1
|
Vandooren J, Itoh Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Front Immunol 2022; 12:803244. [PMID: 34970276 PMCID: PMC8712716 DOI: 10.3389/fimmu.2021.803244] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Alpha-2-macroglobulin is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor. By presenting itself as an optimal substrate for endopeptidases of all catalytic types, alpha-2-macroglobulin lures active proteases into its molecular cage and subsequently ‘flags’ their complex for elimination. In addition to its role as a regulator of extracellular proteolysis, alpha-2-macroglobulin also has other functions such as switching proteolysis towards small substrates, facilitating cell migration and the binding of cytokines, growth factors and damaged extracellular proteins. These functions appear particularly important in the context of immune-cell function. In this review manuscript, we provide an overview of all functions of alpha-2-macroglobulin and place these in the context of inflammation, immunity and infections.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Lobo V, Parte P. Membrane-bound Glucose regulated protein 78 interacts with alpha-2-macroglobulin to promote actin reorganization in sperm during epididymal maturation. ACTA ACUST UNITED AC 2018; 25:137-155. [DOI: 10.1093/molehr/gay055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/06/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Vivian Lobo
- Department of Gamete Immunobiology, ICMR—National Institute for Research in Reproductive Health, Mumbai, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR—National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
3
|
BKCa channel regulates calcium oscillations induced by alpha-2-macroglobulin in human myometrial smooth muscle cells. Proc Natl Acad Sci U S A 2016; 113:E2335-44. [PMID: 27044074 DOI: 10.1073/pnas.1516863113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca(2+))-activated potassium channel (BKCa) plays an important role in regulating Ca(2+)signaling and is implicated in the maintenance of uterine quiescence during pregnancy. We used immunopurification and mass spectrometry to identify proteins that interact with BKCain myometrium samples from term pregnant (≥37 wk gestation) women. From this screen, we identified alpha-2-macroglobulin (α2M). We then used immunoprecipitation followed by immunoblot and the proximity ligation assay to confirm the interaction between BKCaand both α2M and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), in cultured primary human myometrial smooth muscle cells (hMSMCs). Single-channel electrophysiological recordings in the cell-attached configuration demonstrated that activated α2M (α2M*) increased the open probability of BKCain an oscillatory pattern in hMSMCs. Furthermore, α2M* caused intracellular levels of Ca(2+)to oscillate in oxytocin-primed hMSMCs. The initiation of oscillations required an interaction between α2M* and LRP1. By using Ca(2+)-free medium and inhibitors of various Ca(2+)signaling pathways, we demonstrated that the oscillations required entry of extracellular Ca(2+)through store-operated Ca(2+)channels. Finally, we found that the specific BKCablocker paxilline inhibited the oscillations, whereas the channel opener NS11021 increased the rate of these oscillations. These data demonstrate that α2M* and LRP1 modulate the BKCachannel in human myometrium and that BKCaand its immunomodulatory interacting partners regulate Ca(2+)dynamics in hMSMCs during pregnancy.
Collapse
|
4
|
Misra UK, Pizzo SV. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses. J Biol Chem 2015; 290:9571-87. [PMID: 25720493 DOI: 10.1074/jbc.m114.617837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy.
Collapse
Affiliation(s)
- Uma Kant Misra
- From the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Salvatore Vincent Pizzo
- From the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
5
|
Abstract
The glucose-regulated proteins (GRPs) are stress-inducible chaperones that mostly reside in the endoplasmic reticulum or the mitochondria. Recent advances show that the GRPs have functions that are distinct from those of the related heat shock proteins, and they can be actively translocated to other cellular locations and assume novel functions that control signalling, proliferation, invasion, apoptosis, inflammation and immunity. Mouse models further identified their specific roles in development, tumorigenesis, metastasis and angiogenesis. This Review describes their discovery and regulation, as well as their biological functions in cancer. Promising agents that use or target the GRPs are being developed, and their efficacy as anticancer therapeutics is also discussed.
