1
|
Vallée M. Advances in steroid research from the pioneering neurosteroid concept to metabolomics: New insights into pregnenolone function. Front Neuroendocrinol 2024; 72:101113. [PMID: 37993022 DOI: 10.1016/j.yfrne.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.
Collapse
Affiliation(s)
- Monique Vallée
- University Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
2
|
Angelova G, Skodova T, Prokopiusova T, Markova M, Hruskova N, Prochazkova M, Pavlikova M, Spanhelova S, Stetkarova I, Bicikova M, Kolatorova L, Rasova K. Ambulatory Neuroproprioceptive Facilitation and Inhibition Physical Therapy Improves Clinical Outcomes in Multiple Sclerosis and Modulates Serum Level of Neuroactive Steroids: A Two-Arm Parallel-Group Exploratory Trial. Life (Basel) 2020; 10:life10110267. [PMID: 33142850 PMCID: PMC7693100 DOI: 10.3390/life10110267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Only few studies have monitored the potential of physical activity training and physical therapy to modulate the reaction of the endocrine system. In this study, the effect of neuroproprioceptive facilitation and inhibition physical therapy on clinical outcomes and neuroactive steroids production in people with multiple sclerosis was evaluated. Moreover, we were interested in the factors that influence the treatment effect. Methods: In total, 44 patients with multiple sclerosis were randomly divided into two groups. Each group underwent a different kind of two months ambulatory therapy (Motor program activating therapy and Vojta’s reflex locomotion). During the following two months, participants were asked to continue the autotherapy. Primary (serum level of cortisol, cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, DHEA) and secondary (balance, cognition and patient-reported outcomes) outcomes were examined three times (pre, post, and washout assessments). Results: In both groups, there is a decreasing trend of 7-oxo-DHEA concentration in post-assessment and 7β-OH-DHEA in washout versus pre-assessment. A higher impact on neuroactive steroids is visible after Vojta’s reflex locomotion. As for clinical outcomes, the Paced Auditory Serial Addition Test and Multiple Sclerosis Impact Scale significantly improved between post-assessment and washout assessment. The improvement was similar for both treatments. Conclusions: Neuroproprioceptive facilitation and inhibition improved the clinical outcomes and led to non-significant changes in neuroactive steroids. Trial registration (NCT04379193).
Collapse
Affiliation(s)
- Gabriela Angelova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Tereza Skodova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Terezie Prokopiusova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Magdalena Markova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Natalia Hruskova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Marie Prochazkova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Marketa Pavlikova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
| | - Sarka Spanhelova
- Department of Rehabilitation and Sport Medicine, Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic;
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic;
| | - Marie Bicikova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrionology, 11694 Prague, Czech Republic; (T.S.); (M.B.); (L.K.)
| | - Kamila Rasova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague 10, Czech Republic; (G.A.); (T.P.); (M.M.); (N.H.); (M.P.); (M.P.)
- Correspondence: or
| |
Collapse
|
3
|
Hippocampal 7α-Hydroxylated Neurosteroids Are Raised by Training and Bolster Remote Spatial Memory with Increase of the Spine Densities. iScience 2020; 23:101559. [PMID: 33083728 PMCID: PMC7522809 DOI: 10.1016/j.isci.2020.101559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
Neuroactive steroids, termed neurosteroids, are synthesized locally in the brain and influence biological functions including cognition and behavior. These neurosteroids are synthesized from cholesterol by a series of cytochrome P450 enzymes, among which a member of P450 hydroxylase, cytochrome P450-7b1 (CYP7B1), catalyzes the formation of 7α-hydroxylated neurosteroids, 7α-hydroxypregnenolone (7α-OH-Preg) and 7α-hydroxydehydroepiandrosterone (7α-OH-DHEA). Here we demonstrated the occurrence of these neurosteroids in the mouse hippocampus after spatial-learning tasks. Cyp7b1 deficiency impaired remote spatial memory with recent memory mostly unaffected. The hippocampal dendritic spine densities were reduced in Cyp7b1-deficient mice, and they were no more increased by the training. Furthermore, chronic intracerebroventricular administration of a mixture of 7α-OH-Preg and 7α-OH-DHEA rescued the deteriorated remote memory performance in Cyp7b1-deficient mice. It is concluded that the 7α-hydroxylated neurosteroids are required for long-term maintenance of spatial memory, and we suggest that these neurosteroids may induce synaptic remodeling to maintain the hippocampal function. LC-MS/MS analysis identified 7α-hydroxylated neurosteroids in the mouse hippocampus The hippocampal neurosteroids were induced by spatial water maze training KO of 7α-hydroxylating enzyme impaired remote memory and hippocampal spine density Infusion of the 7α-hydroxylated steroids to the KO rescued impaired remote memory
Collapse
|
4
|
Acute Valproate Exposure Induces Sex-Specific Changes in Steroid Hormone Metabolism in the Cerebral Cortex of Juvenile Mice. Neurochem Res 2020; 45:2044-2051. [PMID: 32601984 DOI: 10.1007/s11064-020-03065-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Valproic acid (VPA), an antiepileptic and mood stabilizer, modulates neurotransmission and gene expression by inhibiting histone deacetylase activity. It is reported that VPA may affects the steroid hormone level. In this study, VPA-induced acute metabolic alterations were investigated using liquid chromatography-tandem mass spectrometry in prepubertal mice brain. In VPA-treated (400 mg/kg in saline solution, intraperitoneal) mice, cortisol levels were increased (female: P < 0.004, male: P < 0.003) and 17β-estradiol levels were decreased (Both P < 0.03). Furthermore, in the VPA-treated male mice, dihydrotestosterone levels were increased (P < 0.02) and testosterone were decreased (P < 0.002). The 4-hydroxylase activity was upregulated in the female VPA-treated mice (P < 0.01) and the 5α-reductase activity was increased in the male VPA-treated mice (P < 0.003). These results indicate sex specific differences in VPA-induced steroid metabolism in the brain cortex.
Collapse
|
5
|
Tsutsui K, Haraguchi S, Vaudry H. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates. Gen Comp Endocrinol 2018; 265:97-105. [PMID: 28919448 DOI: 10.1016/j.ygcen.2017.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/29/2023]
Abstract
The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan; Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, 76000 Rouen, France
| |
Collapse
|
6
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
7
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Yoshimoto FK, Arman HD, Griffith WP, Yan F, Wherritt DJ. Chemical synthesis of 7α-hydroxypregnenolone, a neuroactive steroid that stimulates locomotor activity. Steroids 2017; 128:50-57. [PMID: 29061488 DOI: 10.1016/j.steroids.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
7α-Hydroxypregnenolone is an endogenous neuroactive steroid that stimulates locomotor activity. A synthesis of 7α-hydroxypregnenolone from pregnenolone, which takes advantage of an orthogonal protecting group strategy, is described. In detail, the C7-position was oxidized with CrO3 and 3,5-dimethylpyrazole to yield a 7-keto steroid intermediate. The resulting 7-ketone was stereoselectively reduced to the 7α-hydroxy group with lithium tri-sec-butylborohydride. In contrast, reduction of the same 7-ketone intermediate with NaBH4 resulted in primarily the 7β-hydroxy epimer. Furthermore, in an alternative route to the target compound, the 7α-hydroxy group was successfully incorporated by direct C-H allylic benzoyloxylation of pregnenolone-3-acetate with CuBr and tert-butyl peroxybenzoate followed by saponification. The disclosed syntheses to 7-oxygenated steroids are amenable to potentially obtain other biologically active sterols and steroids.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States.
