1
|
Schmidt CQ, Höchsmann B, Schrezenmeier H. The complement model disease paroxysmal nocturnal hemoglobinuria. Eur J Immunol 2024; 54:e2350817. [PMID: 39101294 DOI: 10.1002/eji.202350817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We describe initial, current, and future aspects of complement activation and inhibition in the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH). PNH is a rare but severe hematological disorder characterized by complement-mediated intravascular hemolysis resulting in anemia and severe thrombosis. Insights into the complement-mediated pathophysiology ultimately led to regulatory approval of the first-in-class complement inhibitor, eculizumab, in 2007. This anti-complement C5 therapy resulted in the stabilization of many hematologic parameters and dramatically reduced the often fatal, coagulant-resistant thrombotic events. Despite the remarkable clinical success, a substantial proportion of PNH patients experience suboptimal clinical responses during anti-C5 therapy. We describe the identification and mechanistic dissection of four unexpected processes responsible for such suboptimal clinical responses: (1) pharmacokinetic and (2) pharmacodynamic intravascular breakthrough hemolysis, (3) continuing low-level residual intravascular hemolysis, and (4) extravascular hemolysis. Novel complement therapeutics mainly targeting different complement proteins proximal in the cascade attempt to address these remaining problems. With five approved complement inhibitors in the clinic and many more being evaluated in clinical trials, PNH remains one of the complement diseases with the highest intensity of clinical research. Mechanistically unexpected breakthrough events occur not only with C5 inhibitors but also with proximal pathway inhibitors, which require further mechanistic elaboration.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Centre, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
2
|
Bai T, Cui B, Xing M, Chen S, Zhu Y, Lin D, Guo Y, Du M, Wang X, Zhou D, Yan H. Stable inhibition of choroidal neovascularization by adeno-associated virus 2/8-vectored bispecific molecules. Gene Ther 2024; 31:511-523. [PMID: 38961279 DOI: 10.1038/s41434-024-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.
Collapse
Affiliation(s)
- Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Dongxue Lin
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
| |
Collapse
|
3
|
Whinnery CD, Nie Y, Boskovic DS, Soriano S, Kirsch WM. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. Brain Sci 2024; 14:601. [PMID: 38928601 PMCID: PMC11202098 DOI: 10.3390/brainsci14060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cerebral amyloid angiopathy is characterized by a weakening of the small- and medium-sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and varying cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody, and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in a total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. The overexpression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reductions in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.
Collapse
Affiliation(s)
- Carson D. Whinnery
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Ying Nie
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
| | - Salvador Soriano
- Laboratory of Neurodegenerative Diseases, Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wolff M. Kirsch
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (C.D.W.); (D.S.B.); (W.M.K.)
- Neurosurgery Center for Research, Training and Education, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| |
Collapse
|
4
|
Whinnery C, Nie Y, Boskovic DS, Soriano S, Kirsch WM. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. RESEARCH SQUARE 2024:rs.3.rs-4165045. [PMID: 38645247 PMCID: PMC11030535 DOI: 10.21203/rs.3.rs-4165045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cerebral amyloid angiopathy is characterized by a weakening of the small and medium sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and vary between cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. Over-expression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reduction in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.
Collapse
|
5
|
Massri M, Toonen EJ, Sarg B, Kremser L, Grasse M, Fleischer V, Torres-Quesada O, Hengst L, Skjoedt MO, Bayarri-Olmos R, Rosbjerg A, Garred P, Orth-Höller D, Prohászka Z, Würzner R. Complement C7 and clusterin form a complex in circulation. Front Immunol 2024; 15:1330095. [PMID: 38333209 PMCID: PMC10850381 DOI: 10.3389/fimmu.2024.1330095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum‑purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size‑exclusion chromatography. Results Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Sarg
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marco Grasse
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Fleischer
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Immunology & Microbiology , University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
- MB-LAB Clinical Microbiology Laboratory, Innsbruck, Austria
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Lu J, Zhao Z, Li Q, Pang Y. Review of the unique and dominant lectin pathway of complement activation in agnathans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104593. [PMID: 36442606 DOI: 10.1016/j.dci.2022.104593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
As the most primitive vertebrates, lampreys are significant in understanding the early origin and evolution of the vertebrate innate and adaptive immune systems. The complement system is a biological response system with complex and precise regulatory mechanisms and plays an important role in innate and adaptive immunity. It consists of more than 30 distinct components, including intrinsic components, regulatory factors, and complement receptors. Complement system is the humoral backbone of the innate immune defense and complement-like factors have also been found in cyclostomes. Our knowledge as such in lamprey has dramatically increased in the recent years. The searching for complement components in the reissner lamprey Lethenteron reissneri genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in lamprey. This review, summarizes the key themes and recent updates on the complement system of agnathans and discusses the individual complement components of lampreys, and critically compare their functions to that of mammalian complement components. Interestingly, the adaptive immune system of agnathans differs from that of gnathostomes. Lamprey complement components also display some distinctive features, such as lampreys are characterized by the variable lymphocyte receptors (VLRs)-based alternative adaptive immunity. This review may serve as important literature for deducing the evolution of the immune system from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Jiali Lu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Zhisheng Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
8
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Li L, Ding P, Lv X, Xie S, Li L, Chen J, Zhou D, Wang X, Wang Q, Zhang W, Xu Y, Lu R, Hu W. CD59-Regulated Ras Compartmentalization Orchestrates Antitumor T-cell Immunity. Cancer Immunol Res 2022; 10:1475-1489. [PMID: 36206575 PMCID: PMC9716252 DOI: 10.1158/2326-6066.cir-21-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
Abstract
T cell-mediated immunotherapy represents a promising strategy for cancer treatment; however, it has achieved satisfactory clinical responses in only a limited population. Thus, a broader view of the T-cell immune response is required. The Ras/MAPK pathway operates in many important signaling cascades and regulates multiple cellular activities, including T-cell development, proliferation, and function. Herein, we found that the typical membrane-bound complement regulatory protein CD59 is located intracellularly in T cells and that the intracellular form is increased in the T cells of patients with cancer. When intracellular CD59 is abundant, it facilitates Ras transport to the inner plasma membrane via direct interaction; in contrast, when CD59 is insufficient or deficient, Ras is arrested in the Golgi, thus enhancing Ras/MAPK signaling and T-cell activation, proliferation, and function. mCd59ab deficiency almost completely abolished tumor growth and metastasis in tumor-bearing mice, in which CD4+ and CD8+ T cells were significantly increased compared with their proportions in wild-type littermates, and their proportions were inversely correlated with tumor growth. Using bone marrow transplantation and CD4+ and CD8+ T-cell depletion assays, we further demonstrated the critical roles of these cells in the potent antitumor activity induced by mCd59ab deficiency. Reducing CD59 expression also enhanced MAPK signaling and T-cell activation in human T cells. Therefore, the subcellular compartmentalization of Ras regulated by intracellular CD59 provides spatial selectivity for T-cell activation and a potential T cell-mediated immunotherapeutic strategy.