Collapse
Affiliation(s)
- Amy S Lee
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Room 5308, Los Angeles, California 900899176, USA
| |
Collapse
|
6
|
Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One 2013; 8:e63150. [PMID: 23646189 PMCID: PMC3640024 DOI: 10.1371/journal.pone.0063150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/29/2013] [Indexed: 12/15/2022] Open
Abstract
Objective In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. Methods We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. Results 8-CPT-2Me-cAMP treatment caused a 2–2.5-fold increase of p-cPLA2S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinaseT389, and p-AKTS473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. Conclusion We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling.
Collapse
|
7
|
A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res 2012; 22:225-35. [PMID: 22495669 DOI: 10.1097/cmr.0b013e32835312fd] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The HSP70 family member GRP78 is a selective tumor marker upregulated on the surface of many tumor cell types, including melanoma, where it acts as a growth factor receptor-like protein. Receptor-recognized forms of the proteinase inhibitor α2-macroglobulin (α2M*) are the best-characterized ligands for GRP78, but in melanoma and other cancer patients, autoantibodies arise against the NH2-terminal domain of GRP78 that react with tumor cell-surface GRP78. This causes the activation of signaling cascades that are proproliferative and antiapoptotic. Antibodies directed against the COOH-terminal domain of GRP78, however, upregulate p53-mediated proapoptotic signaling, leading to cell death. Here, we describe the binding characteristics, cell signaling properties, and downstream cellular effects of three novel murine monoclonal antibodies. The NH2-terminal domain-reactive antibody, N88, mimics α2M* as a ligand and drives PI 3-kinase-dependent activation of Akt and the subsequent stimulation of cellular proliferation in vitro. The COOH-terminal domain-reactive antibody, C38, acts as an antagonist of both α2M* and N88, whereas another, C107, directly induces apoptosis in vitro. In a murine B16F1 melanoma flank tumor model, we demonstrate the acceleration of tumor growth by treatment with N88, whereas C107 significantly slowed tumor growth whether administered before (P<0.005) or after (P<0.05) tumor implantation.
Collapse
|
8
|
Misra UK, Mowery YM, Gawdi G, Pizzo SV. Loss of cell surface TFII-I promotes apoptosis in prostate cancer cells stimulated with activated α₂ -macroglobulin. J Cell Biochem 2011; 112:1685-95. [PMID: 21503958 DOI: 10.1002/jcb.23083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Receptor-recognized forms of α₂ -macroglobulin (α₂ M) bind to cell surface-associated GRP78 and initiate pro-proliferative and anti-apoptotic signaling. Ligation of GRP78 with α₂ M also upregulates TFII-I, which binds to the GRP78 promoter and enhances GRP78 synthesis. In addition to its transcriptional functions, cytosolic TFII-I regulates agonist-induced Ca(2+) entry. In this study we show that down regulation of TFII-I gene expression by RNAi profoundly impairs its cell surface expression and anti-apoptotic signaling as measured by significant reduction of GRP78, Bcl-2, and cyclin D1 in 1-Ln and DU-145 human prostate cancer cells stimulated with α₂ M. In contrast, this treatment significantly increases levels of the pro-apoptotic proteins p53, p27, Bax, and Bak and causes DNA fragmentation. Furthermore, down regulation of TFII-I expression activates agonist-induced Ca(2+) entry. In plasma membrane lysates p-PLCγ1, TRPC3, GRP78, MTJ1, and caveolin co-immunoprecipitate with TFII-I suggesting multimeric complexes of these proteins. Consistent with this hypothesis, down regulating TFII-I, MTJ1, or GRP78 expression by RNAi greatly attenuates cell surface expression of TFII-I. In conclusion, we demonstrate that not only does cell surface GRP78 regulate apoptosis, but it also regulates Ca(2+) homeostasis by controlling cell surface localization of TFII-I.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
9
|
Cáceres LC, Bonacci GR, Sánchez MC, Chiabrando GA. Activated α(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-κB activation in macrophage-derived cell lines. J Cell Biochem 2011; 111:607-17. [PMID: 20568116 DOI: 10.1002/jcb.22737] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP-9) expression and protein secretion through the activation of MAPK-ERK and NF-κB signaling pathways. Previously, we demonstrated that activated α(2)-macroglulin (α(2)M*) through the interaction with its receptor low-density lipoprotein receptor-related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK-ERK1/2. In the present work, we examined whether α(2)M*/LRP1interaction could induce the MMP-9 production in J774 and Raw264.7 macrophage-derived cell lines. It was shown that α(2)M* promoted MMP-9 expression and protein secretion by LRP1 in both macrophage-derived cell lines, which was mediated by the activation of MAPK-ERK1/2 and NF-κB. Both intracellular signaling pathways activated by α(2)M* were effectively blocked by calphostin-C, suggesting involvement of PKC. In addition, we demonstrate that α(2)M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA-AM, the α(2)M*-induced MAPK-ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF-κB, it was shown that the α(2)M*-induced MMP-9 protein secretion was inhibited, indicating that the MMP production promoted by the α(2)M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression.
