- Author for correspondence:
| | - Thomas B Bolton
- Department of Basic Medical Sciences/Pharmacology, St. George's Hospital Medical School, London SW17 0RE
| |
Collapse
|
6
|
Abstract
Polyamines are polycations present in all living organisms and have been shown to play an important role in various physiological functions. Previous studies have shown that various amines including polyamines inhibit platelet activation. Among the amines tested tetra-amine, spermine is the potent inhibitor of platelet aggregation. In spite of vast literature on the anti-aggregatory effect of amines, there are no definitive studies testing their efficacy in an in vivo thrombosis model. In the present study, we investigated if polyamines could inhibit in-vivo thrombosis. A partially occlusive thrombus was generated by application of electric current in canine coronary artery. In control animals, the artery was completely in 76+/-14 min after the current was discontinued. When 40 mg/kg (1.44 mM) spermine was given immediately after stopping the current blood flow remained patent for >240 min. At equimolar concentration, triamine, spermidine and diamine putrescine are also equally effective in preventing thrombus development. The anti thrombic effect of polyamines was not associated with increased bleeding tendency, as judged by the amount of blood adsorbed by a gauge pad placed in a surgical incision extending to the muscle tissue and by a standard template bleeding. These results indicate that apart from inhibiting in-vitro platelet aggregation polyamines can also inhibit in-vivo thrombus formation.
Collapse
Affiliation(s)
- Rajbabu Pakala
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center-Medical School, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Coburn RF, Jones DH, Morgan CP, Baron CB, Cockcroft S. Spermine increases phosphatidylinositol 4,5-bisphosphate content in permeabilized and nonpermeabilized HL60 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:20-30. [PMID: 12213489 DOI: 10.1016/s1388-1981(02)00265-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The polyamine spermine (N,N'bis[3-aminopropyl]-1,4-butanediamine) activates phosphatidylinositol-4-phosphate 5-kinase (PtdIns(4)P5K) and phosphatidylinositol 4-kinase (PtdIns4K) in vitro. Spermine concentration increases that occur in proliferating cells were approximated in streptolysin O-permeabilized HL60 cells. When phospholipase C was activated by GTPgammaS in the presence of PITPalpha, 0.1-1.2 mM spermine evoked increases in PtdIns(4,5)P(2) contents in a dose-dependent manner to 110-170% of control and concomitantly decreased inositol phosphate formation by 10-50%. Spermine-induced increases in PtdIns(4,5)P(2) content in permeabilized cells also occurred during GTPgammaS stimulation in the absence of PITPalpha, were augmented in the presence of PITPalpha, occurred in unstimulated cells and were additive to PtdIns(4,5)P(2) formation evoked by ARF1, another activator of phosphoinositide kinases. Slowly developing spermine-evoked increases in PtdIns(4,5)P(2) contents occurred in nonpermeabilized cells that were abolished in the presence of a spermine transport inhibitor. Data are consistent with spermine at physiological concentrations evoking a PITPalpha-dependent shift in formation of PtdIns(4,5)P(2) from compartments that contained an active phospholipase C to compartments that were separated from an active PLC and from PtdIns(4,5)P(2) formed by ARF1.
Collapse
Affiliation(s)
- Ronald F Coburn
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
8
|
Pakala R. Effect of polyamines on in vitro platelet aggregation and in vivo thrombus formation. CARDIOVASCULAR RADIATION MEDICINE 2002; 3:213-20. [PMID: 12974377 DOI: 10.1016/s1522-1865(03)00097-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Polyamines are polycations present in all living organisms and have been shown to play an important role in various physiological functions. Previous studies have shown that various amines including polyamines inhibited platelet activation, but there were no definitive studies testing their efficacy in an in vivo thrombosis model. We carried out detailed in vitro platelet aggregation studies using various concentrations of polyamines as well as agonists. METHODS Platelet aggregation was measured by a turbidimetric method. Electric current induced in vivo thrombosis model is used for assessing antithrombotic effect. Incidence of bleeding was evaluated by template bleeding and incisional bleeding. RESULTS Polyamines inhibited agonist-induced platelet aggregation in a dose-dependent manner. The inhibitory effect of polyamines is inversely proportional to the concentration of the agonist used. Among the polyamines, spermine is the potent inhibitor of platelet aggregation. A partially occlusive thrombus was generated by application of electric current in canine coronary artery. In control animals, the artery was completely occluded in 70 +/- 11 min after the current was discontinued. Blood flow remained patent for >240 min when 2 mg/kg spermine was given immediately after stopping the current. The antithrombotic effect of spermine was not associated with increased bleeding tendency. CONCLUSION These results indicate that apart from inhibiting in vitro platelet aggregation polyamines can also inhibit in vivo thrombus formation. To our knowledge, this is the first study demonstrating this phenomenon.
Collapse
Affiliation(s)
- Rajbabu Pakala
- Division of Cardiology, Department of Internal Medicine, University of Texas Health Science Center-Medical School, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Tamura M, Yoshida K, Kataoka K. Guanosine 5'-O-(3-thiotriphosphate)-induced O-2 generation in permeabilized neutrophils requires protein kinase C and phospholipase C but not tyrosine kinase or phospholipase D. Arch Biochem Biophys 1999; 361:257-63. [PMID: 9882454 DOI: 10.1006/abbi.1998.0954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) induces respiratory burst (O-2 generation) in permeabilized human neutrophils. The signal pathway from GTPgammaS to the enzyme responsible for O-2 generation (NADPH oxidase) is not well defined. To elucidate the signaling pathway activated by GTPgammaS, we used selective inhibitors to test for the involvement of several enzymes, comparing the effects of these inhibitors on fMet-Leu-Phe (fMLP) activation. GTPgammaS-induced respiratory burst was not influenced by genistein, a selective inhibitor of tyrosine kinase, while fMLP-induced response was completely abolished. The respiratory burst by GTPgammaS was efficiently inhibited by the protein kinase C inhibitor GF109203X even more than fMLP activation. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 showed a partial inhibition of both GTPgammaS and fMLP activation. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, completely blocked fMLP activation, but had no effect on the GTPgammaS-induced respiratory burst. Using U73122, phospholipase C is shown to be essential in GTPgammaS signaling as well as fMLP signaling. Butanol blocked fMLP signaling but not GTPgammaS signaling, indicating that only fMLP activation involves phospholipase D. These results suggest that there are several differences between GTPgammaS- and fMLP-induced activation, but both activators share a common pathway including phospholipase C, protein kinase C, and MAPK kinase.