Collapse
Affiliation(s)
- Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaochao Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqing Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Corresponding Author: Weiguo Hu, Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China. Phone: 213-477-7590; Fax: 216-417-2585; E-mail:
| |
Collapse
|
10
|
So BYF, Chan GCW, Yap DYH, Chan TM. The role of the complement system in primary membranous nephropathy: A narrative review in the era of new therapeutic targets. Front Immunol 2022; 13:1009864. [PMID: 36353636 PMCID: PMC9639362 DOI: 10.3389/fimmu.2022.1009864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/14/2022] Open
Abstract
Primary membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic kidney disease (CKD) in the adult population. Although the discovery of different autoantibodies against glomerular/podocytic antigens have highlighted the role of B cells in the pathogenesis of MN, suboptimal response or even resistance to B cell-directed therapies occurs, suggesting that other pathophysiological mechanisms are involved in mediating podocyte injury. The complement system plays an important role in the innate immune response to infection, and dysregulation of the complement system has been observed in various kidney diseases. There is compelling evidence of complement cascade activation in primary MN, with the mannose-binding lectin (MBL) and alternative pathways particularly implicated. With appropriate validation, assays of complements and associated activation products could hold promise as adjunctive tools for non-invasive disease monitoring and prognostication. While there is growing interest to target the complement system in MN, there is concern regarding the risk of infection due to encapsulated organisms and high treatment costs, highlighting the need for clinical trials to identify patients most likely to benefit from complement-directed therapies.
Collapse
|
11
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
12
|
Kolka CM, Webster J, Lepletier A, Winterford C, Brown I, Richards RS, Zelek WM, Cao Y, Khamis R, Shanmugasundaram KB, Wuethrich A, Trau M, Brosda S, Barbour A, Shah AK, Eslick GD, Clemons NJ, Morgan BP, Hill MM. C5b-9 Membrane Attack Complex Formation and Extracellular Vesicle Shedding in Barrett's Esophagus and Esophageal Adenocarcinoma. Front Immunol 2022; 13:842023. [PMID: 35345676 PMCID: PMC8957096 DOI: 10.3389/fimmu.2022.842023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
The early complement components have emerged as mediators of pro-oncogenic inflammation, classically inferred to cause terminal complement activation, but there are limited data on the activity of terminal complement in cancer. We previously reported elevated serum and tissue C9, the terminal complement component, in esophageal adenocarcinoma (EAC) compared to the precursor condition Barrett’s Esophagus (BE) and healthy controls. Here, we investigate the level and cellular fates of the terminal complement complex C5b-9, also known as the membrane attack complex. Punctate C5b-9 staining and diffuse C9 staining was detected in BE and EAC by multiplex immunohistofluorescence without corresponding increase of C9 mRNA transcript. Increased C9 and C5b-9 staining were observed in the sequence normal squamous epithelium, BE, low- and high-grade dysplasia, EAC. C5b-9 positive esophageal cells were morphologically intact, indicative of sublytic or complement-evasion mechanisms. To investigate this at a cellular level, we exposed non-dysplastic BE (BAR-T and CP-A), high-grade dysplastic BE (CP-B and CP-D) and EAC (FLO-1 and OE-33) cell lines to the same sublytic dose of immunopurified human C9 (3 µg/ml) in the presence of C9-depleted human serum. Cellular C5b-9 was visualized by immunofluorescence confocal microscopy. Shed C5b-9 in the form of extracellular vesicles (EV) was measured in collected conditioned medium using recently described microfluidic immunoassay with capture by a mixture of three tetraspanin antibodies (CD9/CD63/CD81) and detection by surface-enhanced Raman scattering (SERS) after EV labelling with C5b-9 or C9 antibody conjugated SERS nanotags. Following C9 exposure, all examined cell lines formed C5b-9, internalized C5b-9, and shed C5b-9+ and C9+ EVs, albeit at varying levels despite receiving the same C9 dose. In conclusion, these results confirm increased esophageal C5b-9 formation during EAC development and demonstrate capability and heterogeneity in C5b-9 formation and shedding in BE and EAC cell lines following sublytic C9 exposure. Future work may explore the molecular mechanisms and pathogenic implications of the shed C5b-9+ EV.
Collapse
Affiliation(s)
- Cathryn M Kolka
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Julie Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Clay Winterford
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ian Brown
- Envoi Pathology, Herston, QLD, Australia
| | - Renee S Richards
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Wioleta M Zelek
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Yilang Cao
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ramlah Khamis
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Karthik B Shanmugasundaram
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sandra Brosda
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Andrew Barbour
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Guy D Eslick
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Digestive Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Clemons
- Cancer Research Division, Peter MaCallum Cancer Centre, Melbourne VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - B Paul Morgan
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
14
|
Park CH, Lee HS, Kwak MS, Shin JS. Inflammasome-Dependent Peroxiredoxin 2 Secretion Induces the Classical Complement Pathway Activation. Immune Netw 2021; 21:e36. [PMID: 34796040 PMCID: PMC8568911 DOI: 10.4110/in.2021.21.e36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitously expressed peroxidases that reduce hydrogen peroxide or alkyl peroxide production in cells. Prxs are released from cells in response to various stress conditions, and they function as damage-associated molecular pattern molecules. However, the secretory mechanism of Prxs and their roles have not been elucidated. Thus, we aimed to determine whether inflammasome activation is a secretory mechanism of Prxs and subsequently identify the effect of the secreted Prxs on activation of the classical complement pathway. Using J774A.1, a murine macrophage cell line, we demonstrated that NLRP3 inflammasome activation induces Prx1, Prx2, Prx5, and Prx6 secretion in a caspase-1 dependent manner. Using HEK293T cells with a transfection system, we revealed that the release of Prx1 and Prx2 relies on gasdermin-D (GSDMD)-mediated secretion. Next, we confirmed the binding of both Prx1 and Prx2 to C1q; however, only Prx2 could induce the C1q-mediated classical complement pathway activation. Collectively, our results suggest that inflammasome activation is a secretory mechanism of Prxs and that GSDMD is a mediator of their secretion. Moreover, secreted Prx1 and Prx2 bind with C1q, but only Prx2 mediates the classical complement pathway activation.