Collapse
Affiliation(s)
- Leandro C Cáceres
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Ciudad Universitaria 5000, Córdoba, Argentina
| | | | | | | |
Collapse
|
10
|
Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 2010; 15:173-82. [PMID: 20091233 DOI: 10.1007/s10495-009-0430-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) bind to cancer cell surface GRP78, which functions as a signaling receptor promoting proliferation and survival. Patients with prostate, ovary, and skin cancer may develop auto-antibodies to the alpha(2)M* binding site which are receptor agonists whose presence indicates a poor prognosis. By contrast, antibodies directed against the COOH-terminal domain of GPR78 (anti-CTD antibody), are antagonists which down regulate pro-proliferative signaling and upregulate p53. Unfolded protein response (UPR) signaling plays an important role in cell survival and proliferation as well as apoptosis. We, therefore, studied the effect of anti-CTD antibody on UPR signaling in 1-LN and DU-145 prostate cancer cells. Treatment of these cells, which express GRP78 on their cell surface, with this antibody significantly downregulated IRE1-alpha, PERK, and ATF6alpha-dependent UPR signaling. By contrast, the pro-apoptotic protein GADD153 was elevated. Anti-CTD antibody treatment also elevated apoptotic components, cleaved PARP-1, and Erdj5. In general, a two to threefold effect was observed for the parameters which were studied. These studies suggest that anti-CTD antibody induces growth inhibitory and pro-apoptotic effects by modulating UPR signaling in human prostate cancer cells.
Collapse
|
11
|
Misra UK, Kaczowka S, Pizzo SV. Inhibition of NF-kappaB1 and NF-kappaB2 activation in prostate cancer cells treated with antibody against the carboxyl terminal domain of GRP78: effect of p53 upregulation. Biochem Biophys Res Commun 2010; 392:538-42. [PMID: 20097177 DOI: 10.1016/j.bbrc.2010.01.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
Abstract
Ligation of cancer cell surface GRP78 by activated alpha2-macroglobulin (alpha2M*) triggers pro-proliferative and anti-apoptotic signaling pathways. Cancer patients who develop autoantibodies to the alpha2M* binding site in GRP78 have a poor prognosis since these antibodies are receptor agonists. The NF-kappaB family of transcription factors induces expression of genes affecting cell growth and differentiation. NF-kappaB1 plays a major regulatory role in controlling innate immunity and inflammation, whereas NF-kappaB2 plays a greater role in cancer cell proliferation. Here we report that treatment of prostate cancer cells with antibody directed against the carboxyl terminal domain of GRP78 inhibits alpha2M*-induced activation of NF-kappaB2 by approximately 50% while exerting a lesser effect of approximately 20% on NF-kappaB1 activation. Treatment of these cells nearly abolished alpha2M*-induced activation of IKKalpha involved in the activation of NF-kappaB2. This antibody also suppressed alpha2M*-induced phosphorylation of IKKalpha, IKKalpha/beta, IkappaBalpha, and IkappaBbeta as well as levels of NIK. Antibody treatment of cancer cells elevated pro-apoptotic p21WAF and p27kip while reducing cyclin D1 levels. These studies demonstrate that antibody directed against the carboxyl terminal domain of GRP78 inhibits the pro-proliferative NF-kappaB signaling cascade in cancer cells.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
12
|