| | - Hadi D Arman
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Wendell P Griffith
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Fangzhi Yan
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Daniel J Wherritt
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| |
Collapse
|
9
|
STÁRKA L. The Origin of 7α-Hydroxy-Dehydroepiandrosterone and Its Physiological Role: a History of Discoveries. Physiol Res 2017; 66:S285-S294. [DOI: 10.33549/physiolres.933717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nearly 60 years has elapsed since the first isolation and identification of 7α-hydroxy-dehydroepiandrosterone, and in that time much information has been gained on its occurrence, metabolism, ontogeny, immunomodulatory activity, cell proliferation, cortisol control in local tissues and neuroactivity. Additional knowledge about this steroid may elucidate its role in obesity, neurodegenerative disturbances such as Alzheimer’s disease, or psychiatric disorders such as schizophrenia or depression. This review aims to provide a comprehensive summary of the available literature on 7α-hydroxy-dehydroepiandrosterone.
Collapse
Affiliation(s)
- L. STÁRKA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
10
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
11
|
Qaiser MZ, Dolman DEM, Begley DJ, Abbott NJ, Cazacu-Davidescu M, Corol DI, Fry JP. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J Neurochem 2017; 142:672-685. [PMID: 28665486 PMCID: PMC5601180 DOI: 10.1111/jnc.14117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3H‐PregS to enter more rapidly than 3H‐DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood–brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3H‐DHEAS and 3H‐PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3H‐steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17‐hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood–brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. ![]()
Collapse
Affiliation(s)
- M Zeeshan Qaiser
- Blood-Brain Barrier Research Group, Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Diana E M Dolman
- Blood-Brain Barrier Research Group, Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - David J Begley
- Blood-Brain Barrier Research Group, Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - N Joan Abbott
- Blood-Brain Barrier Research Group, Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mihaela Cazacu-Davidescu
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Delia I Corol
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Jonathan P Fry
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
12
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
13
|
Kolatorova Sosvorova L, Sarek J, Vitku J, Kvasnica M. Synthesis of 3α-deuterated 7α-hydroxy-DHEA and 7-oxo-DHEA and application in LC-MS/MS plasma analysis. Steroids 2016; 112:88-94. [PMID: 27192427 DOI: 10.1016/j.steroids.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
7-Oxygenated metabolites of dehydroepiandrosterone (DHEA) are known for their neuroprotective and immunomodulatory properties. These neuroactive steroids are currently predominately analysed by mass spectrometry, for which the use of internal deuterated standards is necessary. The aim of this study was to synthesize the deuterated derivatives of 7α-hydroxy-DHEA and 7-oxo-DHEA and test them in liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to enhance the performance characteristics of this method. Here we report the synthesis of 3α deuterium-labelled 7α-hydroxy-DHEA and 7-oxo-DHEA. Deuterium was introduced into the 3α position by reduction of the corresponding 3-ketone with a protected 17-carbonyl group using NaBD4. Our new procedure allows the easier synthesis of deuterated steroid labelled compounds. The use of these deuterated steroids enabled us to improve the human plasma LC-MS/MS analysis of 7α-hydroxy-DHEA and 7-oxo-DHEA in terms of sensitivity, precision and recovery.
Collapse
Affiliation(s)
- Lucie Kolatorova Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - Jan Sarek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 77900 Olomouc, Czech Republic.
| | - Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
14
|
Tsutsui K. How to contribute to the progress of neuroendocrinology: New insights from discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions. Gen Comp Endocrinol 2016; 227:3-15. [PMID: 26145291 DOI: 10.1016/j.ygcen.2015.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022]
Abstract
Obtaining new insights by discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions is essential for the progress of neuroendocrinology. At the beginning of 1970s, gonadotropin-releasing hormone (GnRH) was discovered in mammals. Since then, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. The follow-up studies demonstrated that GnIH acts as a new key player for regulation of reproduction across vertebrates. It now appears that GnIH acts on the pituitary and the brain to serve a number of behavioral and physiological functions. On the other hand, a new concept has been established that the brain synthesizes steroids, called neurosteroids. The formation of neurosteroids in the brain was originally demonstrated in mammals and subsequently in other vertebrates. Recently, 7α-hydroxypregnenolone was discovered as a novel bioactive neurosteroid inducing locomotor behavior of vertebrates, indicating that neurosteroidogenesis in the brain is still incompletely elucidated in vertebrates. At the beginning of 2010s, it was further found that the pineal gland actively produces neurosteroids. Pineal neurosteroids act on the brain to regulate locomotor rhythms and neuronal survival. Furthermore, the interaction of neuropeptides and neurosteroids is becoming clear. GnIH decreases aggressive behavior by regulating neuroestrogen synthesis in the brain. This review summarizes these new insights by discovering novel neuropeptides and neurosteroids in the field of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
15
|
do Rego JL, Vaudry H. Comparative aspects of neurosteroidogenesis: From fish to mammals. Gen Comp Endocrinol 2016; 227:120-9. [PMID: 26079790 DOI: 10.1016/j.ygcen.2015.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
It is now clearly established that the central and peripheral nervous systems have the ability to synthesize de novo steroids referred to as neurosteroids. The major evidence for biosynthesis of neuroactive steroids by nervous tissues is based on the expression of enzymes implicated in the formation of steroids in neural cells. The aim of the present review is to summarize the current knowledge regarding the presence of steroidogenic enzymes in the brain of vertebrates and to highlight the very considerable contribution of Professor Kazuyoshi Tsutsui in this domain. The data indicate that expression of steroid-producing enzymes in the brain appeared early during vertebrate evolution and has been preserved from fish to mammals.
Collapse
Affiliation(s)
- Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Rouen, 76821 Mont-Saint-Aignan, France; Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, University of Rouen, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
16
|
Sedláčková B, Dušátková L, Zamrazilová H, Matucha P, Bičíková M, Stárka L. 7-oxygenated Derivatives of Dehydroepiandrosterone and Obesity. Prague Med Rep 2015; 113:147-55. [DOI: 10.14712/23362936.2015.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
7-hydroxy/oxo derivatives of dehydroepiandrosterone are potential regulators of the local cortisol activity due to their competition in the cortisolcortisone balance mediated by 11β-hydroxysteroid dehydrogenase. 7-hydroxydehydroepiandrosterone is marketed as anti-obesity medication, though no clinical study aimed at the benefit of administering 7-oxygenated derivatives of dehydroepiandrosterone has appeared until now. We tried to show whether there exist differences in levels of circulating 7-hydroxy/oxo-dehydroepiandrosterone derivatives between lean and obese boys and girls. From a cohort of adolescents investigated within the frame of anti-obesity programme 10 obese boys and 10 obese girls were compared with age-matched lean boys and girls in their anthropometric data, and concentrations of both epimers of 7-hydroxydehydroepiandrosterone and 7-oxo-dehydroepiandrosterone were determined by the RIA method. The basal levels of 7α-hydroxy-dehydroepiandrosterone were significantly higher in obese boys than in lean boys but not in girls. The association was found for anthropometric parameters and 7α-hydroxy-dehydroepiandrosterone, however again only in boys and not in girls. Higher levels of 7α-hydroxydehydroepiandrosterone its positive association with anthropometric data in obese boys may serve as a sign that, at least in boys, 7-oxygenated 5-ene-steroids may take part in regulating the hormonal signal for fat formation or distribution.