Collapse
Affiliation(s)
- Cheol Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun Sook Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Ma H, Chen Y, Yu M, Chen X, Qi L, Wei S, Fan Q, Xu Q, Zhan M, Sha Z. Immune role of the complement component 6 gene and its associated novel miRNA, miR-727, in half-smooth tongue sole (Cynoglossus semilaevis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104156. [PMID: 34077766 DOI: 10.1016/j.dci.2021.104156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The complement component 6 (C6) gene is a component of the membrane attack complex (MAC), which causes rapid lytic destruction of bacteria. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene stability, including that of immune genes. However, current research on the function of C6 and its regulation by miRNAs is lacking. In the present study, we identified and characterized C6 and a novel miRNA, miR-727 (designated CsC6 and Cse-miR-727, respectively), of the half-smooth tongue sole (Cynoglossus semilaevis) that responded to infection with Vibrio anguillarum, a Gram-negative pathogen of marine fish. The full-length cDNA of CsC6 contained a 256 bp 5' untranslated region (5'-UTR), a 2820 bp open reading frame (ORF) encoding 939 amino acids, and a 205 bp 3'-UTR. SMART analysis showed that CsC6 contains typical C6 domains, including three TSP1 domains, one LDLa domain, one MACPF domain, two CCP domains and two FIMAC domains. CsC6 and Cse-miR-727 are widely expressed in the 13 tissues of half-smooth tongue sole, and their expression in immune tissues is significantly changed after V. anguillarum infection, generally showing an inverse trend. We confirmed that CsC6 was the target gene of Cse-miR-727 using the dual luciferase reporter assay and that Cse-miR-727 regulated CsC6 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The hepatic expression levels of not only the MAC components C7, C8α, C8β, C8γ and C9 but also the MAPKs, NF-κβ, AP-1, IL1β, IL6 and TNFα, which are involved in many signaling pathways, changed significantly in half-smooth tongue sole following stimulation with the Cse-miR-727 agomir and inhibitor. This evidence suggested that CsC6 could be mediated by Cse-miR-727 to affect MAC assembly and immune signaling pathways in half-smooth tongue soles. To our best knowledge, this study is the first to investigate the regulatory mechanism and immune response of complement genes mediated by miRNAs in fish.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Mengjun Yu
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Chen
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Longjiang Qi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Shu Wei
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qingxin Fan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Min Zhan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
16
|
Rituximab induces rapid blood repopulation by CLL cells mediated through their release from immune niches and complement exhaustion. Leuk Res 2021; 111:106684. [PMID: 34438120 DOI: 10.1016/j.leukres.2021.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
The in vivo rituximab effects in B cell malignancies are only partially understood. Here we analyzed in a large chronic lymphocytic leukemia (CLL) cohort (n = 80) the inter-patient variability in CLL cell count reduction within the first 24 h of rituximab administration in vivo, and a phenomenon of blood repopulation by malignant cells after anti-CD20 antibody therapy. Larger CLL cell elimination after rituximab infusion was associated with lower pre-therapy CLL cell counts, higher CD20 levels, and the non-exhausted capacity of complement-dependent cytotoxicity (CDC). The absolute amount of cell-surface CD20 molecules (CD20 density x CLL lymphocytosis) was a predictor for complement exhaustion during therapy. We also describe that a highly variable decrease in CLL cell counts at 5 h (88 %-2%) following rituximab infusion is accompanied in most patients by peripheral blood repopulation with CLL cells at 24 h, and in ∼20 % of patients, this resulted in CLL counts higher than before therapy. We provide evidence that CLL cells recrudescence is linked with i) CDC exhaustion, which leads to the formation of an insufficient amount of membrane attack complexes, likely resulting in temporary retention of surviving rituximab-opsonized cells by the mononuclear-phagocyte system (followed by their release back to blood), and ii) CLL cells regression from immune niches (CXCR4dimCD5bright intraclonal subpopulation). Patients with major peripheral blood CLL cell repopulation exhibited a longer time-to-progression after chemoimmunotherapy compared to patients with lower or no repopulation, suggesting chemotherapy vulnerability of CLL cells that repopulate the blood.
Collapse
|
17
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
18
|
Mannes M, Dopler A, Zolk O, Lang SJ, Halbgebauer R, Höchsmann B, Skerra A, Braun CK, Huber-Lang M, Schrezenmeier H, Schmidt CQ. Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity. Blood 2021; 137:443-455. [PMID: 33507296 DOI: 10.1182/blood.2020005959] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a "C3 bypass" activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Membrane/immunology
- Complement C3/antagonists & inhibitors
- Complement C3 Convertase, Alternative Pathway/physiology
- Complement C4b/physiology
- Complement C5/antagonists & inhibitors
- Complement C5/chemistry
- Complement Inactivating Agents/pharmacology
- Complement Inactivating Agents/therapeutic use
- Complement Membrane Attack Complex/physiology
- Complement Pathway, Classical/drug effects
- Drug Resistance
- Human Umbilical Vein Endothelial Cells
- Humans
- Models, Immunological
- Models, Molecular
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/therapeutic use
- Protein Conformation
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Oliver Zolk
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University Hospital of Ulm and German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany; and
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | - Christian K Braun
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, University Hospital of Ulm and German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany; and
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
20
|
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020; 133:155151. [PMID: 32544563 PMCID: PMC7260598 DOI: 10.1016/j.cyto.2020.155151] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme 2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK axis), and activation of the complement system including C5a and C5b-9 components. The molecular clarification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to prevent and treat COVID-19 associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shokrollah Farrokhi
- Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Future Studies Group, The Academy of Medical Sciences of the I.R., Iran.
| |
Collapse
|
21
|
SMR peptide antagonizes mortalin promoted release of extracellular vesicles and affects mortalin protection from complement-dependent cytotoxicity in breast cancer cells and leukemia cells. Oncotarget 2019; 10:5419-5438. [PMID: 31534628 PMCID: PMC6739210 DOI: 10.18632/oncotarget.27138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Mortalin/GRP-75/mt-hsp70 is a mitochondrial chaperone protein, found in the cytoplasm, endoplasmic reticulum and cytoplasmic vesicles. It functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation, signaling, immortalization and tumorigenesis. Thus, inhibition of mortalin is a promising avenue for cancer therapy. Previous studies in our lab have suggested that mortalin contributes to breast cancer development and progression. We showed that tumor extracellular vesicle secretion was decreased by knockdown of mortalin expression using HIV-1 Nef SMR peptides. Specifically, these peptides can block extracellular vesicle secretion and mediate cell cycle arrest in MDA-MB-231 and MCF-7 breast cancer cells.