Misra UK, Mowery Y, Kaczowka S, Pizzo SV. Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis. Mol Cancer Ther 2009; 8:1350-62. [PMID: 19417154 DOI: 10.1158/1535-7163.mct-08-0990] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Binding of activated α(2)-macroglobulin to GRP78 on the surface of human prostate cancer cells promotes proliferation by activating signaling cascades. Autoantibodies directed against the activated α(2)-macroglobulin binding site in the NH(2)-terminal domain of GRP78 are receptor agonists, and their presence in the sera of cancer patients is a poor prognostic indicator. We now show that antibodies directed against the GRP78 COOH-terminal domain inhibit [(3)H]thymidine uptake and cellular proliferation while promoting apoptosis as measured by DNA fragmentation, Annexin V assay, and clonogenic assay. These antibodies are receptor antagonists blocking autophosphorylation and activation of GRP78. Using 1-LN and DU145 prostate cancer cell lines and A375 melanoma cells, which express GRP78 on their cell surface, we show that antibodies directed against the COOH-terminal domain of GRP78 up-regulate the tumor suppressor protein p53. By contrast, antibody directed against the NH(2)-terminal domain of GRP78 shows negligible effects on p53 expression. PC-3 prostate cancer cells, which do not express GRP78 on their cell surface, are refractory to the effects of anti-GRP78 antibodies directed against either the COOH- or NH(2)-terminal domains. However, overexpression of GRP78 in PC-3 cells causes translocation of GRP78 to the cell surface and promotes apoptosis when these cells are treated with antibody directed against its COOH-terminal domain. Silencing GRP78 or p53 expression by RNA interference significantly blocked the increase in p53 induced by antibodies. Antibodies directed against the COOH-terminal domain may play a therapeutic role in cancer patients whose tumors trigger the production of autoantibodies directed against the NH(2)-terminal domain of GRP78.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
13
|
Misra UK, Pizzo SV. Heterotrimeric Gαq11 co-immunoprecipitates with surface-anchored GRP78 from plasma membranes of α2M*-stimulated macrophages. J Cell Biochem 2008; 104:96-104. [DOI: 10.1002/jcb.21607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Bonacci GR, Cáceres LC, Sánchez MC, Chiabrando GA. Activated α2-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. Arch Biochem Biophys 2007; 460:100-6. [PMID: 17288987 DOI: 10.1016/j.abb.2007.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 11/16/2022]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor of activated forms of the proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*). It has been proposed that alpha(2)M* and LRP-1 modulate diverse cellular processes, including cell adhesion, proliferation, and migration, which are involved in inflammation and tumor progression. However, relatively little is known about the role of alpha(2)M*/LRP-1 interaction on these processes. In this work, we demonstrate that alpha(2)M* binding to LRP-1 induces cell proliferation and MAPK activation in the J774 macrophage-derived cell line, which were blocked by RAP, an antagonist of LRP-1-binding ligands, and by PD980059, a specific inhibitor for the Mek1-ERK1/2 pathway. In addition, we demonstrate that LPS, a bacterial product that it is known to down-regulate the LRP-1 expression on macrophage, abrogated the signaling activity triggered by alpha(2)M* on LPS-treated J774 cells. These results suggest that alpha(2)M*/LRP-1 interaction constitutes a key role in the macrophage functioning during inflammation and cancer.