Collapse
Affiliation(s)
- M Tamura
- Faculty of Engineering, Ehime University, Ehime, Matsuyama, 790-8577, Japan.
| | | | | |
Collapse
|
10
|
Rodríguez-Caso L, Sánchez-Jiménez F, Medina MA. Putrescine and chlorpheniramine inhibit Ehrlich ascites tumor cell plasma membrane ferricyanide reductase activity. Cancer Lett 1998; 132:165-8. [PMID: 10397469 DOI: 10.1016/s0304-3835(98)00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of putrescine or chlorpheniramine in the incubation medium of Ehrlich ascites tumor cells starved for 1 h significantly inhibits the rate of ferricyanide reduction by their plasma membrane redox system. Freshly harvested cells, without depletion of their intracellular pools of polyamines, and cells preincubated under conditions arranged to increase ornithine decarboxylase activity also reduced externally added ferricyanide at a lower rate than those cells starved for 1 h. All these data seems to indicate that the presence of putrescine is enough to significantly inhibit Ehrlich cell plasma membrane redox system activity.
Collapse
Affiliation(s)
- L Rodríguez-Caso
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Málaga, Spain
| | | | | |
Collapse
|
11
|
Sjöholm A. Effects of secretagogues on insulin biosynthesis and secretion in polyamine-depleted pancreatic beta-cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1105-10. [PMID: 8928738 DOI: 10.1152/ajpcell.1996.270.4.c1105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To extend previous observations on the importance of polyamines for glucose-stimulated insulinogenesis (N. Welsh and A Sjöholm. Polyamines and insulin production in isolated mouse pancreatic islets. Biochem. J. 252: 701-707, 1988), the impact of other secretagogues on insulin secretion of islets partially depleted in polyamines by selective inhibitors of L-ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase was monitored. Glucose-sensitive, but not basal, insulin release was partially abolished in polyamine-deficient islets. Qualitatively similar impairments in insulin secretion were recorded when such islets were stimulated with nonglucidic nutrients (alpha-ketoisocaproic acid + L-glutamine), a cationic amino acid (L-arginine), activators of phospholipase C (carbachol) or protein kinase C (12-O-tetradecanoylphorbol 13-acetate), an adenosine 1', 5'-cyclic monophosphate-raising agent (forskolin), or a hypoglycemic sulfonylurea (glibenclamide). Additionally, glucose-responsive (pro)insulin biosynthesis was preferentially impeded in polyamine-deficient islets. It is concluded that polyamines act as permissive or stimulatory factors in insulin production and release. In addition, they seemingly do not act in an inhibitory manner on phospholipase C, protein kinase C, or Ca2+ flux into these islets, in contrast to reports in which insulinoma and other cells were used.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Ogata K, Nishimoto N, Uhlinger DJ, Igarashi K, Takeshita M, Tamura M. Spermine suppresses the activation of human neutrophil NADPH oxidase in cell-free and semi-recombinant systems. Biochem J 1996; 313 ( Pt 2):549-54. [PMID: 8573091 PMCID: PMC1216942 DOI: 10.1042/bj3130549] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spermine, a cellular polyamine, down-regulates O2- generation in human neutrophils stimulated by receptor-linked agonist [Ogata, Tamura and Takeshita (1992) Biochem. Biophys. Res. Commun. 182, 20-26]. In this study, to elucidate the mechanism for the inhibition, the effect of spermine on cell-free activation of the O2- generating enzyme (NADPH oxidase) was examined. Spermine suppressed the SDS-induced activation of NADPH oxidase in a dose-dependent manner with an IC50 of 18 microM. The inhibition was specific for spermine over its precursor amines, spermidine and putrescine. Spermine did not alter the Km for NADPH or the optimal concentration of SDS for activation. The amine was inhibitory only when added before activation, indicating that it affects the activation process rather than the enzyme's activity. An increased concentration of cytosol partly prevented the inhibition by spermine. In semi-recombinant cell-free system, spermine inhibited the activation of NADPH oxidase as effectively as in the cell-free system (IC50 = 13 microM). Pretreatment of each recombinant cytosolic component with spermine revealed that they (especially p67phox) are sensitive to spermine. These results suggest that spermine interacts with cytosolic component(s) and impairs the assembly of NADPH oxidase.
Collapse
Affiliation(s)
- K Ogata
- Department of Biochemistry, Oita Medical University, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Seiler N, Hardy A, Moulinoux JP. Aminoglycosides and polyamines: targets and effects in the mammalian organism of two important groups of natural aliphatic polycations. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 46:183-241. [PMID: 8754206 DOI: 10.1007/978-3-0348-8996-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N Seiler
- Groupe de Recherche en Thérapeutique Anticancereuse URA CNRS 1529 DRED 1266, Faculté de Médecine, Université de Rennes, France
| | | | | |
Collapse
|
14
|
Taibi G, Schiavo MR, Nicotra C. Polyamines and ripening of photoreceptor outer segments in chicken embryos. Int J Dev Neurosci 1995; 13:759-66. [PMID: 8787866 DOI: 10.1016/0736-5748(95)00056-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyamines and their related monoacetyl derivatives were studied in rod outer segment (ROS) and cone outer segment (COS) of photoreceptor cells from chick embryo retina during eye development (7th-18th days). Putrescine was found to be necessary, in the second phase of retinogenesis, to sustain both ROS and COS differentiation and, after acetylation, gamma-aminobutyric acid synthesis. On the other hand, spermidine and even more spermine intervene in the third phase of development when photoreceptors mature. Moreover, the presence of N1-acetylspermidine already at the 7th day indicates that in the outer segment of photoreceptor cells too, as in the whole retina, putrescine synthesis comes about by two pathways. One pathway involves ornithine decarboxylase; the other, spermidine/spermine N1-acetyltransferase and FAD-dependent polyamine oxidase activities that convert spermidine to putrescine via N1-acetylspermidine. These different biosynthetic pathways are probably also decisive in permitting gamma-aminobutyric acid synthesis, which is very important in the ripening process of neural retina.