Aims: This study aims to investigate further the function and mechanism of interaction of PEG-SMR-CLU and SMR-CPP peptides with the chaperone protein mortalin and to explore the effect of SMR-derived peptides and mortalin expression on extracellular vesicle release and complement dependent cell toxicity in human breast cancer and leukemia cell lines.
Results: Our results demonstrated additional effects reversing the tumorigenicity of these cells. First, the modified SMRwt peptides reduced the expression of the mesenchymal marker vimentin (VIM). Second, exposure to the SMRwt peptide inhibited mortalin and complement C9 expression in MDA-MB-231, MCF-7 breast cancer cells and K562 leukemia cells as measured by the Western blot analysis. Third, the SMRwt peptides blocked the cancer cells’ ability to release extracellular vesicles, which we observed blocked extracellular vesicle-mediated release of complement, re-establishing complements mediated cell death in those peptide-treated cells.
Methods: We developed a series of peptides derived from the Secretion Modification Region (SMR) of HIV-1 Nef protein, modified by the addition of either a cell-penetrating peptide (CPP), a positively charged arginine-rich peptide derived from HIV-1 regulatory protein Tat, or a Clusterin-binding peptide (CLU), a molecular chaperone involved in protein secretion. Both CPP and CLU peptide sequences were added at the C-terminus of the Nef SMR peptide. The CLU-containing peptides were also modified with polyethylene glycol (PEG) to enhance solubility. After treatment of cells with the peptides, we used the MTT cell viability and complement-mediated cytotoxicity assays to confirm the inhibitory role of modified SMRwt peptides on the proliferation of MDA-MB-231 and MCF-7 breast cancer cells and K562 leukemia cells. Flow cytometry was used to determine complement mediated cell apoptosis and death. Western blot analysis was used to track SMR peptides impact on expression of mortalin, vimentin and complement C9 and to measure the expression of extracellular vesicle proteins. NanoSight analysis and acetylcholinesterase (AChE) assay were used for measuring extracellular vesicles particle size and concentration and acetylcholinesterase.
Conclusions: Mortalin promotes cell proliferation, metastasis, angiogenesis, downregulate apoptotic signaling. Thus, mortalin is a potential therapeutic target for cancer immunotherapy. The novel SMRwt peptides antagonize the functions of mortalin, blocking tumor extracellular vesicle release and extracellular vesicle-mediated release of complement. This leads to decreases in breast cancer cell metastasis and allows standard treatment of these late stage tumor cells, thus having important clinical implications for late stage breast cancer chemotherapy. These findings support further investigation into the therapeutic value of the SMR peptide in cancer metastasis.
Collapse
|
22
|
Control of growth factor signalling by MACPF proteins. Biochem Soc Trans 2019; 47:801-810. [PMID: 31209154 DOI: 10.1042/bst20180179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Members of the membrane attack complex/perforin-like (MACPF) protein superfamily have long captured interest because of their unique ability to assemble into large oligomeric pores on the surfaces of cells. The best characterised of these act in vertebrate immunity where they function to deliver pro-apoptotic factors or induce the cytolysis and death of targeted cells. Less appreciated, however, is that rather than causing cell death, MACPF proteins have also evolved to control cellular signalling pathways and influence developmental programmes such as pattern formation and neurogenesis. Torso-like (Tsl) from the fruit fly Drosophila, for example, functions to localise the activity of a growth factor for patterning its embryonic termini. It remains unclear whether these developmental proteins employ an attenuated form of the classical MACPF lytic pore, or if they have evolved to function via alternative mechanisms of action. In this minireview, we examine the evidence that links pore-forming MACPF proteins to the control of growth factor and cytokine signalling. We will then attempt to reconcile how the MACPF domain may have been repurposed during evolution for developmental events rather than cell killing.
Collapse
|
23
|
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - From hypothesis to clinical trials. Exp Eye Res 2019; 184:266-277. [PMID: 31082363 DOI: 10.1016/j.exer.2019.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Data from human dry and wet age-related macular degeneration (AMD) eyes support the hypothesis that constant 'tickover' of the alternative complement pathway results in chronic deposition of the complement membrane attack complex (MAC) on the choriocapillaris and the retinal pigment epithelium (RPE). Sub-lytic levels of MAC lead to cell signaling associated with tissue remodeling and the production of cytokines and inflammatory molecules. Lytic levels of MAC lead to cell death. CD59 is a naturally occurring inhibitor of the assembly of MAC. CD59 may thus be therapeutically efficacious against the pathophysiology of dry and wet AMD. The first gene therapy clinical trial for geographic atrophy - the advanced form of dry AMD has recently completed recruitment. This trial is studying the safety and tolerability of expressing CD59 from an adeno-associated virus (AAV) vector injected once into the vitreous. A second clinical trial assessing the efficacy of CD59 in wet AMD patients is also under way. Herein, the evidence for the role of MAC in the pathophysiology of dry as well as wet AMD and the scientific rationale underlying the use of AAV- delivered CD59 for the treatment of dry and wet AMD is discussed.
Collapse
Affiliation(s)
- Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
24
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Complement-mediated Damage to the Glycocalyx Plays a Role in Renal Ischemia-reperfusion Injury in Mice. Transplant Direct 2019; 5:e341. [PMID: 30993186 PMCID: PMC6445655 DOI: 10.1097/txd.0000000000000881] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. Methods Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. Results Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. Conclusions Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.