Collapse
Affiliation(s)
- Gustavo R Bonacci
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria (5000) Córdoba, Argentina
| | | | | | | |
Collapse
|
15
|
Gonzalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, Pizzo SV. Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res 2007; 66:11424-31. [PMID: 17145889 DOI: 10.1158/0008-5472.can-06-1721] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circulating autoantibodies against the glucose-regulated protein of 78 kDa (GRP78) are present at high levels in prostate cancer patients and are a biomarker of aggressive tumor behavior. We purified the anti-GRP78 IgGs and examined their effect on 1-LN, PC-3, DU145, and LnCap human prostate cancer cells. We also evaluated its effects on the breast cancer MDA-MB231 and melanoma DM413 cell lines. The anti-GRP78 antibody binds only to cells expressing GRP78 on the surface, to a site also recognized by its physiologic agonist, activated alpha(2)-macroglobulin (alpha(2)M*). This antibody is completely specific for a peptide, including the primary amino acid sequence CNVKSDKSC, which contains a tertiary structural motif mimicking an epitope in GRP78. Tertiary structural analysis suggested the linear GRP78 primary amino acid sequence LIGRTWNDPSVQQDIKFL (Leu(98)-Leu(115)) as the putative binding site, containing the tertiary structual arrangement described above, which was confirmed experimentally. The anti-GRP78 antibodies from prostate cancer patients recognize almost exclusively this epitope. We produced animal antibodies against both these peptides, and they are able to mimic the effects of the human antibody. Our experiments also suggest this epitope as highly immunogenic, thereby explaining the specificity of the immune response against this epitope in GRP78, observed in humans. Using 1-LN cells as a model, we show that anti-GRP78 IgG purified from the sera of these patients mimics the proproliferative effects induced by alpha(2)M* via the common receptor, GRP78. Furthermore, increasing concentrations of human anti-GRP78 IgG show a dose-dependent protective effect on apoptosis induced by tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Misra UK, Sharma T, Pizzo SV. Ligation of cell surface-associated glucose-regulated protein 78 by receptor-recognized forms of alpha 2-macroglobulin: activation of p21-activated protein kinase-2-dependent signaling in murine peritoneal macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 175:2525-33. [PMID: 16081825 DOI: 10.4049/jimmunol.175.4.2525] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of the plasma proteinase inhibitor alpha2-macroglobulin (alpha2M) demonstrated that alpha2M-proteinase complexes (alpha2M*) modulate immune responses and promotes macrophage locomotion and chemotaxis. Alpha2M* binds to cell surface-associated glucose-regulated protein 78 (GRP78), which activates downstream signaling events. The role of p21-activated protein kinase-1 and -2 (PAK-1 and -2) in promoting cellular motility is well documented. In the current study, we examined the ability of alpha2M* to activate PAK-1 and PAK-2. Upon macrophage stimulation with alpha2M*, PAK-2 is autophosphorylated, resulting in increased kinase activity; however, PAK-1 is negligibly affected. Alpha2M*-stimulated macrophages showed a marked elevation in the levels of Rac x GTP. Receptor tyrosine phosphorylation upon binding of alpha2M* to GRP78, recruits PAK-2 to the plasma membrane via the adaptor protein NCK. Consistent with this hypothesis, silencing of GRP78 gene expression greatly attenuated the levels of membrane-associated PAK-2 and NCK. PAK-2 activity was markedly decreased by inhibition of tyrosine kinases and PI3K before alpha2M* stimulation. We further demonstrate that phosphorylation of Lin-11, Isl-1, Mec-3 (LIM) kinase and cofilin is promoted by treating macrophages with alpha2M*. Thus, alpha2M* regulates activation of the PAK-2-dependent motility mechanism in these cells.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
17
|