Collapse
Affiliation(s)
- G Taibi
- Facoltà di Medicina e Chirurgia, Università di Palermo, Italy
| | | | | |
Collapse
|
15
|
McDonald LJ, Mamrack MD. Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La(3+), Al(3+), neomycin, polyamines, and melittin. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 11:81-91. [PMID: 7728419 DOI: 10.1016/0929-7855(94)00029-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Second messenger production from phosphoinositide hydrolysis is regulated by different pathways, such as G-proteins or tyrosine phosphorylation of phosphoinositide phospholipase C (PI-PLC). Another means of altering the activity of PI-PLC is through cation interaction with the phosphoinositide substrate. A variety of organic and inorganic multi-valent cations were examined for their effects on the activity of purified PI-PLC delta. Surprisingly, the cations produced both stimulation and inhibition of PI-PLC catalyzed phosphoinositide hydrolysis, depending on the substrate and the ion to phosphoinositide stoichiometry. These data support the hypothesis that ionic complexes with phosphoinositides may alter their hydrolysis by PI-PLC.
Collapse
Affiliation(s)
- L J McDonald
- Department of Biological Sciences, Wright State University, Dayton, OH 45345, USA
| | | |
Collapse
|
16
|
Taibi G, Schiavo MR, Calvaruso G, Tesoriere G. Pattern of polyamines and related monoacetyl derivatives in chick embryo retina during development. Int J Dev Neurosci 1994; 12:423-9. [PMID: 7817785 DOI: 10.1016/0736-5748(94)90026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polyamines and related monoacetyl derivatives were studied in chick embryo retina during development (6th-19th day). Putrescine, which is high in the first phase of retinogenesis, is necessary to sustain both tissue proliferation and via N-acetylputrescine, gamma-aminobutyric acid synthesis. A later increase in spermidine and particularly spermine may play a role in the last phase of development when the retina reaches maturation. The presence of N1-acetylspermidine already at the 8th day indicates that in chick embryo retina, putrescine synthesis can depend on two separate pathways. The first involves ornithine decarboxylase activity; the second, spermidine/spermine N1-acetyltransferase and probably polyamine oxidase that converts spermidine to putrescine via N1-acetylspermidine.
Collapse
Affiliation(s)
- G Taibi
- Institute of Biological Chemistry, Faculty of Medicine, University of Palermo, Italy
| | | | | | | |
Collapse
|
17
|
Swärd K, Nilsson BO, Hellstrand P. Polyamines increase Ca2+ sensitivity in permeabilized smooth muscle of guinea pig ileum. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1754-63. [PMID: 8023905 DOI: 10.1152/ajpcell.1994.266.6.c1754] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of polyamines were investigated in strips of smooth muscle from guinea pig ileum permeabilized with beta-escin (0.005%). Spermine (1 mM) inhibited transient contractions induced in Ca(2+)-free medium by carbachol (0.1 mM) and GTP gamma S (0.1 mM) but potentiated responses to caffeine (20 mM) and D-myo-inositol 1,4,5-trisphosphate (40 microM). At high ethylene glycol-bis(beta-amino-ethyl ether)-N,N,N',N'-tetraacetic acid concentration (10 mM) and in the presence of A-23187 (10 microM), force at optimal and suboptimal Ca2+ concentrations was increased both by spermine and by carbachol. Spermine did not potentiate contraction in Ca(2+)-free medium or after full thiophosphorylation of the regulatory 20-kDa myosin light chains but slightly potentiated contractions produced by partial thiophosphorylation. Also, spermidine and putrescine, as well as the aminoglycoside antibiotic neomycin, increased sensitivity to Ca2+, with potency correlating with number of positive charges. After permeabilization by a high concentration (0.1%) of beta-escin, the sensitivity to Ca2+ was increased by spermine but not by GTP gamma S. In preparations permeabilized by Triton X-100, spermine slightly increased Ca2+ sensitivity but not maximal force. Tissue contents of putrescine, spermidine, and spermine in intact ileum muscle were 8, 98, and 184 nmol/g, respectively. Permeabilization by 0.005 and 0.1% beta-escin reduced spermine contents by 40 and 53%, respectively. Effects of added polyamines in permeabilized preparations may thus reflect physiological effects of endogenous polyamines modulating contraction in the intact tissue.
Collapse
Affiliation(s)
- K Swärd
- Department of Physiology and Biophysics, University of Lund, Sweden
| | | | | |
Collapse
|
18
|
Miscellaneous Second Messengers. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Sjöholm A, Arkhammar P, Welsh N, Bokvist K, Rorsman P, Hallberg A, Nilsson T, Welsh M, Berggren PO. Enhanced stimulus-secretion coupling in polyamine-depleted rat insulinoma cells. An effect involving increased cytoplasmic Ca2+, inositol phosphate generation, and phorbol ester sensitivity. J Clin Invest 1993; 92:1910-7. [PMID: 8408643 PMCID: PMC288357 DOI: 10.1172/jci116784] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To extend previous observations on the role of polyamines in insulin production, metabolism, and replication of insulin-secreting pancreatic beta cells, we have studied the role of polyamines in the regulation of the stimulus-secretion coupling of clonal rat insulinoma cells (RINm5F). For this purpose, RINm5F cells were partially depleted in their polyamine contents by use of the specific ornithine decarboxylase inhibitor difluoromethylornithine (DFMO), which led to an increase in cellular insulin and ATP contents. Analysis of different parts of the signal transduction pathway revealed that insulin secretion and the increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) after K(+)-induced depolarization were markedly enhanced in DFMO-treated cells. These effects were paralleled by increased voltage-activated Ca2+ currents, as judged by whole-cell patch-clamp analysis, probably reflecting increased channel activity rather than elevated number of channels per cell. DFMO treatment also rendered phospholipase C in these cells more sensitive to the muscarinic receptor agonist carbamylcholine, as evidenced by enhanced generation of inositol phosphates, increase in [Ca2+]i and insulin secretion, despite an unaltered ligand binding to muscarinic receptors and lack of effect on protein kinase C activity. In addition, the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, at concentrations suggested to be specific for protein kinase C activation, evoked an increased insulin output in polyamine-deprived cells compared to control cells. The stimulatory effects of glucose or the cyclic AMP raising agent theophylline on insulin release were not increased by DFMO treatment. In spite of increased binding of sulfonylurea in DFMO-treated cells, there was no secretory response or altered increase in [Ca2+]i in response to the drug in these cells. It is concluded that partial polyamine depletion sensitizes the stimulus-secretion coupling at multiple levels in the insulinoma cells, including increased voltage-dependent Ca2+ influx and enhanced responsiveness to activators of phospholipase C and protein kinase C. In their entirety, our present results indicate that the behavior of the stimulus-secretion coupling of polyamine-depleted RINm5F insulinoma cells changes towards that of native beta cells, thus improving the usefulness of this cell line for studies of beta cell insulin secretion.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Endocrinology, Rolf Luft Center for Diabetes Research, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Votyakova TV, Bazhenova EN, Zvjagilskaya RA. Yeast mitochondrial calcium uptake: regulation by polyamines and magnesium ions. J Bioenerg Biomembr 1993; 25:569-74. [PMID: 8132496 DOI: 10.1007/bf01108413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spermine, spermidine, and magnesium ions modulate the kinetic parameters of the Ca2+ transport system of Endomyces magnusii mitochondria. Mg2+ at concentrations up to 5 mM partially inhibits Ca2+ transport with a half-maximal inhibiting concentration of approximately 0.5 mM. In the presence of 2 mM MgCl2, the S0.5 value of the Ca2+ transport system increases from 220 to 490 microM, which indicates decreased affinity for the system. Spermine and spermidine exert an activating effect, having half-maximal concentrations of 12 and 50 microM, respectively. In the case of spermine, the S0.5 value falls to 50-65 microM, which implies an increase in the transport system affinity for Ca2+. Both Mg2+ and spermine cause a decrease of the Hill coefficient, giving evidence for a smaller degree of cooperativity. Spermine and spermidine enable yeast mitochondria to remove Ca2+ from the media completely. In contrast, Mg2+ lowers the mitochondrial buffer capacity. When both Mg2+ and spermine are present in the medium, their effects on the S0.5 value and the free extramitochondrial Ca2+ concentration are additive. The ability of spermine and Mg2+ to regulate yeast mitochondrial Ca2+ transport is discussed.