Collapse
|
17
|
Sosvorova L, Hill M, Mohapl M, Vitku J, Hampl R. Steroid hormones in prediction of normal pressure hydrocephalus. J Steroid Biochem Mol Biol 2015; 152:124-32. [PMID: 25976421 DOI: 10.1016/j.jsbmb.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Normal pressure hydrocephalus (NPH) is a treatable neurological disorder affecting elderly people with the prevalence increasing with age. NPH is caused by abnormal cerebrospinal fluid (CSF) reabsorption and manifested as a balance impairment, urinary incontinence and dementia development. These symptoms are potentially reversible if recognized early. Diagnosis of NPH is difficult and can be easily mistaken for other neurodegenerative disorders, which makes NPH one of the major misdiagnosed diseases worldwide. The aim of the study was to find out the appropriate combination of indicators, based on CSF steroids, which would contribute to a clearer NPH diagnosis. The levels of CSF cortisol, cortisone, dehydroepiandrosterone (DHEA), 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, 16α-OH-DHEA and aldosterone (all LC-MS/MS) were determined in our patients (n=30; NPH, 65-80 years) and controls (n=10; 65-80 years). The model of orthogonal projections to latent structures (OPLS) was constructed to predict NPH. Cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, aldosterone, 7α-OH-DHEA /DHEA, 7-oxo-DHEA/7α-OH-DHEA, 7β-OH-DHEA/7-oxo-DHEA and 16α-OH-DHEA/DHEA in the CSF were identified as the key predictors and the model discriminated patients from controls with 100% sensitivity and 100% specificity. The suggested model would contribute to early and accurate NPH diagnosis, enabling promptly treatment of the disease.
Collapse
Affiliation(s)
- Lucie Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - Milan Mohapl
- University Military Hospital Prague, Department of Neurosurgery, U Vojenske nemocnice 1200, 169 02 Prague, Czech Republic
| | - Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - Richard Hampl
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
18
|
Sosvorova L, Vitku J, Chlupacova T, Mohapl M, Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids 2015; 98:1-8. [PMID: 25676787 DOI: 10.1016/j.steroids.2015.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/31/2014] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
Abstract
Dehydroepiandrosterone (DHEA) and its 7-oxo- and 7-hydroxy-metabolites occurring in the brain are considered neurosteroids. Metabolism of the latter is catalysed by 11β-hydroxysteroid dehydrogenase (11β-HSD) which also interconverts cortisol and cortisone. The concurrent metabolic reaction to DHEA 7-hydroxylation is the formation of 16α-hydroxy-DHEA. The LC-MS/MS method using triple stage quadrupole-mass spectrometer was developed for simultaneous quantification of free DHEA, 7α-hydroxy-DHEA, 7β-hydroxy-DHEA, 7-oxo-DHEA, 16α-hydroxy-DHEA, cortisol and cortisone in human plasma and cerebrospinal fluid (CSF). The method employs 500 μL of human plasma and 3000 μL of CSF extracted with diethyl ether and derivatized with 2-hydrazinopyridine. It has been validated in terms of sensitivity, precision and recovery. In plasma, the following values were obtained: limit of detection: 2-50p g/mL; limit of quantification: 5-140 pg/mL; within-day precision 0.58-14.58%; between-day precision: 1.24-13.89% and recovery: 85-113.2%). For CSF, the values of limit of detection: 2-28 pg/mL; limit of quantification: 6-94 pg/mL; within-day precision; 0.63-5.48%; between-day precision: 0.88-14.59% and recovery: 85.1-109.4% were acquired. Medians and concentration ranges of detected steroids in plasma and CSF are given in subjects with excluded normal pressure hydrocephalus (n=37; 65-80 years). The method enables simultaneous quantification of steroids important for the estimation of 11β-HSD activity in human plasma and CSF. It will be helpful in better understanding various degenerative diseases development and progression.
Collapse
Affiliation(s)
- Lucie Sosvorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Jana Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Tereza Chlupacova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic
| | - Milan Mohapl
- Military University Hospital Prague, Department of Neurosurgery, U Vojenske nemocnice 1200, 16902 Prague, Czech Republic
| | - Richard Hampl
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 11694 Prague, Czech Republic.
| |
Collapse
|
19
|
Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145:254-60. [PMID: 24704258 DOI: 10.1016/j.jsbmb.2014.03.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate bound form (DHEAS) are important steroids of mainly adrenal origin. They are produced also in gonads and in the brain. Dehydroepiandrosterone easily crosses the brain-blood barrier and in part is also produced locally in the brain tissue. In the brain, DHEA exerts its effects after conversion to either testosterone and dihydrotestosterone or estradiol via androgen and estrogen receptors present in the most parts of the human brain, through mainly non-genomic mechanisms, or eventually indirectly via the effects of its metabolites formed locally in the brain. As a neuroactive hormone, DHEA in co-operation with other hormones and transmitters significantly affects some aspects of human mood, and modifies some features of human emotions and behavior. It has been reported that its administration can increase feelings of well-being and is useful in ameliorating atypical depressive disorders. It has neuroprotective and antiglucocorticoid activity and modifies immune reactions, and some authors have also reported its role in degenerative brain diseases. Here we present a short overview of the possible actions of dehydroepiandrosterone and its sulfate in the brain, calling attention to various mechanisms of their action as neurosteroids and to prospects for the knowledge of their role in brain disorders.