Misra UK, Deedwania R, Pizzo SV. Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 2005; 280:26278-86. [PMID: 15908432 PMCID: PMC1201553 DOI: 10.1074/jbc.m414467200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two characteristics of highly malignant cells are their increased motility and secretion of proteinases allowing these cells to penetrate surrounding basement membranes and metastasize. Activation of 21-kDa activated kinases (PAKs) is an important mechanism for increasing cell motility. Recently, we reported that binding of receptor-recognized forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to GRP78 on the cell surface of 1-LN human prostate cancer cells induces mitogenic signaling and cellular proliferation. In the current study, we have examined the ability of alpha2M* to activate PAK-1 and PAK-2. Exposure of 1-LN cells to alpha2M* caused a 2- to 3-fold increase in phosphorylated PAK-2 and a similar increase in its kinase activity toward myelin basic protein. By contrast, the phosphorylation of PAK-1 was only negligibly affected. Silencing the expression of the GRP78 gene, using either of two different mRNA sequences, greatly attenuated the appearance of phosphorylated PAK-2 in alpha2M*-stimulated cells. Treatment of 1-LN cells with alpha2M* caused translocation of PAK-2 in association with NCK to the cell surface as evidenced by the co-immunoprecipitation of PAK-2 and NCK in the GRP78 immunoprecipitate from plasma membranes. alpha2M*-induced activation of PAK-2 was inhibited by prior incubation of the cells with specific inhibitors of tyrosine kinases and phosphatidylinositol 3-kinase. PAK-2 activation was accompanied by significant increases in the levels of phosphorylated LIMK and phosphorylated cofilin. Silencing the expression of the PAK-2 gene greatly attenuated the phosphorylation of LIMK. In conclusion, we show for the first time the activation of PAK-2 in 1-LN prostate cancer cells by a proteinase inhibitor, alpha2-macroglobulin. These studies suggest a mechanism by which alpha2M* enhances the metastatic potential of these cells.
Collapse
|
18
|
Gonzalez-Gronow M, Misra UK, Gawdi G, Pizzo SV. Association of plasminogen with dipeptidyl peptidase IV and Na+/H+ exchanger isoform NHE3 regulates invasion of human 1-LN prostate tumor cells. J Biol Chem 2005; 280:27173-8. [PMID: 15911629 DOI: 10.1074/jbc.m500383200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of plasminogen type II (Pg 2) to dipeptidyl peptidase IV (DPP IV) on the surface of the highly invasive 1-LN human prostate tumor cell line induces an intracellular Ca2+ ([Ca2+]i) signaling cascade accompanied by a rise in intracellular pH (pHi). In endothelial cells, Pg 2 regulates intracellular pH via Na+/H+ exchange (NHE) antiporters; however, this mechanism has not been demonstrated in any other cell type including prostate cancer cells. Because the Pg 2 receptor DPP IV is associated with NHE3 in kidney cell plasma membranes, we investigated a similar association in 1-LN human prostate cancer cells and a mechanistic explanation for changes in [Ca2+]i or pHi induced by Pg 2 in these cells. Our results suggest that the signaling cascade initiated by Pg 2 and its receptor proceeds via activation of phospholipase C, which promotes formation of inositol 3,4,5-trisphosphate, an inducer of Ca2+ release from endoplasmic reticulum stores. Furthermore, our results suggest that Pg 2 may regulate pHi via an association with NHE3 linked to DPP IV in these cells. These associations suggest that Pg has the potential to simultaneously regulate calcium signaling pathways and Na+/H+ exchanges necessary for tumor cell proliferation and invasiveness.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
19
|
Misra UK, Gonzalez-Gronow M, Gawdi G, Wang F, Pizzo SV. A novel receptor function for the heat shock protein Grp78: silencing of Grp78 gene expression attenuates alpha2M*-induced signalling. Cell Signal 2005; 16:929-38. [PMID: 15157672 DOI: 10.1016/j.cellsig.2004.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/09/2004] [Indexed: 11/20/2022]
Abstract