Collapse
Affiliation(s)
- T V Votyakova
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
21
|
Faddis MN, Brown JE. Intracellular injection of heparin and polyamines. Effects on phototransduction in limulus ventral photoreceptors. J Gen Physiol 1993; 101:909-31. [PMID: 8331323 PMCID: PMC2216746 DOI: 10.1085/jgp.101.6.909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heparin is thought to inhibit InsP3 binding to receptors involved in the intracellular release of Ca2+. Injection of heparin into Limulus ventral photoreceptors to high intracellular concentrations reduces the amplitude and slows the rate of rise of voltage-clamp currents induced by brief flashes, tends to make the responses to long flashes more "square," and tends to block the light-induced rise in [Ca2+]i detected by arsenazo III. In these ways, intracellular heparin mimics the effects of high concentrations of intracellular BAPTA or EGTA. In addition, the effects of heparin are attenuated by prior injection of BAPTA to high intracellular concentrations. Neomycin and spermine are thought to inhibit phospholipase C activity. Injections of spermine or neomycin to low intracellular concentrations largely mimic the effects of intracellular heparin. These findings suggest that the predominant effect of polyamines is to inhibit light-induced production of InsP3 by phospholipase C activity and thereby reduce the light-induced increase in [Ca2+]i. Our findings suggest that excitation can proceed in the absence of InsP3-induced increases in [Ca2+]i, but (a) the gain and speed of transduction are reduced and (b) adaptation is largely blocked.
Collapse
Affiliation(s)
- M N Faddis
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
22
|
Nilsson BO, Hellstrand P. Effects of polyamines on intracellular calcium and mechanical activity in smooth muscle of guinea-pig taenia coli. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 148:37-43. [PMID: 8333295 DOI: 10.1111/j.1748-1716.1993.tb09529.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of the polyamines putrescine, spermidine and spermine on the mechanical activity in smooth muscle from guinea-pig taenia coli were investigated. Tissue concentrations of spermidine and spermine were about 240 and 160 nmol g-1, respectively, while the putrescine concentration was much lower (4 nmol g-1). Intracellular [Ca2+] was determined using the Fura-2 method and the effects of extracellularly applied polyamines were observed. Spermine (10(-5)-10(-3) mol l-1) dose-dependently inhibited spontaneous contractions as well as contractions induced by 20-25 mmol l-1 KCl, with 10(-3) mol l-1 spermine giving nearly total relaxation. Spermidine (10(-3) mol l-1) relaxed a 20 mmol l-1 KCl contracture, while putrescine had no effect. A decrease in intracellular [Ca2+] accompanied the relaxation induced by spermine. In contrast to the effects on spontaneous activity and intermediate [KCl], both the contraction and the accompanying increase in intracellular [Ca2+] induced by 90-120 mmol l-1 KCl were unaffected by spermine. Spermine did not affect the maximal Ca(2+)-induced force of chemically skinned taenia coli preparations, but a small potentiating effect on the Ca2+ sensitivity was observed. The results indicate that the relaxation induced by spermine depends on an intact cell membrane. Furthermore, the relaxing effect is due to decreased intracellular [Ca2+] and seems to occur only when the contraction is elicited by repetitive action potentials, and not by sustained depolarization.
Collapse
Affiliation(s)
- B O Nilsson
- Department of Physiology and Biophysics, University of Lund, Sweden
| | | |
Collapse
|
23
|
Shi B, Chou K, Haug A. Aluminium impacts elements of the phosphoinositide signalling pathway in neuroblastoma cells. Mol Cell Biochem 1993; 121:109-18. [PMID: 8391123 DOI: 10.1007/bf00925969] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inositol phosphate formation was examined in aluminium-treated murine neuroblastoma cells labelled with [3H]-myoinositol. Employing fluoride-stimulated intact cells, aluminium (0.2 microM to 1 mM) reduced inositol phosphate formation in a dose-dependent manner. In digitonin-permeabilized cells, stimulated with nonhydrolyzable GTP[S], inositol phosphate formation was also inhibited by increasing aluminium doses; the IC50 value was about 20 microM aluminium, while the inositol phosphate level was reduced 2.5 to 3 fold by 50 microM aluminium. The inhibitory effect of aluminium (50 microM) could not be reversed by increasing GTP[S] concentrations up to 500 microM. Prechelation of aluminium to citrate or EGTA completely abolished the aluminium-triggered inhibition of fluoride-stimulated inositol phosphate formation in intact cells, but had little effect on the inhibition of permeabilized cells stimulated with GTP[S]. In neuroblastoma cells phosphoinositide hydrolysis could be evoked either through a pathway involving the Mg2+/guanine nucleotide binding (Gp) protein, or via a pathway operative in the presence of high intracellular Ca2+ concentrations. In the Mg2+/Gp protein-mediated pathway, formation of inositol triphosphate, IP3, inositol diphosphate, IP2, and inositol monophosphate, IP, was apparently inhibited by aluminium in an interdependent manner. As to the Ca(2+)-mediated pathway, aluminium application mainly diminished the release of IP3. Following interiorization, aluminium thus acts upon elements critical for phosphoinositide-associated signal transduction. An aluminium target apparently resides on the Gp protein. Phosphatidylinositol-4,5-diphosphate-specific phospholipase C probably harbours a second aluminium target.