Collapse
Affiliation(s)
- Luboslav Stárka
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Michaela Dušková
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| |
Collapse
|
20
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
21
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
22
|
Tsutsui K, Haraguchi S, Inoue K, Miyabara H, Ubuka T, Hatori M, Hirota T, Fukada Y. New biosynthesis and biological actions of avian neurosteroids. J Exp Neurosci 2013; 7:15-29. [PMID: 25157204 PMCID: PMC4089810 DOI: 10.4137/jen.s11148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic pathways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hitomi Miyabara
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Megumi Hatori
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Tsutsui K, Haraguchi S, Matsunaga M, Koyama T, Do Rego JL, Vaudry H. 7α-Hydroxypregnenolone, a new key regulator of amphibian locomotion: discovery, progress and prospect. Gen Comp Endocrinol 2012; 176:440-7. [PMID: 22138220 DOI: 10.1016/j.ygcen.2011.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 11/26/2022]
Abstract
Seasonally-breeding amphibians have served as excellent animal models to investigate the biosynthesis and biological actions of neurosteroids. Previous studies have demonstrated that the brain of amphibians possesses key steroidogenic enzymes and produces pregnenolone, a precursor of steroid hormones, and other various neurosteroids. We recently found that the brain of seasonally-breeding newts actively produces 7α-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. This novel amphibian neurosteroid acts as a neuronal modulator to stimulate locomotor activity in newts. Subsequently, the mode of action of 7α-hydroxypregnenolone has been demonstrated in the newt brain. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone have also been demonstrated in the newt brain. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to increase locomotor activity under stress. This review summarizes the discovery, progress and prospect of 7α-hydroxypregnenolone, a new key regulator of amphibian locomotion.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Haraguchi S, Koyama T, Hasunuma I, Okuyama SI, Ubuka T, Kikuyama S, Do Rego JL, Vaudry H, Tsutsui K. Acute stress increases the synthesis of 7α-hydroxypregnenolone, a new key neurosteroid stimulating locomotor activity, through corticosterone action in newts. Endocrinology 2012; 153:794-805. [PMID: 22128027 DOI: 10.1210/en.2011-1422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
7α-Hydroxypregnenolone (7α-OH PREG) is a newly identified bioactive neurosteroid stimulating locomotor activity in the brain of newt, a wild animal, which serves as an excellent model to investigate the biosynthesis and biological action of neurosteroids. Here, we show that acute stress increases 7α-OH PREG synthesis in the dorsomedial hypothalamus (DMH) through corticosterone (CORT) action in newts. A 30-min restraint stress increased 7α-OH PREG synthesis in the brain tissue concomitant with the increase in plasma CORT concentrations. A 30-min restraint stress also increased the expression of cytochrome P450(7α) (CYP7B), the steroidogenic enzyme of 7α-OH PREG formation, in the DMH. Decreasing plasma CORT concentrations by hypophysectomy or trilostane administration decreased 7α-OH PREG synthesis in the diencephalon, whereas administration of CORT to these animals increased 7α-OH PREG synthesis. Glucocorticoid receptor was present in DMH neurons expressing CYP7B. Thus, CORT appears to act directly on DMH neurons to increase 7α-OH PREG synthesis. We further investigated the biological action of 7α-OH PREG in the brain under stress. A 30-min restraint stress or central administration of 7α-OH PREG increased serotonin concentrations in the diencephalon. Double immunolabeling further showed colocalization of CYP7B and serotonin in the DMH. These results indicate that acute stress increases the synthesis of 7α-OH PREG via CORT action in the DMH, and 7α-OH PREG activates serotonergic neurons in the DMH that may coordinate behavioral responses to stress. This is the first demonstration of neurosteroid biosynthesis regulated by peripheral steroid hormone and of neurosteroid action in the brain under stress in any vertebrate class.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports. Steroids 2012; 77:10-26. [PMID: 22037250 DOI: 10.1016/j.steroids.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 12/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.
Collapse
Affiliation(s)
- Laïla El Kihel
- Université de Caen Basse-Normandie, UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, FR CNRS INC3M, Caen, France.
| |
Collapse
|
26
|
Genazzani AD, Ricchieri F, Lanzoni C. Use of metformin in the treatment of polycystic ovary syndrome. ACTA ACUST UNITED AC 2011; 6:577-93. [PMID: 20597621 DOI: 10.2217/whe.10.43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metformin is quite an old drug, but it is optimal for the control of glycemia in Type 2 diabetes. It was reported, 15 years ago, that insulin resistance was abnormally high in most polycystic ovary syndrome (PCOS) patients. Starting from that moment, increasing numbers of studies were performed to demonstrate the efficacy of metformin in controlling and/or modulating several aspects of PCOS, which is the most common cause of menstrual irregularity, inesthetisms and infertility. Metformin induces higher glucose uptake, thus inducing a lower synthesis/secretion of insulin. Such an effect permits the possible restoration of the normal biological functions that are severely affected by the compensatory hyperinsulinemia reactive to the increased peripheral insulin resistance. These are the basis of the many positive effects of this drug, such as the restoration of menstrual cyclicity, ovulatory cycles and fertility, because abnormal insulin levels affect the hypothalamus-pituitary-ovarian function, as well as the use of glucose in peripheral tissues. Metformin improves the impairments typically observed in hyperinsulinemic PCOS patients, reducing the possible evolution towards metabolic syndrome and Type 2 diabetes; and when pregnancy occurs, it consistently reduces the risk of gestational diabetes, eclampsia and hypertension. PCOS seems to be the perfect physiopathological condition that might have higher benefits from metformin administration, obviously after Type 2 diabetes. This review focuses on the many aspects of PCOS and on the possible issues of this disease for which metformin might be a putative optimal treatment.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Department of Obstetrics & Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, 41100 Modena, Italy.
| | | | | |
Collapse
|
27
|
Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience 2011; 191:22-7. [PMID: 21641969 DOI: 10.1016/j.neuroscience.2011.05.054] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 11/24/2022]
Abstract
Some peripheral steroids penetrate the blood-brain barrier (BBB), providing at least substances for the CNS steroid metabolome. That is why the predictive value of the peripheral steroids appears to be comparable with that of the cerebrospinal fluid (CSF) steroids. The concentrations of the CSF steroids are pronouncedly lower in comparison with the ones in circulation. The available data indicate that the levels of pregnenolone sulfate substantially increase in the rat brain tissue after the administration of pregnenolone into the circulation. In the human circulation there are about two orders of magnitude higher levels of pregnenolone sulfate compared to the free pregnenolone. Our data show insignificant correlation between CSF and serum pregnenolone, but a borderline one between CSF pregnenolone and serum pregnenolone sulfate. Therefore in humans, the circulating pregnenolone sulfate might be of an importance for pregnenolone concentration in the CNS. In contrast to free pregnenolone, dehydroepiandrosterone (DHEA) in the CSF correlates with both unconjugated and conjugated DHEA in the serum. These data as well as the low C17-hydroxylase-C17,20-lyase activity in the CNS might indicate that DHEA levels in the CNS are influenced by peripheral levels of DHEA and its sulfate. According to the information, available part of the neurosteroids may be synthesized de novo in the CNS, but substantial part of the steroid metabolites may be also synthesized in the CNS from the steroid precursors or directly transported through BBB from the periphery. The processes mentioned above may be complimentary in some cases. Brain synthesis may provide minimal level of neurosteroids, which are indispensable for the CNS functions. Thus, brain steroids of peripheral origin may reflect various physiological situations or even pathologies. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