The activated proteinase inhibitor alpha2-macroglobulin (alpha2M*) binds to two receptors, the low density lipoprotein receptor-related protein (LRP-1) and the alpha2M* signalling receptor (alpha2MSR). Silencing LRP-1 gene expression in macrophages by RNA interference does not block alpha2M* activation of signalling cascades. We now demonstrate that transfection of macrophages with a double-stranded RNA homologous in sequence to the Grp78 gene markedly decreased induction of inositol 1,4,5-trisphosphate (IP3) and subsequent IP3-dependent elevation of [Ca2+]i induced by alpha2M*. Concomitantly, alpha2M*-induced increase in [3H]thymidine uptake was abolished in these transfected cells. Insulin treatment significantly upregulates alpha2MSR and it also caused a marked increase in Grp78 expression which could be blocked by RNA interference. alpha2M* treatment of cells activates the Ras- and PI 3-kinase-dependent signalling pathways. Suppressing Grp78 expression leads to the loss of these activation events in transfected macrophages. We thus conclude that Grp78 is the alpha2M* signalling receptor.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Misra UK, Gonzalez-Gronow M, Gawdi G, Pizzo SV. The role of MTJ-1 in cell surface translocation of GRP78, a receptor for alpha 2-macroglobulin-dependent signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:2092-7. [PMID: 15699139 DOI: 10.4049/jimmunol.174.4.2092] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MTJ-1 associates with a glucose-regulated protein of Mr approximately 78,000(GRP78) in the endoplasmic reticulum and modulates GRP78 activity as a chaperone. GRP78 also exists on the cell surface membrane, where it is associated with a number of functions. MHC class I Ags on the cell surface are complexed to GRP78. GRP78 also serves as the receptor for alpha2-macroglobulin-dependent signaling and for uptake of certain pathogenic viruses. The means by which GRP78, lacking a transmembrane domain, can fulfill such functions is unclear. In this study we have examined the question of whether MTJ-1, a transmembrane protein, is involved in the translocation of GRP78 to the cell surface. MTJ-1 and GRP78 coimmunoprecipitated from macrophage plasma membrane lysates. Silencing of MTJ-1 gene expression greatly reduced MTJ-1 mRNA and protein levels, but also abolished cell surface localization of GRP78. Consequently, binding of the activated and receptor-recognized form of alpha2-macroglobulin to macrophages was greatly reduced, and activated and receptor-recognized form of alpha2-macroglobulin-induced calcium signaling was abolished in these cells. In conclusion, we show that in addition to assisting the chaperone GRP78 in protein quality control in the endoplasmic reticulum, MTJ-1 is essential for transport of GRP78 to the cell surface, which serves a number of functions in immune regulation and signal transduction.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
21
|
Misra UK, Pizzo SV. Potentiation of signal transduction mitogenesis and cellular proliferation upon binding of receptor-recognized forms of alpha2-macroglobulin to 1-LN prostate cancer cells. Cell Signal 2004; 16:487-96. [PMID: 14709337 DOI: 10.1016/j.cellsig.2003.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The alpha2-macroglobulin signalling receptor is upregulated in highly metastatic 1-LN prostate cancer cells. Stimulation of 1-LN cells with activated alpha2-macroglobulin (alpha2M*) caused a two- to threefold increase in [3H]thymidine uptake and cell number. These events require the Ras-dependent MAPK and PI 3-kinase/Akt signalling cascades. Incubation of 1-LN cells with alpha2M* induced Grb2, shc, sos and Raf-1 expression, as well as phosphorylation of MEK 1/2, ERK 1/2, p38 MAPK and JNK. This treatment also increased PI 3-kinase activation, PDK1 expression, Akt phosphorylation and p70s6k phosphorylation. Levels of the early gene products c-fos protein and thymidylate synthase were comparably increased. Exposure of 1-LN cells to alpha2M* significantly raised the levels of phosphorylated CREB by about 15-20 min and phosphorylated p53 by about 60-90 min of incubation. We conclude that the growth regulatory effects of ligating the alpha2M* signalling receptor on 1-LN cells are exerted via the onset and crosstalk between the Ras-dependent MAPK and PI 3-kinase/Akt signalling cascades.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
22
|