Collapse
Affiliation(s)
- B Shi
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
24
|
LaBelle EF, Gu H, Trajkovic S. Norepinephrine stimulates the direct breakdown of phosphatidyl inositol in rat tail artery. J Cell Physiol 1992; 153:234-43. [PMID: 1429846 DOI: 10.1002/jcp.1041530203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When segments of rat tail artery were labeled with [3H]inositol and then stimulated with norepinephrine (NE), the inositol phosphates produced were primarily IP and IP2, together with a small but significant amount of Ins(1,4,5)P3 and a very small amount of Ins(1,3,4,5)P4. It has been unclear in many studies whether or not the relatively large levels of IP and IP2 produced in [3H]inositol-labeled tissue represent indirect products of phosphatidyl inositol(4,5)bis phosphate breakdown (through Ins(1,4,5)P3) or direct products of phosphatidyl inositol 4 monophosphate and phosphatidyl inositol breakdown. In order to answer this question tail artery segments were prelabeled with [3H]inositol and then permeabilized with beta escin and stimulated with norepinephrine and GTP gamma S, so that increases in IP, IP2, and Ins(1,4,5)P3 were still observed. If these permeable segments were stimulated with agonist in the presence of compounds known to inhibit Ins(1,4,5)P3 5-phosphatase, such as glucose 6P, (2,3)diphosphoglycerate, or Ins(1,4,5)P3, the levels of labeled Ins(1,4,5)P3 and labeled IP2 were increased, while the level of stimulated labeled IP was unchanged. This indicated that some of the IP2 and IP formed in these cells was produced from PIP2 but that some of these compounds might be formed from PIP or PI. When the isomers of inositol monophosphate, Ins 1P and Ins 4P, were separated by HPLC, it was shown that after prelabeled tail artery was stimulated by norepinephrine for periods of 1-2 min, the predominant isomer formed was Ins 4P, indicating either PIP2 or PIP as the source. However, after 5-20 min stimulation, both Ins 1P and Ins 4P were formed in equal amounts, suggesting that during sustained stimulation of smooth muscle PI itself was broken down directly. Therefore it appears that within 1-2 min of norepinephrine addition to vascular smooth muscle the bulk of the IP and IP2 produced are derived from PIP2 via IP3, while after 20 min of norepinephrine treatment much of the IP comes directly from PI. This suggests that the regulation of PLC in this tissue is more complicated than has been previously believed.
Collapse
Affiliation(s)
- E F LaBelle
- Bockus Research Institute, Graduate Hospital, Philadelphia, Pennsylvania 19146
| | | | | |
Collapse
|
25
|
Shi B, Haug A. Aluminium interferes with signal transduction in neuroblastoma cells. PHARMACOLOGY & TOXICOLOGY 1992; 71:308-13. [PMID: 1333597 DOI: 10.1111/j.1600-0773.1992.tb00990.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of aluminium on inositol phosphate formation were examined in murine neuroblastoma cells labelled with [3H]-myo-inositol. In aluminium-pretreated cells, the bradykinin-triggered inositol triphosphate, IP3, release and the change in intracellular [Ca2+] were appreciably less compared with the control group. Stimulating digitonin-permeabilized cells with non-hydrolyzable guanosine 5'-[gamma-thio]-triphosphate, GTP[S], inositol phosphate formation decreased in the presence of aluminium. A primary target of aluminium toxicity may reside on the guanine nucleotide-binding protein(Gp)/phospholipase C system, at a site different from that of the GTP[S] binding site.
Collapse
Affiliation(s)
- B Shi
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824
| | | |
Collapse
|
26
|
Alexander SP, Kendall DA, Hill SJ. Excitatory Amino Acid-Induced Phosphoinositide Turnover in Guinea Pig Cerebral Cortical Slices: Selective Enhancement by Spermine of the Response to DL-1-Aminocyclopentane- trans-1, 3-Dicarboxylate. J Neurochem 1992; 59:610-5. [PMID: 1352801 DOI: 10.1111/j.1471-4159.1992.tb09413.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the presence of 1 mM spermine, accumulations of 3H labelled inositol phosphates elicited by quisqualate (100 microM) and 1-aminocyclopentane-trans-1,3-dicarboxylate (t-ACPD, 300 microM) were significantly enhanced by 21 and 26%, respectively, without a significant alteration in the accumulation elicited by L-glutamate (10 mM) or DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionate (10 microM). Analysis of concentration-response data indicated that the presence of spermine led to an increase in the maximal response to t-ACPD without altering the EC50 value. The stimulatory effect of spermine on the accumulation of t-ACPD-elicited 3H-inositol phosphates was not reversed by ifenprodil or diethylenetriamine (putative polyamine site antagonists), by agents that activate or inhibit protein kinase C, or by calcium channel blockade, but was abolished in the presence of elevated extracellular calcium ion concentration. We conclude that spermine enhances the phosphoinositide turnover in guinea pig cerebral cortical slices elicited by the "metabotropic" excitatory amino acid receptor. The site through which the action of spermine is mediated remains to be defined, but it is apparently distinct from that suggested to modulate N-methyl-D-aspartate receptor activity.
Collapse
Affiliation(s)
- S P Alexander
- Department of Physiology and Pharmacology, University of Nottingham Medical School, Queen's Medical Centre, England, U.K
| | | | | |
Collapse
|
27
|
Ogata K, Tamura M, Takeshita M. Spermine down-regulates superoxide generation induced by fMet-Leu-Phe in electropermeabilized human neutrophils. Biochem Biophys Res Commun 1992; 182:20-6. [PMID: 1310014 DOI: 10.1016/s0006-291x(05)80106-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effect of spermine, a naturally occurring polyamine, was investigated on superoxide generation in intact and electropermeabilized human neutrophils. Spermine suppressed N-formyl-methionyl leucyl phenylalanine (fMLP)-induced superoxide generation in permeabilized cells by reducing the rate and shortening the duration time. The inhibition was specific for spermine comparing with its precursor amines, spermidine and putrescine. The inhibition was not observed when cells were preincubated with spermine without permeabilization. Concanavalin A-induced superoxide generation was also down-regulated by spermine in permeabilized cells, but the activation induced by non receptor-mediated agonist (dioctanoylglycerol, phorbol myristate acetate, and arachidonate) was not affected by spermine. On the other hand, GTP-gamma-S-induced activation of superoxide generation was substantially suppressed by spermine. These results indicate that spermine inhibition occurs at a step prior to protein kinase C in signal transduction or in a pathway which is independent of the kinase.