|
28
|
Haraguchi S, Matsunaga M, Vaudry H, Tsutsui K. Mode of action and functional significance of 7α-hydroxypregnenolone stimulating locomotor activity. Front Endocrinol (Lausanne) 2011; 2:23. [PMID: 22645507 PMCID: PMC3355833 DOI: 10.3389/fendo.2011.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/04/2011] [Indexed: 11/13/2022] Open
Abstract
Previous studies over the past two decades have demonstrated that the brain and other nervous systems possess key steroidogenic enzymes and produces pregnenolone and other various neurosteroids in vertebrates in general. Recently, 7α-hydroxypregnenolone, a novel bioactive neurosteroid, was identified in the brain of newts and quail. Importantly, this novel neurosteroid is produced from pregnenolone through the enzymatic activity of cytochrome P450(7α) and acts on brain tissue as a neuronal modulator to stimulate locomotor activity in these vertebrates. Subsequently, the mode of action of 7α-hydroxypregnenolone was demonstrated. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal, and seasonal changes in 7α-hydroxypregnenolone synthesis were further characterized. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to modulate locomotor activity under stress. This review summarizes the current knowledge regarding the mode of action and functional significance of 7α-hydroxypregnenolone, a newly identified bioactive neurosteroid stimulating locomotor activity.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
29
|
Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Front Endocrinol (Lausanne) 2011; 2:37. [PMID: 22645509 PMCID: PMC3355851 DOI: 10.3389/fendo.2011.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
It is now established that the brain and other nervous systems have the capability of forming steroids de novo, the so-called "neurosteroids." The pioneering discovery of Baulieu and his colleagues, using rodents, has opened the door to a new research field of "neurosteroids." In contrast to mammalian vertebrates, little has been known regarding de novo neurosteroidogenesis in the brain of birds. We therefore investigated neurosteroid formation and metabolism in the brain of quail, a domestic bird. Our studies over the past two decades demonstrated that the quail brain possesses cytochrome P450 side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD), 5β-reductase, cytochrome P450 17α-hydroxylase/c17,20-lyase (P450(17α,lyase)), 17β-HSD, etc., and produces pregnenolone, progesterone, 5β-dihydroprogesterone (5β-DHP), 3β, 5β-tetrahydroprogesterone (3β, 5β-THP), androstenedione, testosterone, and estradiol from cholesterol. Independently, Schlinger's laboratory demonstrated that the brain of zebra finch, a songbird, also produces various neurosteroids. Thus, the formation and metabolism of neurosteroids from cholesterol is now known to occur in the brain of birds. In addition, we recently found that the quail brain expresses cytochrome P450(7α) and produces 7α- and 7β-hydroxypregnenolone, previously undescribed avian neurosteroids, from pregnenolone. This paper summarizes the advances made in our understanding of neurosteroid formation and metabolism in the brain of domestic birds. This paper also describes what are currently known about physiological changes in neurosteroid formation and biological functions of neurosteroids in the brain of domestic and other birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
30
|
Genazzani AD, Chierchia E, Rattighieri E, Santagni S, Casarosa E, Luisi M, Genazzani AR. Metformin administration restores allopregnanolone response to adrenocorticotropic hormone (ACTH) stimulation in overweight hyperinsulinemic patients with PCOS. Gynecol Endocrinol 2010; 26:684-9. [PMID: 20624011 DOI: 10.3109/09513590.2010.500818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the adrenal response in terms of allopregnanolone secretion in a group of hyperinsulinemic patients with polycystic ovary syndrome (PCOS). DESIGN Controlled clinical study. SETTING Patients with PCOS in a clinical research environment. PATIENTS Twenty-two overweight patients with PCOS with hyperinsulinism were enrolled after informed consent. INTERVENTIONS All patients underwent hormonal evaluations, oral glucose tolerance test (OGTT) and adrenocorticotropic hormone (ACTH) test before and after 4 months of metformin administration (500 mg p.o. bi-daily). Ultrasound examinations and Ferriman-Gallway score were also performed. Main outcome measures. plasma luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin (PRL), estradiol, 17-hydroxy-progesterone (17OHP), androstenedione (A), testosterone (T), allopregnanolone, glucose, insulin, C peptide concentrations, body mass index (BMI). RESULTS Metformin administration reduced significantly LH, A, T, insulin and BMI, while allopregnanolone was significantly increased with no change in progesterone plasma levels. Insulin response to OGTT decreased and allopregnanolone response to ACTH stimulation before while this was restored after the treatment interval. The Ferriman-Gallway score as well as the ovarian volume was significantly decreased after 4 months of metformin therapy. CONCLUSIONS In overweight patients with PCOS with hyperinsulinism, allopregnanolone secretion is impaired and metformin administration restored normal allopregnanolone concentrations modulating both steroid syntheses from the ovaries and from adrenal gland.
Collapse
|
31
|
Li A, Bigelow JC. The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids 2010; 75:404-10. [PMID: 20153344 DOI: 10.1016/j.steroids.2010.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/18/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Dehydroepiandrosterone (DHEA) is an important neurosteroid with multiple functions in the central nervous system including neuroprotection. How DHEA exerts its neuroprotection function has not been fully elucidated. One possible mechanism is via its active metabolites, 7alpha-OH DHEA and 7beta-OH DHEA. The purpose of this research is to understand how DHEA is metabolized to 7alpha-OH DHEA and 7beta-OH DHEA by brain tissue. DHEA was incubated with rat brain microsomes and mitochondria and the 7alpha-OH DHEA and 7beta-OH DHEA formed by these fractions were analyzed by LC/MS. For the first time, we observed that DHEA could be metabolized to 7alpha-OH DHEA and 7beta-OH DHEA in mitochondria but the formation of 7alpha-OH DHEA and 7beta-OH DHEA demonstrated different enzymatic kinetic properties. Adding NADPH, an essential cofactor, to mitochondria incubation mixtures increased only the formation of 7alpha-OH DHEA, but not that of 7beta-OH DHEA. Addition of estradiol to the incubation mixtures inhibited only the formation of 7alpha-OH DHEA, but not that of 7beta-OH DHEA. Western blot analysis showed that both microsomes and mitochondria contained cytochrome P450 7B. We also found that 7alpha-OH DHEA could be converted to 7beta-OH DHEA by rat brain homogenates. Our data suggest that 7alpha-OH DHEA and 7beta-OH DHEA are formed by different enzymes and that 7beta-OH DHEA can be formed from both DHEA and 7alpha-OH DHEA, although the overall level of 7beta-OH DHEA was very low.