Collapse
|
26
|
Mödinger Y, Rapp AE, Vikman A, Ren Z, Fischer V, Bergdolt S, Haffner-Luntzer M, Song WC, Lambris JD, Huber-Lang M, Neidlinger-Wilke C, Brenner RE, Ignatius A. Reduced Terminal Complement Complex Formation in Mice Manifests in Low Bone Mass and Impaired Fracture Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:147-161. [PMID: 30339839 DOI: 10.1016/j.ajpath.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
The terminal complement complex (TCC) is formed on activation of the complement system, a crucial arm of innate immunity. TCC formation on cell membranes results in a transmembrane pore leading to cell lysis. In addition, sublytic TCC concentrations can modulate various cellular functions. TCC-induced effects may play a role in the pathomechanisms of inflammatory disorders of the bone, including rheumatoid arthritis and osteoarthritis. In this study, we investigated the effect of the TCC on bone turnover and repair. Mice deficient for complement component 6 (C6), an essential component for TCC assembly, and mice with a knockout of CD59, which is a negative regulator of TCC formation, were used in this study. The bone phenotype was analyzed in vivo, and bone cell behavior was analyzed ex vivo. In addition, the mice were subjected to a femur osteotomy. Under homeostatic conditions, C6-deficient mice displayed a reduced bone mass, mainly because of increased osteoclast activity. After femur fracture, the inflammatory response was altered and bone formation was disturbed, which negatively affected the healing outcome. By contrast, CD59-knockout mice only displayed minor skeletal alterations and uneventful bone healing, although the early inflammatory reaction to femur fracture was marginally enhanced. These results demonstrate that TCC-mediated effects regulate bone turnover and promote an adequate response to fracture, contributing to an uneventful healing outcome.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Zhaozhou Ren
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Stephanie Bergdolt
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Wen-Chao Song
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Ulm, Germany
| | | | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
27
|
Banadakoppa M, Balakrishnan M, Yallampalli C. Upregulation and release of soluble fms-like tyrosine kinase receptor 1 mediated by complement activation in human syncytiotrophoblast cells. Am J Reprod Immunol 2018; 80:e13033. [PMID: 30099798 DOI: 10.1111/aji.13033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
PROBLEM Antiangiogenic molecule soluble fms-like tyrosine kinase receptor 1 (sFLT1) released from trophoblast cells is associated with pregnancy-specific hypertensive disorder pre-eclampsia. Cause of elevated sFLT1 in pre-eclampsia patients is not well understood. Despite evidence of excess systemic and placental complement activation in pre-eclampsia patients, its role in pathophysiology is not clear. If the complement activation plays a role in upregulation and secretion of sFLT1 is not known. METHOD OF STUDY Human trophoblast cells were isolated from term placentas and allowed to syncytialize. Complement was activated in vitro at sublethal levels on syncytiotrophoblast cells. Effect of complement activation on expression and release of sFLT1 was assessed by comparing its levels in these cells with and without complement activation. RESULTS Sublethal level of complement activation on syncytialized human trophoblast cells induced upregulation of sFLT1 mRNA and protein. Complement also induced secretion of sFLT1 in a manner depending on degree of activation. Anaphylatoxins C3a induced upregulation but not the release of sFLT1. Release of terminal membrane attack complex (MAC) was associated with sFLT1 secretion. CONCLUSION Complement activation plays a major role in both the expression and secretion of sFLT1 from syncytial trophoblast cells. The terminal MAC complex is involved in its secretion. Increased levels of sFLT1 in pre-eclampsia patients may be due to complement-induced upregulation and secretion.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Meena Balakrishnan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
de Mattos Barbosa MG, Cascalho M, Platt JL. Accommodation in ABO-incompatible organ transplants. Xenotransplantation 2018; 25:e12418. [PMID: 29913044 PMCID: PMC6047762 DOI: 10.1111/xen.12418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
Accommodation refers to a condition in which a transplant (or any tissue) appears to resist immune-mediated injury and loss of function. Accommodation was discovered and has been explored most thoroughly in ABO-incompatible kidney transplantation. In this setting, kidney transplants bearing blood group A or B antigens often are found to function normally in recipients who lack and hence produce antibodies directed against the corresponding antigens. Whether accommodation is owed to changes in anti-blood group antibodies, changes in antigen or a change in the response of the transplant to antibody binding are critically reviewed and a new working model that allows for the kinetics of development of accommodation is put forth. Regardless of how accommodation develops, observations on the fate of ABO-incompatible transplants offer lessons applicable more broadly in transplantation and in other fields.
Collapse
|
29
|
Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: a review. J Neuroinflammation 2018; 15:24. [PMID: 29357880 PMCID: PMC5778697 DOI: 10.1186/s12974-018-1066-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed.
Collapse
Affiliation(s)
- Adnan Hammad
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Laura Westacott
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, Room 4FT 80E, 4th Floor, Heath Park, Cardiff, CF14 4XN UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, Room 4FT 80E, 4th Floor, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
30
|
Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol 2017; 72:124-132. [PMID: 28647534 DOI: 10.1016/j.semcdb.2017.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
The membrane attack complex (MAC) is the pore-forming toxin of the complement system, a relatively early evolutionary acquisition that confers upon complement the capacity to directly kill pathogens. The MAC is more than just a bactericidal missile, having the capacity when formed on self-cells to initiate a host of cell activation events that can have profound consequences for tissue homeostasis in the face of infection or injury. Although the capacity of complement to directly kill pathogens has been recognised for over a century, and the pore-forming killing mechanism for at least 50 years, there remains considerable uncertainty regarding precisely how MAC mediates its killing and cell activation activities. A recent burst of new information on MAC structure provides context and opportunity to re-assess the ways in which MAC kills bacteria and modulates cell functions. In this brief review we will describe key aspects of MAC evolution, function and structure and seek to use the new structural information to better explain how the MAC works.
Collapse
Affiliation(s)
- B Paul Morgan
- Systems Immunity University Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF144XN, UK.