Collapse
Affiliation(s)
- K Ogata
- Department of Biochemistry, Medical College of Oita, Japan
| | | | | |
Collapse
|
28
|
Haber MT, Fukui T, Lebowitz MS, Lowenstein JM. Activation of phosphoinositide-specific phospholipase C delta from rat liver by polyamines and basic proteins. Arch Biochem Biophys 1991; 288:243-9. [PMID: 1654825 DOI: 10.1016/0003-9861(91)90191-k] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phospholipase C from rat liver with a molecular weight of 87,000 (PLC delta) is stimulated by polyamines, basic proteins, and basic polyamino acids. The activation occurs in both the presence and the absence of detergents. Half-maximum activation by spermine is observed at 0.15 mM, with optimum effects between 0.2 and 0.5 mM. Spermine inhibits above 0.5 mM. Half-maximum activation by spermidine and putrescine is observed at 0.9 and 6 mM, respectively, with optimum effects at 2 and 5 mM, respectively. These polyamines also inhibit at higher concentrations. Neomycin activates the enzyme with an optimum concentration of 10 microM, but maximum activation is less than with polyamines. Half-maximum activation by histone 2B occurs at 0.5 micrograms/ml (36 nM), with maximum stimulation at 1.5 micrograms/ml. Other histones, protamine, melittin, poly-L-ornithine, poly-L-lysine, poly-D-lysine, and poly-L-arginine, activate optimally at 3-10 micrograms/ml. Myelin basic protein and lysozyme activate optimally at 50-100 micrograms/ml. Typical activations are three- to eightfold, but under some conditions the enzyme shows little or no activity in the absence of basic activators. The basic activators lower the salt concentration required for maximal activity. In the case of the detergent-micelle assay, histone shifts the optimum NaCl concentration from 350 to 200 mM for PIP2, from 260 to 100 mM for PIP, and from 150 to 0 mM for PI. Histone potentiates the activation by Ca2+, but does not shift the optimum Ca2+ concentration. The optimum salt and Ca2+ concentrations are linked, such that a decrease in the concentration of one decreases the optimum concentration of the other. Activation by histone is diminished by MgCl2 in a concentration-dependent manner.
Collapse
Affiliation(s)
- M T Haber
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | | | | | |
Collapse
|
29
|
Scalabrino G, Lorenzini EC. Polyamines and mammalian hormones. Part II: Paracrine signals and intracellular regulators. Mol Cell Endocrinol 1991; 77:37-56. [PMID: 1667762 DOI: 10.1016/0303-7207(91)90057-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Scalabrino
- Institute of General Pathology, University of Milan, Italy
| | | |
Collapse
|
30
|
Meldrum E, Parker PJ, Carozzi A. The PtdIns-PLC superfamily and signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1092:49-71. [PMID: 1849017 DOI: 10.1016/0167-4889(91)90177-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Meldrum
- Protein Phosphorylation Laboratory, Imperial Cancer Research Fund, London, U.K
| | | | | |
Collapse
|
31
|
O'Neill C, Fowler CJ, Wiehager B, Alafuzoff I, Winblad B. Assay of a phosphatidylinositol bisphosphate phospholipase C activity in postmortem human brain. Brain Res 1991; 543:307-14. [PMID: 1647835 DOI: 10.1016/0006-8993(91)90042-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activity of a phospholipase C which hydrolyses exogenous phosphatidylinositol-4,5-bisphosphate [( 3H]PtdIns(4,5)P2) in membranes prepared from frozen postmortem human brain and rat brain was investigated. Enzyme characteristics were essentially similar in membranes prepared from frozen postmortem brain and fresh or frozen rat brain. The [3H]PtdIns(4,5)P2 solubilization and assay procedure employed resulted in an efficient availability of the substrate for the enzyme. The non-hydrolysable guanosine triphosphate analogue guanosine 5'-[beta gamma-imido]diphosphate (Gpp[NH]p) stimulated hydrolysis rapidly with a half maximum activity of approximately 25 microM. This stimulation was not specific for guanine nucleotides as ATP, imidodiphosphate and pyrophosphate also caused enzyme activation. However these activation effects could be distinguished by the polyanion spermine. The non-hydrolysable guanine dinucleotide analogue guanosine 5'-[beta-thio]diphosphate acted as a partial agonist thereby inhibiting the stimulatory effect of Gpp[NH]p. Gpp[NH]p-stimulated enzyme activity showed a maximum response in the presence of 1 mM deoxycholate and displayed a pH optima in the range 7.0-7.5. PtdIns(4,5)P2 hydrolysis was observed in the absence of added calcium, but hydrolytic cleavage was inhibited in the presence of divalent ion chelators. Magnesium inhibited PtdIns(4,5)P2 hydrolysis in a concentration-dependent manner. Elucidation of these aspects of the phosphatidylinositol cycle in normal human postmortem brain will permit comparative studies in CNS disease states.
Collapse
Affiliation(s)
- C O'Neill
- Department of Geriatric Medicine, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
32
|
Späth M, Woscholski R, Schächtele C. Characterization of multiple forms of phosphoinositide-specific phospholipase C from bovine aorta. Cell Signal 1991; 3:305-10. [PMID: 1657096 DOI: 10.1016/0898-6568(91)90059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three forms (I, II and III) of phospholipase C were separated from the cytosol of bovine aorta by chromatography on Blue Sepharose. All three forms showed an increase of enzyme activity when free Ca2+ in the assay was raised between 40 microM and 9 mM. The pH optimum was in the range of 6.0 to 6.5 for each subtype. Marked differences in thermostability were found when the three enzyme forms were pre-incubated at 50 degrees C prior to the assay. All three forms were able to hydrolyse phosphatidylinositol as well as phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. In contrast, when phosphatidylcholine was used as substrate, no enzyme activity was observed. Spermine and spermidine, but not putrescine, were able to stimulate form I and III; neomycin sulphate inhibited all three subtypes.