Collapse
Affiliation(s)
- Aiqun Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209-8334, USA
| | | |
Collapse
|
32
|
Tsutsui K, Haraguchi S, Matsunaga M, Inoue K, Vaudry H. 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates: identification, mode of action, and functional significance. Front Endocrinol (Lausanne) 2010; 1:9. [PMID: 22654788 PMCID: PMC3356142 DOI: 10.3389/fendo.2010.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/10/2010] [Indexed: 11/13/2022] Open
Abstract
Steroids synthesized de novo by the central and peripheral nervous systems are called neurosteroids. The formation of neurosteroids from cholesterol in the brain was originally demonstrated in mammals by Baulieu and colleagues. Our studies over the past two decades have also shown that, in birds and amphibians as in mammals, the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids. Thus, de novo neurosteroidogenesis from cholesterol is a conserved property that occurs throughout vertebrates. However, the biosynthetic pathways of neurosteroids in the brain of vertebrates was considered to be still incompletely elucidated. Recently, 7α-hydroxypregnenolone was identified as a novel bioactive neurosteroid stimulating locomotor activity in the brain of newts and quail through activation of the dopaminergic system. Subsequently, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone in the brain were demonstrated. Interestingly, melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and may also induce seasonal locomotor changes. This review highlights the identification, mode of action, and functional significance of 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates, in terms of diurnal and seasonal changes in 7α-hydroxypregnenolone synthesis, and describes some of their regulatory mechanisms.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| |
Collapse
|
33
|
Tsutsui K, Inoue K, Miyabara H, Suzuki S, Ogura Y, Tobari Y, Haraguchi S. Discovery of a novel avian neurosteroid, 7alpha-hydroxypregnenolone, and its role in the regulation of the diurnal rhythm of locomotor activity in Japanese quail. Gen Comp Endocrinol 2009; 163:117-22. [PMID: 19362555 DOI: 10.1016/j.ygcen.2009.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 11/25/2022]
Abstract
The discovery of two novel avian neurosteroids in the quail brain, 7alpha- and 7beta-hydroxypregnenolone is described. Intracerebroventricular administration of 7alpha-hydroxypregnenolone, but not 7beta-hydroxypregnenolone was found to stimulate locomotor activity of male quail when spontaneous nocturnal activity is low. Diurnal changes in locomotor activity in male quail were found to be correlated with a diurnal change in the concentration of diencephalic 7alpha-hydroxypregnenolone. This correlation was a not seen in female quail which have a lower amplitude diurnal rhythm of locomotor activity and lower daytime concentrations of diencephalic 7alpha-hydroxypregnenolone. Treatment of male quail with melatonin was found to depress the synthesis of 7alpha-hydroxypregnenolone in the diencephalon. This is a previously undescribed role for melatonin in the regulation of neurosteroid synthesis in the brain of any vertebrate. We therefore deduced in male quail, that the nocturnal depression in locomotory activity is a consequence of a depression in diencephalic 7alpha-hydroxypregnenolone resulting from the inhibitory action of the nocturnal increase in melatonin. This observation may be of widespread significance for the molecular control of rhythmic locomotor activity in all vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sujkovic E, Mileusnic R, Fry JP. Metabolism of neuroactive steroids in day-old chick brain. J Neurochem 2009; 109:348-59. [DOI: 10.1111/j.1471-4159.2009.05965.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Li A, May MP, Bigelow JC. An LC/MS method for the quantitative determination of 7α-OH DHEA and 7β-OH DHEA: an application for the study of the metabolism of DHEA in rat brain. Biomed Chromatogr 2009; 24:833-7. [DOI: 10.1002/bmc.1371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
LI HP, YU P, ZHANG HJ, LIU HM. Synthesis of 5-Androstene-3β,7α,17β-triol and 5-Androstene-3β,7β,17β-triol. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
7Alpha-hydroxypregnenolone mediates melatonin action underlying diurnal locomotor rhythms. J Neurosci 2008; 28:2158-67. [PMID: 18305249 DOI: 10.1523/jneurosci.3562-07.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melatonin regulates diurnal changes in locomotor activity in vertebrates, but the molecular mechanism for this neurohormonal regulation of behavior is poorly understood. Here we show that 7alpha-hydroxypregnenolone, a previously undescribed avian neurosteroid, mediates melatonin action on diurnal locomotor rhythms in quail. In this study, we first identified 7alpha-hydroxypregnenolone and its stereoisomer 7beta-hydroxypregnenolone in quail brain. These neurosteroids have not been described previously in avian brain. We then demonstrated that 7alpha-hydroxypregnenolone acutely increased quail locomotor activity. To analyze the production of 7alpha-hydroxypregnenolone, cytochrome P450(7alpha), a steroidogenic enzyme of this neurosteroid, was also identified. Subsequently, we demonstrated diurnal changes in 7alpha-hydroxypregnenolone synthesis in quail. 7Alpha-Hydroxypregnenolone synthesis and locomotor activity in males were much higher than in females. This is the first demonstration in any vertebrate of a clear sex difference in neurosteroid synthesis. This sex difference in 7alpha-hydroxypregnenolone synthesis corresponded to the sex difference in locomotion. We show that only males exhibited marked diurnal changes in 7alpha-hydroxypregnenolone synthesis, and these changes occurred in parallel with changes in locomotor activity. Finally, we identified melatonin as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Increased synthesis of 7alpha-hydroxypregnenolone occurred in males in vivo after melatonin removal via pinealectomy and orbital enucleation (Px plus Ex). Conversely, decreased synthesis of this neurosteroid occurred after melatonin administration to Px plus Ex males. This study demonstrates that melatonin regulates synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, thus inducing diurnal locomotor changes in male birds. This is a previously undescribed role for melatonin.
Collapse
|
39
|
Yau JLW, Noble J, Graham M, Seckl JR. Central administration of a cytochrome P450-7B product 7 alpha-hydroxypregnenolone improves spatial memory retention in cognitively impaired aged rats. J Neurosci 2006; 26:11034-40. [PMID: 17065445 PMCID: PMC6674665 DOI: 10.1523/jneurosci.3189-06.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pregnenolone (PREG) and dehydroepiandrosterone (DHEA) have been reported to improve memory in aged rodents. In brain, these neurosteroids are transformed predominantly into 7alpha-hydroxylated metabolites by the cytochrome P450-7B1 (CYP7B). The biological role of steroid B-ring hydroxylation is unclear. It has been proposed to generate bioactive derivatives that enhance cognition, immune, and other physiological processes. In support, 7alpha-hydroxylated DHEA increases the immune response in mice with greater potency than the parent steroid. Whether the memory-enhancing effects of PREG in rats is mediated via its 7alpha-hydroxylated metabolite 7alpha-hydroxyPREG is not known. We investigated this by treating memory-impaired aged rats (identified by their spatial memory performances in the Morris water maze task compared with young controls) with 7alpha-hydroxyPREG or PREG administered intracerebroventricularly using osmotic minipumps and then tested the rats during week 2 of steroid treatment in the eight-arm radial-arm version of the water maze (RAWM) that allows repeated assessment of learning. CYP7B bioactivity in hippocampal tissue (percentage conversion of [14C]DHEA to [14C]7alpha-hydroxyDHEA) was decreased selectively in memory-impaired aged rats compared with both young and memory-intact aged rats. 7alpha-hydroxyPREG (100 ng/h) but not PREG (100 ng/h) administration to memory-impaired aged rats for 11 d enhanced spatial memory retention (after a 30 min delay between an exposure trial 1 and test trial 2) in the RAWM. These data provide evidence for a biologically active enzyme product 7alpha-hydroxyPREG and suggests that reduced CYP7B function in the hippocampus of memory-impaired aged rats may, in part, be overcome by administration of 7alpha-hydroxyPREG.
Collapse
Affiliation(s)
- Joyce L W Yau
- Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Yarim GF, Karahan S, Yarim M. Cerebellum progesterone concentration decreased in canine distemper virus infection. Res Vet Sci 2006; 82:173-80. [PMID: 16919304 DOI: 10.1016/j.rvsc.2006.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 04/27/2006] [Accepted: 05/20/2006] [Indexed: 11/26/2022]
Abstract
Progesterone has neuroprotective effects including augmentation of myelination in the central and peripheral nervous system. This study was designed to determine if demyelinating lesions in the cerebellum resulting from canine distemper virus (CDV) infection are associated with progesterone levels. Progesterone was measured using radioimmunoassay in samples of the cerebellum, corpus callosum, medulla oblongata, parietal, frontal, temporal, and occipital cortices as well as cerebrospinal fluid (CSF) and plasma collected from ten CDV infected and six non-infected dogs. The cerebellum progesterone level was significantly different between CDV infected (0.66+/-0.09 ng/g) and control dogs (1.14+/-0.09 ng/g) (p<0.001); however, no difference was observed for the other CNS regions, plasma and CSF (p>0.05). The cerebellum progesterone level was also significantly different between acute (0.71+/-0.0 5 ng/g) and chronic cases (0.61+/-0.09 ng/g) (p<0.05). The CDV infected cerebella were also categorized histopathologically according to the severity of demyelinating lesions as mild (n=5), moderate (n=2), or severe (n=3) among which the cerebellum progesterone level was significantly different (p<0.05). Progesterone concentration was 0.71+/-0.05 ng/g in mild, 0.65+/-0.10 ng/g in moderate, and 0.56+/-0.07 ng/g in severe cases. In conclusion, progesterone concentration decreases in the cerebellum in CDV infection and the severity of demyelinating lesions is the greatest in cerebella with the lowest progesterone concentrations. The results suggest that local impairment of progesterone metabolism may be associated with the initiation and progression of cerebellar lesions in CDV infection.