| | - Courtney Boyd
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, 506 Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
31
|
Abstract
One of the problems limiting myoblast transplantation (MT) is the early death of the transplanted cells. Because complement can be fixed by myoblasts in vitro, and because it has the capacity to induce cell lysis, its possible role in the early death of transplanted myoblasts was investigated. CD1 mice and Macaca mulata monkeys were used as recipients for MT. In some mice, C3 was depleted before MT using Cobra Venom Factor. Mice were sacrificed during the first hour and up to 3 days after MT. Monkeys were biopsied 1 to 4 h after MT. Myoblast necrosis was assessed by the presence of intracellular calcium. Complement deposition was demonstrated by immunohistochemistry with anti-C3 and anti-C5b-9 neoantigen antibodies. In mice, C3 deposition was observed in damaged muscle fibers and in regions containing necrosed myoblasts. Complement depletion did not diminish the proportion of necrosed cells. In monkeys, only a small percentage of transplanted myoblasts showed C3 or C5b-9 deposition, mostly intracellular. Complement activation seems not to be implicated in directly damaging the transplanted cells, but seems secondary to cellular death. Taking into account its chemotactic functions, complement could be implicated in the migration of neutrophils and macrophages into the clusters of transplanted cells. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- D Skuk
- Unité de Recherche en Génétique Humaine, Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
32
|
Harder MJ, Kuhn N, Schrezenmeier H, Höchsmann B, von Zabern I, Weinstock C, Simmet T, Ricklin D, Lambris JD, Skerra A, Anliker M, Schmidt CQ. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood 2017; 129:970-980. [PMID: 28028023 PMCID: PMC5324716 DOI: 10.1182/blood-2016-08-732800] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete. The degree of such residual lytic activity depended on the strength of the complement activator and the resulting surface density of the complement activation product C3b, which autoamplifies via the alternative pathway (AP) amplification loop. We show that at high C3b densities required for binding and activation of C5, both inhibitors reduce but do not abolish this interaction. The decrease of C5 binding to C3b clusters in the presence of C5 inhibitors correlated with the levels of residual hemolysis. However, by employing different C5 inhibitors simultaneously, residual hemolytic activity could be abolished. The importance of AP-produced C3b clusters for C5 activation in the presence of eculizumab was corroborated by the finding that residual hemolysis after forceful activation of the classical pathway could be reduced by blocking the AP. By providing insights into C5 activation and inhibition, our study delivers the rationale for the clinically observed phenomenon of residual terminal pathway activity under eculizumab treatment with important implications for anti-C5 therapy in general.
Collapse
Affiliation(s)
- Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Nadine Kuhn
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Inge von Zabern
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Christof Weinstock
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Daniel Ricklin
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | - Markus Anliker
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
33
|
Patel MN, Carroll RG, Galván-Peña S, Mills EL, Olden R, Triantafilou M, Wolf AI, Bryant CE, Triantafilou K, Masters SL. Inflammasome Priming in Sterile Inflammatory Disease. Trends Mol Med 2017; 23:165-180. [PMID: 28109721 DOI: 10.1016/j.molmed.2016.12.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
The inflammasome is a cytoplasmic protein complex that processes interleukins (IL)-1β and IL-18, and drives a form of cell death known as pyroptosis. Oligomerization of this complex is actually the second step of activation, and a priming step must occur first. This involves transcriptional upregulation of pro-IL-1β, inflammasome sensor NLRP3, or the non-canonical inflammasome sensor caspase-11. An additional aspect of priming is the post-translational modification of particular inflammasome constituents. Priming is typically accomplished in vitro using a microbial Toll-like receptor (TLR) ligand. However, it is now clear that inflammasomes are activated during the progression of sterile inflammatory diseases such as atherosclerosis, metabolic disease, and neuroinflammatory disorders. Therefore, it is time to consider the endogenous factors and mechanisms that may prime the inflammasome in these conditions.
Collapse
Affiliation(s)
- Meghana N Patel
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Richard G Carroll
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Silvia Galván-Peña
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Evanna L Mills
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Robin Olden
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Amaya I Wolf
- Host Defense Discovery Performance Unit, Infectious Diseases Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Clare E Bryant
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB23 8AQ, UK
| | - Kathy Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Seth L Masters
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Medical Biology, University of Melbourne, Parkville 3010, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.
| |
Collapse
|
34
|
Morgan BP, Walters D, Serna M, Bubeck D. Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 2016; 274:141-151. [PMID: 27782334 DOI: 10.1111/imr.12461] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes. Several recent publications have described structural insights that have changed perceptions of the nature of this membrane attack complex. This review will describe these recent advances in understanding of the structure of the membrane attack complex and its by-product the fluid-phase terminal complement complex and relate these new structural insights to functional consequences and cell responses to complement membrane attack.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - David Walters
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marina Serna
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
35
|
Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol 2016; 101:193-204. [PMID: 27581539 PMCID: PMC5166441 DOI: 10.1189/jlb.3vmr0316-132r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Review of how targeting key upstream molecules at the recognition phase of innate immunity exert anti-inflammatory effects; a potential therapeutic regimen for inflammatory diseases. The host is protected by pattern recognition systems, including complement and TLRs, which are closely cross-talking. If improperly activated, these systems might induce tissue damage and disease. Inhibition of single downstream proinflammatory cytokines, such as TNF, IL-1β, and IL-6, have failed in clinical sepsis trials, which might not be unexpected, given the substantial amounts of mediators involved in the pathogenesis of this condition. Instead, we have put forward a hypothesis of inhibition at the recognition phase by “dual blockade” of bottleneck molecules of complement and TLRs. By acting upstream and broadly, the dual blockade could be beneficial in conditions with improper or uncontrolled innate immune activation threatening the host. Key bottleneck molecules in these systems that could be targets for inhibition are the central complement molecules C3 and C5 and the important CD14 molecule, which is a coreceptor for several TLRs, including TLR4 and TLR2. This review summarizes current knowledge of inhibition of complement and TLRs alone and in combination, in both sterile and nonsterile inflammatory processes, where activation of these systems is of crucial importance for tissue damage and disease. Thus, dual blockade might provide a general, broad-acting therapeutic regimen against a number of diseases where innate immunity is improperly activated.
Collapse
Affiliation(s)
- Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; .,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory Nordland Hospital, Bodø, Norway; and.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
36
|
Fu X, Ju J, Lin Z, Xiao W, Li X, Zhuang B, Zhang T, Ma X, Li X, Ma C, Su W, Wang Y, Qin X, Liang S. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice. Sci Rep 2016; 6:30239. [PMID: 27444648 PMCID: PMC4957234 DOI: 10.1038/srep30239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022] Open
Abstract
Terminal complement membrane attack complex (MAC) formation is induced initially by
C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9
to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic
pores in the cell membrane destroys membrane integrity. The biological
functionalities of MAC has been previously investigated by using either the mice
deficient in C5 and C6, or MAC’s regulator CD59. However, there is no
available C9 deficient mice (mC9−/−)
for directly dissecting the role of C5b-9 in the pathogenesis of human diseases.
Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays
biological functionality. To better understand the role of terminal complement
cascades, here we report a successful generation of
mC9−/−. We demonstrated that lack
of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute
shock. Further, the rescuing effect on the acute shock correlates with the less
release of IL-1β in
mC9−/−, which is associated with
suppression of MAC-mediated inflammasome activation in
mC9−/−. Taken together, these
results not only confirm the critical role of C5b-9 in complement-mediated hemolysis
and but also highlight the critical role of C5b-9 in inflammasome activation.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Jiyu Ju
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Zhijuan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiling Xiao
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaofang Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Baoxiang Zhuang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Tingting Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiaojun Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xiangyu Li
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Chao Ma
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Weiliang Su
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Yuqi Wang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA19140, USA
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, P.R.China
| |
Collapse
|
37
|
Abstract
The human complement system (C) acts to lyse susceptible cells, to promote phagocytosis of target particles, and to solubilize immune-complexes, its activation generates peptides that mediate features of the inflammatory response. It is comprised of a series of plasma zymogens, activated by proteolytic cleavage in a cascade manner, and of plasma and cell membrane control proteins. Activation is achieved by two independent routes: the classical pathway, started by immunoglobulins, and the alternative pathway, started by cell membrane components. Both of them promote the generation of an enzyme-complex (C3 convertase) able to cleave the pivotal protein of the complement system, C3, thus initiating the common pathway with the formation of the lytic complex (Figure 1). In this paper we will briefly review the physiologic phenomena related to the complement activation and its role in pathogenesis of illness particularly focusing on the studies carried out in our laboratory.
Collapse
Affiliation(s)
- A. Agostoni
- Clinica Medica Università, Ospedale San Paolo, Milano, Italy
| | - M. Cicardi
- Clinica Medica Università, Ospedale San Paolo, Milano, Italy
| | - M. Gardinali
- Clinica Medica Università, Ospedale San Paolo, Milano, Italy
| | | |
Collapse
|
38
|
Triantafilou M, Hughes TR, Morgan BP, Triantafilou K. Complementing the inflammasome. Immunology 2016; 147:152-64. [PMID: 26572245 DOI: 10.1111/imm.12556] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/02/2023] Open
Abstract
The innate immune system is an ancient surveillance system able to sense microbial invaders as well as aberrations in normal cell function. No longer viewed as a static and non-specific part of immunity, the innate immune system employs a plethora of specialized pattern recognition sensors to monitor and achieve homeostasis; these include the Toll-like receptors, the retinoic acid-inducible gene-like receptors, the nucleotide-binding oligomerization domain receptors (NLRs), the C-type lectins and the complement system. In order to increase specificity and diversity, innate immunity uses homotypic and heterotypic associations among these different components. Multi-molecular assemblies are formed both on the cell surface and in the cytosol to respond to pathogen and danger signals. Diverse, but tailored, responses to a changing environment are orchestrated depending on the the nature of the challenge and the repertoire of interacting receptors and components available in the sensing cell. It is now emerging that innate immunity operates a system of 'checks and balances' where interaction among the sensors is key in maintaining normal cell function. Complement sits at the heart of this alarm system and it is becoming apparent that it is capable of interacting with all the other pathways to effect a tailored immune response. In this review, we will focus on complement interactions with NLRs, the so-called 'inflammasomes', describing the molecular mechanisms that have been revealed so far and discussing the circumstantial evidence that exists for these interactions in disease states.
Collapse
Affiliation(s)
- Martha Triantafilou
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Bryan Paul Morgan
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Kathy Triantafilou
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
Towner LD, Wheat RA, Hughes TR, Morgan BP. Complement Membrane Attack and Tumorigenesis: A SYSTEMS BIOLOGY APPROACH. J Biol Chem 2016; 291:14927-38. [PMID: 27226542 DOI: 10.1074/jbc.m115.708446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor development driven by inflammation is now an established phenomenon, but the role that complement plays remains uncertain. Recent evidence has suggested that various components of the complement (C) cascade may influence tumor development in disparate ways; however, little attention has been paid to that of the membrane attack complex (MAC). This is despite abundant evidence documenting the effects of this complex on cell behavior, including cell activation, protection from/induction of apoptosis, release of inflammatory cytokines, growth factors, and ECM components and regulators, and the triggering of the NLRP3 inflammasome. Here we present a novel approach to this issue by using global gene expression studies in conjunction with a systems biology analysis. Using network analysis of MAC-responsive expression changes, we demonstrate a cluster of co-regulated genes known to have impact in the extracellular space and on the supporting stroma and with well characterized tumor-promoting roles. Network analysis highlighted the central role for EGF receptor activation in mediating the observed responses to MAC exposure. Overall, the study sheds light on the mechanisms by which sublytic MAC causes tumor cell responses and exposes a gene expression signature that implicates MAC as a driver of tumor progression. These findings have implications for understanding of the roles of complement and the MAC in tumor development and progression, which in turn will inform future therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Laurence D Towner
- From the Complement Biology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Richard A Wheat
- From the Complement Biology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Timothy R Hughes
- From the Complement Biology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - B Paul Morgan
- From the Complement Biology Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| |
Collapse
|
40
|
Shi H, Williams JAE, Guo L, Stampoulis D, Francesca Cordeiro M, Moss SE. Exposure to the complement C5b-9 complex sensitizes 661W photoreceptor cells to both apoptosis and necroptosis. Apoptosis 2016; 20:433-43. [PMID: 25735751 PMCID: PMC4348505 DOI: 10.1007/s10495-015-1091-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The loss of photoreceptors is the defining characteristic of many retinal degenerative diseases, but the mechanisms that regulate photoreceptor cell death are not fully understood. Here we have used the 661W cone photoreceptor cell line to ask whether exposure to the terminal complement complex C5b-9 induces cell death and/or modulates the sensitivity of these cells to other cellular stressors. 661W cone photoreceptors were exposed to complete normal human serum following antibody blockade of CD59. Apoptosis induction was assessed morphologically, by flow cytometry, and on western blotting by probing for cleaved PARP and activated caspase-3. Necroptosis was assessed by flow cytometry and Sirtuin 2 inhibition using 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furyl]-N-5-quinolinylacrylamide (AGK2). The sensitivity of 661W cells to ionomycin, staurosporine, peroxide and chelerythrine was also investigated, with or without prior formation of C5b-9. 661W cells underwent apoptotic cell death following exposure to C5b-9, as judged by poly(ADP-ribose) polymerase 1 cleavage and activation of caspase-3. We also observed apoptotic cell death in response to staurosporine, but 661W cells were resistant to both ionomycin and peroxide. Interestingly, C5b-9 significantly increased 661W sensitivity to staurosporine-induced apoptosis and necroptosis. These studies show that low levels of C5b-9 on 661W cells can induce apoptosis, and that C5b-9 specifically sensitizes 661W cells to certain apoptotic and necroptotic pathways. Our observations provide new insight into the potential role of the complement system in photoreceptor loss, with implications for the molecular aetiology of retinal disease.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
41
|
Jaiswal JK, Nylandsted J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 2015; 14:502-9. [PMID: 25565331 DOI: 10.1080/15384101.2014.995495] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca(2+) entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca(2+) entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca(2+)-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member--S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- a Center for Genetic Medicine Research ; Children's National Medical Center ; Washington , DC USA
| | | |
Collapse
|
42
|
Mamidi S, Höne S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology 2015; 222:45-54. [PMID: 26686908 DOI: 10.1016/j.imbio.2015.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Constituting a part of the innate immune system, the complement system consists of over 50 proteins either acting as part of a 3-branch activation cascade, a well-differentiated regulatory system in fluid phase or on each tissue, or as receptors translating the activation signal to multiple cellular effector functions. Complement serves as first line of defence against infections from bacteria, viruses and parasites by orchestrating the immune response through opsonisation, recruitment of immune cells to the site of infection and direct cell lysis. Complement is generally recognised as a protective mechanism against the formation of tumours in humans, but is often limited by various resistance mechanisms interfering with its cytotoxic action, now considered as a great barrier of successful antibody-based immunotherapy. However, recent studies also indicate a pro-tumourigenic potential of complement in certain cancers and under certain conditions. In this review, we present recent findings on the possible dual role of complement in destroying cancer, especially if resistance mechanisms are blocked, but also under certain inflammatory conditions-promoting tumour development.