Collapse
Affiliation(s)
- M Späth
- Physiologisches Institut Universität Freiburg, Germany
| | | | | |
Collapse
|
33
|
Rugolo M, Antognoni F, Flamigni A, Zannoni D. Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria. PLANT PHYSIOLOGY 1991; 95:157-63. [PMID: 16667944 PMCID: PMC1077499 DOI: 10.1104/pp.95.1.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effect of polyamines (putrescine, spermine, and spermidine) on the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L. cv. OB1) mitochondria, have been studied. Addition of spermine and/or spermidine to a suspension of mitochondria in a low-cation medium (2 millimolar-K(+)) caused a decrease in the apparent K(m) and an increase in the apparent V(max) for the oxidation of exogenous NADH. These polycations released by screening effect the mitochondrially induced quenching of 9-aminoacridine fluorescence, their efficiency being dependent on the valency of the cation (C(4+) > C(3+)). Conversely, putrescine only slightly affected both kinetic parameters of exogenous NADH oxidation and the number of fixed charges on the membranes. Spermine and spermidine, but not putrescine, decreased the apparent K(m) for Ca(2+) from about 1 to about 0.2 micromolar, required to activate external NADH oxidation in a high-cation medium, containing physiological concentrations of Pi, Mg(2+) and K(+). The results are interpreted as evidence for a role of spermine and spermidine in the modulation of exogenous NADH oxidation by plant mitochondria in vivo.
Collapse
Affiliation(s)
- M Rugolo
- Department of Biology, Biochemistry Laboratory, University of Bologna, I-40126 Bologna, Italy
| | | | | | | |
Collapse
|
34
|
Missiaen L, Wuytack F, Raeymaekers L, De Smedt H, Droogmans G, Declerck I, Casteels R. Ca2+ extrusion across plasma membrane and Ca2+ uptake by intracellular stores. Pharmacol Ther 1991; 50:191-232. [PMID: 1662401 DOI: 10.1016/0163-7258(91)90014-d] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this review is to summarize the various systems that remove Ca2+ from the cytoplasm. We will initially focus on the Ca2+ pump and the Na(+)-Ca2+ exchanger of the plasma membrane. We will review the functional regulation of these systems and the recent progress obtained with molecular-biology techniques, which pointed to the existence of different isoforms of the Ca2+ pump. The Ca2+ pumps of the sarco(endo)plasmic reticulum will be discussed next, by summarizing the discoveries obtained with molecular-biology techniques, and by reviewing the physiological regulation of these proteins. We will finally briefly review the mitochondrial Ca(2+)-uptake mechanism.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Molecular Signalling, Department of Zoology, Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
35
|
Wojcikiewicz RJ, Cooke AM, Potter BV, Nahorski SR. Inhibition of inositol 1,4,5-trisphosphate metabolism in permeabilised SH-SY5Y human neuroblastoma cells by a phosphorothioate-containing analogue of inositol 1,4,5-trisphosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:459-67. [PMID: 2209601 DOI: 10.1111/j.1432-1033.1990.tb19248.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrically permeabilised [3H]inositol-labelled SH-SY5Y human neuroblastoma cells were employed to examine the effects of two synthetic, phosphatase-resistant analogues of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on the metabolism of cell membrane-derived [3H]Ins(1,4,5)P3 or exogenous [5-32P]Ins(1,4,4)P3. Incubation of permeabilised SH-SY5Y cells for 5 min at 37 degrees C with carbachol and guanosine 5'-[gamma-thio]triphosphate caused a decrease in [3H]phosphoinositol phospholipid levels and an increase in [3H]inositol phosphate accumulation with inositol 4-phosphate, inositol 1,4-bisphosphate, Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate comprising approximately 79%, 16%, 3% and 2%, respectively, of the increase. Inositol 1-phosphate levels did not increase upon stimulation, nor was inositol 4-phosphate converted rapidly to inositol. In parallel incubations, the analogues, DL-inositol 1,4,5-trisphosphorothioate (DL-InsP3S3) and DL-inositol 1,4-bisphosphate 5-phosphorothioate (DL-InsP3S), and synthetic racemic Ins(1,4,5)P3 (DL-InsP3), altered the profile of the [3H]inositol phosphates recovered and led, at millimolar concentrations, to a 10-15-fold increase in [3H]Ins(1,4,5)P3. The extent of inhibition of [3H]Ins(1,4,5)P3 metabolism was, however, greatest in the presence of synthetic D-Ins(1,4,5)P3 (greater than or equal to 5 mM), when [3H]Ins(1,4,5)P3 comprised approximately 50% of the increase in total [3H]inositol phosphates. Thus, under these conditions, at least 50% of [3H]inositol phosphates were derived from [3H]phosphatidylinositol 4,5-bisphosphate. [32P]Pi release from exogenous [5-32P]Ins(1,4,5)P3 was also inhibited by DL-InsP3S3, DL-InsP3S and DL-InsP3, with half-maximal inhibition at approximately 50 microM, 160 microM and 240 microM respectively. These actions were approximately ten times more potent than the effects of these compounds on [3H]inositol phosphate accumulation, indicating that homogenous mixing of exogenous and cell-membrane-derived Ins(1,4,5)P3 does not occur. These findings indicate that DL-InsP3S3 and DL-InsP3S inhibit Ins(1,4,5)P3 5-phosphatase. In contrast, the effects of synthetic DL-InsP3 and D-Ins(1,4,5)P3 are due to isotopic dilution. Whilst DL-InsP3S3 was the most potent inhibitor of dephosphorylation of exogenous or cell-membrane-derived Ins(1,4,5)P3, it was the weakest inhibitor of 3-kinase-catalysed Ins(1,4,5)P3 phosphorylation. Similarly, although approximately 50 times less potent than DL-InsP3S3, 2,3-diphosphoglycerate inhibited Ins(1,4,5)P3 5-phosphatase activity and was apparently without effect of Ins(1,4,5)P3 3-kinase activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R J Wojcikiewicz
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | | | | | |
Collapse
|
36
|
Pullan LM, Keith RA, LaMonte D, Stumpo RJ, Salama AI. The polyamine spermine affects omega-conotoxin binding and function at N-type voltage-sensitive calcium channels. JOURNAL OF AUTONOMIC PHARMACOLOGY 1990; 10:213-9. [PMID: 2172254 DOI: 10.1111/j.1474-8673.1990.tb00020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The effects of the polyamines, spermine and spermidine on neuronal N-type voltage-sensitive calcium channels were investigated using the binding and function of the ligand omega-conotoxin GVIA (omega-CT). 2. Spermine and spermidine enhanced (EC50 approximately 0.16 and 0.45 microM) and, at higher concentrations, inhibited (IC50 of 9 and 240 microM) the binding of [125I]omega-CT to rat hippocampal synaptosomes. 3. Spermine and, less potently, spermidine inhibited the neurotransmitter-mediated, omega-CT-sensitive, electrical-field-stimulated contractile responses of the rat vas deferens. 4. The polyamines also inhibited the phenylephrine-evoked contractile responses of the vas deferens with the same rank order, consistent with a postsynaptic mechanism of inhibition. 5. However, pre-exposure to spermine prevented the irreversible inhibition of vas deferens twitch responses by omega-CT (previously found to be presynaptic). The prevention of inhibition by omega-CT demonstrates that the neuronal binding of spermine and omega-CT is mutually exclusive. Thus spermine (and presumably spermidine at higher concentrations) appears to modulate the actions of omega-CT at N-type voltage-sensitive calcium channels.