Collapse
Affiliation(s)
- Gul Fatma Yarim
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, 55139 Kurupelit, Samsun, Turkey.
| | | | | |
Collapse
|
41
|
Eser D, Schüle C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R. Neuroactive steroids and affective disorders. Pharmacol Biochem Behav 2006; 84:656-66. [PMID: 16831459 DOI: 10.1016/j.pbb.2006.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as gamma-aminobutyric acid type A (GABA(A)) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of such neuroactive steroids have been observed during major depression and in several anxiety disorders, suggesting a pathophysiological role in such psychiatric conditions. In panic disorder patients a dysequilibrium of neuroactive steroid composition has been observed, which may represent a counterregulatory mechanism against the occurrence of spontaneous panic attacks. Furthermore, alterations of 3alpha-reduced pregnane steroids during major depression were corrected by successful treatment with antidepressant drugs. However in contrast, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition. In addition, changes in neuroactive steroid concentrations after mirtazapine therapy occurred independently from the clinical response, thereby suggesting that changes in neuroactive steroid concentrations more likely reflect direct pharmacological effects of antidepressants rather than clinical improvement in general. Nevertheless, the effects of antidepressant pharmacotherapy on the composition of neuroactive steroids may contribute to the alleviation of certain depressive symptoms, such as amelioration of anxiety, inner tension or sleep disturbances. Moreover, first studies investigating the therapeutical effects of dehydroepiandrosterone revealed promising results in the treatment of major depression. In conclusion, neuroactive steroids are important endogenous modulators of depression and anxiety and may provide a basis for development of novel therapeutic agents in the treatment of affective disorders.
Collapse
Affiliation(s)
- D Eser
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr. 7, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Muller C, Hennebert O, Morfin R. The native anti-glucocorticoid paradigm. J Steroid Biochem Mol Biol 2006; 100:95-105. [PMID: 16713254 DOI: 10.1016/j.jsbmb.2006.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/22/2006] [Indexed: 11/27/2022]
Abstract
Circulating 3beta-hydroxysteroids including dehydroepiandrosterone (DHEA) are 7alpha-hydroxylated by the cytochrome P450-7B1 in the liver, skin and brain, which are the target organs of glucocorticoids. Anti-glucocorticoid effects with 7alpha-hydroxy-DHEA were observed in vivo without an interference with glucocorticoid binding to its receptor. In the organs mentioned above, the circulating inactive cortisone was reduced into active cortisol by the 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). We demonstrated that 7alpha-hydroxy-DHEA was also a substrate for this enzyme. Studies of the 11beta-HSD1 action on 7alpha-hydroxy-DHEA showed the reversible production of 7beta-hydroxy-DHEA through an intermediary 7-oxo-DHEA, and the kinetic parameters favored this production over that of active glucocorticoids. Both the production of 7alpha-hydroxysteroids and their interference with the activation of cortisone into cortisol are basic to the concept of native anti-glucocorticoids efficient at their production site. This opens a promising new area for research.
Collapse
Affiliation(s)
- Caroline Muller
- Laboratoire de Biotechnologie, EA 3199, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | | | | |
Collapse
|
43
|
Patel MA, Katyare SS. Dehydroepiandrosterone (DHEA) treatment stimulates oxidative energy metabolism in the cerebral mitochondria from developing rats. Int J Dev Neurosci 2006; 24:327-34. [PMID: 16777366 DOI: 10.1016/j.ijdevneu.2006.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 04/07/2006] [Accepted: 04/07/2006] [Indexed: 11/21/2022] Open
Abstract
Effects of treatment with dehydroepiandrosterone (DHEA) (0.2 or 1.0mg/kg body weight for 7 days) on oxidative energy metabolism in cerebral mitochondria from developing and young adult rats were examined. Treatment with DHEA did not change the body weight of developing rats but resulted in increase in the brain weight in 5 week group. In young adult rats the body weight increased following treatment with 1.0mg DHEA. State 3 and state 4 respiration rates with all the substrates increased following DHEA treatment, the effect being more pronounced in the developing rats. State 4 respiration rates were stimulated to variable extents. Contents of cytochromes aa(3) and b increased following DHEA treatment and once again the effect was more pronounced in the developing rats. DHEA treatment marginally changed the content of cytochromes c+c(1). In the developing rats the ATPase activity and the levels of dehydrogenases increased significantly by DHEA treatment. Results of our studies have shown that treatment with exogenous DHEA accelerates the process of maturation of cerebral mitochondria thus emphasizing the role of DHEA in brain development in postnatal life.
Collapse
Affiliation(s)
- Minal A Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | | |
Collapse
|
44
|
Eser D, Schüle C, Romeo E, Baghai TC, di Michele F, Pasini A, Zwanzger P, Padberg F, Rupprecht R. Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders. Psychopharmacology (Berl) 2006; 186:373-87. [PMID: 16247651 DOI: 10.1007/s00213-005-0188-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/27/2005] [Indexed: 02/01/2023]
Abstract
Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as gamma-aminobutyric acid type A (GABAA) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety- and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of 3alpha-reduced neuroactive steroids have been observed during major depression. This disequilibrium can be corrected by successful treatment with antidepressant drugs. However, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition independently from the clinical response. Further research is needed to clarify whether enhancement of neuroactive steroid levels might represent a new therapeutical approach in the treatment of affective disorders. Nevertheless, the first studies investigating the therapeutical effects of exogenously administered dehydroepiandosterone revealed promising results in the treatment of major depression. In addition, in various anxiety disorders alterations of neuroactive steroid levels have been observed. In panic disorder, in the absence of panic attacks, neuroactive steroid composition is opposite to that seen in depression, which may represent counter-regulatory mechanisms against the occurrence of spontaneous panic attacks. However, during experimentally induced panic attacks, there was a pronounced decline in GABAergic neuroactive steroids, which might contribute to the pathophysiology of panic attacks. In conclusion, neuroactive steroids contribute to the pathophysiology of affective disorders and the mechanisms of action of antidepressants. They are important endogenous modulators of depression and anxiety and may provide a basis for the development of novel therapeutic agents in the treatment of affective disorders.