Collapse
Affiliation(s)
| | - Simon Höne
- Institute for Immunology, University of Heidelberg, Germany
| | | |
Collapse
|
43
|
Zuo S, Li W, Li Q, Zhao H, Tang J, Chen Q, Liu X, Zhang JH, Chen Y, Feng H. Protective effects of Ephedra sinica extract on blood-brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neurosci Lett 2015; 609:216-22. [PMID: 26518242 DOI: 10.1016/j.neulet.2015.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
Abstract
Early brain injury, which is associated with brain cell death, blood-brain barrier disruption, brain edema, and other pathophysiological events, is thought to be the main target in the prevention of poor outcomes after subarachnoid hemorrhage (SAH). Emerging evidences indicates that complement system, especially complement C3 is detrimental to neurological outcomes of SAH patients. Recently, Ephedra sinica extract was extracted and purified, which exhibits ability to block the activity of the classical and alternative pathways of complement, and improve neurological outcomes after spinal cord injury and ischemic brain injury. However, it is still unclear whether Ephedra sinica extract could attenuate early brain injury after SAH. In the present study, a standard endovascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. Ephedra sinica extract (15mg/kg) was orally administrated daily and evaluated for effects on modified Garcia score, brain water content, Evans blue extravasation and fluorescence, cortex cell death by TUNEL staining, and the expressions of complement C3/C3b, activated C3, sonic hedgehog, osteopontin and matrix metalloproteinase-9 by western bolt and immunofluorescence staining. We founded that the Ephedra sinica extract alleviated the blood-brain barrier disruption and brain edema, eventually improved neurological functions after SAH in rats. These neuroprotective effects was associated with the inhibition of complement C3, possibly via upregulating sonic hedgehog and osteopontin signal, and reducing the expressions of matrix metalloproteinase-9. Taking together, these observations suggested complement C3 inhibition by the Ephedra sinica extract may be a protective factor against early brain injury after SAH.
Collapse
Affiliation(s)
- Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA, United States
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
44
|
Babiychuk EB, Draeger A. Defying death: Cellular survival strategies following plasmalemmal injury by bacterial toxins. Semin Cell Dev Biol 2015; 45:39-47. [PMID: 26481974 DOI: 10.1016/j.semcdb.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.
Collapse
|
45
|
Llewellyn D, Miura K, Fay MP, Williams AR, Murungi LM, Shi J, Hodgson SH, Douglas AD, Osier FH, Fairhurst RM, Diakite M, Pleass RJ, Long CA, Draper SJ. Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Sci Rep 2015; 5:14081. [PMID: 26373337 PMCID: PMC4571651 DOI: 10.1038/srep14081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field.
Collapse
Affiliation(s)
- David Llewellyn
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Andrew R. Williams
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Linda M. Murungi
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- KEMRI Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Jianguo Shi
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Susanne H. Hodgson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Alexander D. Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Faith H. Osier
- KEMRI Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Mahamadou Diakite
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Richard J. Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
46
|
Lauritzen SP, Boye TL, Nylandsted J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 2015; 45:32-8. [DOI: 10.1016/j.semcdb.2015.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
|
47
|
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, Espevik T, Mollnes TE. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241:480-94. [PMID: 26086357 DOI: 10.1016/j.atherosclerosis.2015.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway.
| | - Lena Jonasson
- Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Arne Yndestad
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Knut T Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0372 Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| |
Collapse
|
48
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1063] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
49
|
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Front Immunol 2015; 6:257. [PMID: 26074922 PMCID: PMC4443744 DOI: 10.3389/fimmu.2015.00257] [Citation(s) in RCA: 686] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Remi Noe
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Ecole Pratique des Hautes Études (EPHE) , Paris , France
| | - Lise Halbwachs-Mecarelli
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| |
Collapse
|
50
|
Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology 2015; 221:747-51. [PMID: 25956457 DOI: 10.1016/j.imbio.2015.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The final common pathway of all routes of complement activation involves the non-enzymatic assembly of a complex comprising newly formed C5b with the plasma proteins C6, C7, C8 and C9. When assembly occurs on a target cell membrane the forming complex inserts into and through the bilayer to create a pore, the membrane attack complex (MAC). On some targets, pore formation causes rapid lytic destruction; however, most nucleated cell targets resist lysis through a combination of ion pumps, membrane regulators and active recovery processes. Cells survive but not without consequence. The MAC pore causes ion fluxes and directly or indirectly impacts several important signalling pathways that in turn activate a diverse series of events in the cell, many of which are highly pro-inflammatory. Although this non-lytic, pro-inflammatory role of MAC has been recognised for thirty years, no consensus signalling pathway has emerged. Recent work, summarised here, has implicated specific signalling routes and, in some cells, inflammasome involvement, opening the door to novel approaches to therapy in complement-driven pathologies.
Collapse
Affiliation(s)
- B Paul Morgan
- School of Medicine, Cardiff University, Heath Park, Cardiff CF144XN, UK.
| |
Collapse
|