Collapse
Affiliation(s)
- L M Pullan
- ICI Pharmaceuticals Group, ICI Americas Inc., Wilmington, Delaware 19897
| | | | | | | | | |
Collapse
|
37
|
Cubitt AB, Zhang B, Gershengorn MC. Analysis by base exchange of thyrotropin-releasing hormone responsive and unresponsive inositol lipid pools in rat pituitary tumor cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38728-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Pittner RA, Fain JN. Effects of insulin on inositol phosphate production in cultured rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1043:218-24. [PMID: 2180488 DOI: 10.1016/0005-2760(90)90299-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.
Collapse
Affiliation(s)
- R A Pittner
- Department of Biochemistry, University of Tennessee, Memphis 38163
| | | |
Collapse
|
39
|
Rottenberg H, Marbach M. Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1016:77-86. [PMID: 2310743 DOI: 10.1016/0005-2728(90)90009-s] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.
Collapse
Affiliation(s)
- H Rottenberg
- Pathology Department, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
40
|
Wojcikiewicz RJ, Lambert DG, Nahorski SR. Regulation of muscarinic agonist-induced activation of phosphoinositidase C in electrically permeabilized SH-SY5Y human neuroblastoma cells by guanine nucleotides. J Neurochem 1990; 54:676-85. [PMID: 2153757 DOI: 10.1111/j.1471-4159.1990.tb01924.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
myo-[3H]Inositol-labelled SH-SY5Y cells were permeabilized with electrical discharges. 3H-Inositol phosphate formation in cells shown to be fully permeable was stimulated by the muscarinic agonist carbachol, by guanosine 5'-(gamma-thio)triphosphate [GTP(S)], and by guanosine 5'-(beta gamma-imido)diphosphate (GppNHp). Synergism was observed on coincubation of these GTP analogues with carbachol. GTP was also stimulatory and guanosine 5'-(beta-thio)diphosphate was inhibitory in the presence of agonist. Atropine blocked the effects of carbachol. Stimulation by GTP(S) (0.1 mM) occurred after a 1-2-min lag, whereas Ca2+ (0.5 mM), carbachol (1 mM), and carbachol plus GTP(S) stimulated without delay. The effects of carbachol plus GTP(S) but not those of Ca2+ were inhibited by spermine (4 mM). Accumulation of 3H-inositol phosphates was enhanced by Li+ (4 mM) only in intact cells. In intact or permeabilized cells, the "partial" agonist arecoline was maximally 40-50% as efficacious as carbachol. In permeabilized cells, the maximal effects of carbachol and arecoline were enhanced 2.8- and 5.3-fold, respectively, by 0.1 mM GTP(S), but only the EC50 for carbachol was substantially reduced. The binding affinity of carbachol but not that of arecoline in permeabilized cells was significantly reduced by 0.1 mM GppNHp. These data indicate that a guanine nucleotide-binding regulatory protein is involved in coupling muscarinic receptors to phosphoinositidase C in SH-SY5Y cells and that the activity of this protein influences the relationship between receptor occupation and phosphoinositide response.
Collapse
Affiliation(s)
- R J Wojcikiewicz
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | | | |
Collapse
|
41
|
Missiaen L, Wuytack F, Raeymaekers L, De Smedt H, Casteels R. Polyamines and neomycin inhibit the purified plasma-membrane Ca2+ pump by interacting with associated polyphosphoinositides. Biochem J 1989; 261:1055-8. [PMID: 2552987 PMCID: PMC1138938 DOI: 10.1042/bj2611055] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the effect of spermine, spermidine, putrescine and neomycin on the activity of the plasma-membrane Ca2+ pump and on its stimulation by negatively charged phospholipids and calmodulin. Millimolar concentrations of spermine and to a lesser extent of spermidine decreased the ATPase activity in the presence of phosphatidylinositol 4,5-bisphosphate (PIP2), without affecting the stimulation by phosphatidylinositol 4-phosphate (PIP). Sub-millimolar concentrations of neomycin inhibited the stimulation of the ATPase by PIP and by PIP2. Neomycin was more effective at the higher concentrations of PIP and PIP2. We discuss that these findings are compatible with the hypothesis that PIP and PIP2 bind to the ATPase and that several of these molecules have to be available to stimulate the ATPase.
Collapse
Affiliation(s)
- L Missiaen
- Physiological Laboratory, K. U. Leuven, Campus Gasthuisberg, Belgium
| | | | | | | | | |
Collapse
|
42
|
Wojcikiewicz RJ, Nahorski SR. Phosphoinositide hydrolysis in permeabilized SH-SY5Y human neuroblastoma cells is inhibited by mastoparan. FEBS Lett 1989; 247:341-4. [PMID: 2541020 DOI: 10.1016/0014-5793(89)81366-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of mastoparan on phospholipase C-catalysed phosphoinositide hydrolysis were examined in [3H]inositol-labelled human neuroblastoma SH-SY5Y cells. [3H]Inositol phosphate formation in intact cells was not altered by 20 microM mastoparan. In contrast, [3H]inositol phosphate formation in electrically permeabilized cells stimulated with guanosine 5'-[gamma-thio]triphosphate and/or carbachol was inhibited by mastoparan with half-maximal effects at approx. 3 microM. The peptide was much less effective in inhibiting stimulatory effects of Ca2+. Similar but less potent inhibitory effects were observed with the cations, neomycin and spermine, indicating that direct interaction of mastoparan with polyphosphoinositides might account for its inhibitory effects on inositol phosphate formation.
Collapse
Affiliation(s)
- R J Wojcikiewicz
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | |
Collapse
|