Collapse
Affiliation(s)
- Daniela Eser
- Department of Psychiatry, Ludwig Maximilian University, Nussbaumstr. 7, 80336, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mo Q, Lu SF, Simon NG. Dehydroepiandrosterone and its metabolites: differential effects on androgen receptor trafficking and transcriptional activity. J Steroid Biochem Mol Biol 2006; 99:50-8. [PMID: 16524719 DOI: 10.1016/j.jsbmb.2005.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/14/2005] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a multi-functional steroid that has been implicated in a broad range of biological effects in humans and rodents. Recent studies demonstrated that DHEA acts genomically through the androgen receptor (AR) in addition to its well-known effects on cell surface receptors. However, the relative contribution of DHEA and its major metabolites, including DHEA-Sulfate (DHEA-S), 7alpha-OH-DHEA, 7beta-OH-DHEA, 7-oxo-DHEA, androstenedione (Adione), and androstenediol (Adiol), in the production of genomic effects remains controversial, in part because the metabolism of DHEA varies in different cells and tissues. In the current study, the ability of DHEA and its metabolites to promote AR intracellular trafficking and regulate AR-mediated reporter gene expression, which are characteristic effects of androgens, was determined. Intracellular trafficking of AR-GFP protein was assessed in COS-7 cells while AR transcriptional activity was tested in CV-1 cells transiently co-transfected with AR expression plasmid and an MMTV-ARE-CAT reporter. The results demonstrated that DHEA, the 3beta-HSD metabolite Adione, and the 17beta-HSD metabolite Adiol, were androgenic. Each promoted AR-GFP intracellular trafficking, the formation of nuclear clusters, and AR-dependent transcriptional activity in a dose-dependent manner. In contrast, DHEA-S, 7alpha-OH-DHEA, 7beta-OH-DHEA, and 7-oxo-DHEA were ineffective and exhibited minimal androgenic activity, even at relatively high concentrations (10(-6) M). These results provide the first systematic comparison of the (i) androgenic activity of DHEA and its sulfated and hydroxylated metabolites, (ii) relative androgenicity of DHEA itself vs. the established androgens Adione and Adiol, and (iii) ability of DHEA and its major metabolites to promote AR-GFP intracellular trafficking. In addition to partitioning DHEA and its metabolites into compounds with (DHEA, Adione, Adiol) and without (DHEA-S, 7alpha-OH-DHEA, 7beta-OH-DHEA, and 7-oxo-DHEA) androgenic activity, the findings improve our understanding of the intracellular processes mediating the genomic effects of DHEA through AR.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | | | | |
Collapse
|
46
|
Akwa Y, Allain H, Bentue-Ferrer D, Berr C, Bordet R, Geerts H, Nieoullon A, Onteniente B, Vercelletto M. Neuroprotection and neurodegenerative diseases: from biology to clinical practice. Alzheimer Dis Assoc Disord 2006; 19:226-39. [PMID: 16327350 DOI: 10.1097/01.wad.0000189053.25817.d6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurodegenerative diseases and, in particular, Alzheimer disease, are characterized by progressive neuronal loss correlated in time with the symptoms of the disease considered. Whereas the symptoms of those incapacitating diseases are beginning to be managed with a relative efficacy, the ultimate objective of therapy nonetheless remains preventing cell (neuronal and/or astrocytic) death in a neurocytoprotective approach. In biologic terms, in the light of progress at basic research level, three strategies may be envisaged: (1) antagonizing the cytotoxic causal events (excess intracellular calcium, accumulation of abnormal proteins, excitotoxic effects of amino acids, oxidative stress, processes related to inflammation, etc.); (2) stimulating the endogenous protective processes (anti-free radical or DNA repair systems, production of neurotrophic factors, potential cytoprotective action of steroids, etc.); (3) promoting damaged structure repair strategies (grafts) or deep brain or cortical neurostimulation with a view to triggering (beyond the symptomatic actions) potential 'protective' cell mechanisms. The clinical transition of the various strategies whose efficacy is being tested in animal and/or cell models, experimental analogs of the diseases, and thus the objective demonstration in humans of pharmacological and/or surgical neurocytoprotection, is currently the subject of considerable methodological debate (What are the right psychometric assessment criteria? What are the most pertinent laboratory or neuroradiological markers, etc.?). A number of clinical trials have been completed or are ongoing with drugs that are reputed to be neuroprotective. Thus, elements of the response are beginning to be generated with a view to determining whether it will soon be possible to effectively slow or even stop the neurodegenerative process whose etiology, in most cases, remains obscure.
Collapse
|
47
|
Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R. Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 2006; 84:244-54. [PMID: 17159334 DOI: 10.1159/000097879] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/19/2022]
Abstract
Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3alpha,5alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds.
Collapse
Affiliation(s)
- Daniela Eser
- Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Li H, Liu HM, Ge W, Huang L, Shan L. Synthesis of 7alpha-hydroxy-dehydroepiandrosterone and 7beta-hydroxy-dehydroepiandrosterone. Steroids 2005; 70:970-3. [PMID: 16143359 DOI: 10.1016/j.steroids.2005.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 06/30/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The fermentation of dehydroepiandrosterone synthesized from the starting material diosgenin using Mucor racemosus produced 7alpha-hydroxy-dehydroepiandrosterone and 7beta-hydroxy-dehydroepiandrosterone. The bioactivity of the microbial metabolites is also discussed. The species M. racemosus was isolated by screening among stains from soil samples collected from various parts of China.
Collapse
Affiliation(s)
- Heping Li
- Department of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China
| | | | | | | | | |
Collapse
|
49
|
Brunel JM, Billottet L, Letourneux Y. New efficient and totally stereoselective copper allylic benzoyloxylation of sterol derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2005.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Patte-Mensah C, Kibaly C, Mensah-Nyagan AG. Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. Proc Natl Acad Sci U S A 2005; 102:9044-9. [PMID: 15951421 PMCID: PMC1157043 DOI: 10.1073/pnas.0502968102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A crucial biochemical reaction in vertebrates is progesterone conversion into neuroactive metabolites such as dihydroprogesterone (5alpha-DHP) and tetrahydroprogesterone (3alpha,5alpha-THP), which regulate several neurobiological processes, including stress, depression, neuroprotection, and analgesia. 3alpha,5alpha-THP is a potent stimulator of type A receptors of GABA, the main inhibitory neurotransmitter. Here, we show that in the spinal sensory circuit progesterone conversion into 5alpha-DHP and 3alpha,5alpha-THP is inhibited dose-dependently by substance P (SP), a major mediator of painful signals. We developed a triple-labeling approach coupled with multichannel confocal microscope analysis, which revealed that, in the spinal cord (SC), SP-releasing afferents project on sensory neurons expressing simultaneously neurokinin 1 receptors (rNK1) and key enzymes catalyzing progesterone metabolism. Evidence for a potent inhibitory effect of SP on 5alpha-DHP and 3alpha,5alpha-THP formation in the SC was provided by combining pulse-chase experiments using [3H]progesterone as precursor, HPLC, recrystallization of [3H]metabolites to constant specific activity, and continuous flow detection of radioactive steroids. The action of SP on progesterone metabolism was mimicked by the rNK1-specific agonist [Sar-9,Met(O2)11]-SP. The selective rNK1 antagonist SR140333 totally reversed the effect of SP on progesterone conversion into 5alpha-DHP and 3alpha,5alpha-THP. These results provide direct evidence for the occurrence of anatomical and functional interactions between the SP-rNK1 system and neuroactive steroid-producing cells in the SC. The data suggest that, through the local control of 3alpha,5alpha-THP concentration in spinal sensory circuit, the SP-rNK1 system may indirectly interfere with GABA(A) receptor activity in the modulation of nociceptive transmission.
Collapse
Affiliation(s)
- Christine Patte-Mensah
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, Unité Mixte de Recherche 7519, Centre National de la Recherche Scientifique, Université Louis Pasteur, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|