Misra UK, Pizzo SV. Activation of Akt/PDK signaling in macrophages upon binding of receptor-recognized forms of ?2-macroglobulin to its cellular receptor: Effect of silencing theCREB gene. J Cell Biochem 2004; 93:1020-32. [PMID: 15389876 DOI: 10.1002/jcb.20233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macrophage binding of receptor-recognized forms of alpha2-macrogobulin (alpha2M*) significantly increases cAMP, CREB, and activated CREB. We have now examined the participation of the PI 3-kinase/PDK/Akt/p70s6k signaling cascade in alpha2M*-induced cellular proliferation and also studied the role of CREB in these events. Exposure of cells to alpha2M* caused an approximately 2-fold increase in CREB and its phosphorylation at Ser133, phosphorylation of the regulatory subunit of PI 3-kinase, Akt phosphorylation at Ser473 or Thr308, and phosphorylated 70s6k. Silencing of the CREB gene with dsRNA homologous in sequence to the target gene, markedly reduced the levels of CREB mRNA activation of CREB, PI 3-kinase, Akt, and p70s6k in alpha2M*-stimulated macrophages. We conclude that in murine peritoneal macrophages, alpha2M*-induced increase of cAMP is involved in cellular proliferation and this process is mediated by the PI 3-kinase signaling cascade.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
23
|
Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV. The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem 2002; 277:42082-7. [PMID: 12194978 DOI: 10.1074/jbc.m206174200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.
Collapse
Affiliation(s)
- Uma K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
24
|
Misra UK, Akabani G, Pizzo SV. The role of cAMP-dependent signaling in receptor-recognized forms of alpha 2-macroglobulin-induced cellular proliferation. J Biol Chem 2002; 277:36509-20. [PMID: 12114513 DOI: 10.1074/jbc.m203543200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligation of alpha(2)-macroglobulin receptors by receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) activates various signaling cascades and promotes cell proliferation. It also elevates cAMP in murine peritoneal macrophages. We now report that a significant elevation of cAMP-response element-binding protein (CREB) occurs in alpha(2)M*-stimulated cells, and this effect is potentiated by isobutylmethylxanthine, dibutyryl-cAMP, or forskolin. An alpha(2)M* concentration-dependent rapid increase in phosphorylated CREB at Ser(133) also occurred, a necessary event in its activation. Inhibition of Ca(2+)/calmodulin kinase, protein kinases A and C, tyrosine kinases, ribosomal S6 kinase, farnesyl transferase, extracellular signal-regulated kinases 1/2, phosphatidylinositol 3-kinase, or p38 mitogen-activated protein kinase markedly reduce alpha(2)M*-induced phosphorylation of CREB, indicating a role for the p21(ras)-dependent and phosphatidylinositol 3-kinase signaling pathways in regulating CREB activation by alpha(2)M*. Finally, silencing the CREB gene by transfecting cells with a homologous gene sequence double-stranded RNA drastically reduced the expression of CREB and blocked the ability of alpha(2)M* to promote macrophage cell division. We conclude that cAMP-dependent signal transduction as well as other signaling cascades are essential for alpha(2)M*-induced cell proliferation.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
25
|
Berwin B, Hart JP, Pizzo SV, Nicchitta CV. Cutting edge: CD91-independent cross-presentation of GRP94(gp96)-associated peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4282-6. [PMID: 11970968 DOI: 10.4049/jimmunol.168.9.4282] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GRP94(gp96) elicits CD8(+) T cell responses against its bound peptides, a process requiring access of its associated peptides into the MHC class I cross-presentation pathway of APCs. Entry into this pathway requires receptor-mediated endocytosis, and CD91 (low-density lipoprotein receptor-related protein) has been reported to be the receptor mediating GRP94 uptake into APC. However, a direct role for CD91 in chaperone-based peptide Ag re-presentation has not been demonstrated. We investigated the contribution of CD91 to GRP94 cell surface binding, internalization, and trafficking in APCs. Whereas a clear role for CD91 in alpha(2)-macroglobulin binding and uptake was readily obtained, the addition of excess CD91 ligand, activated alpha(2)-macroglobulin, or receptor-associated protein, an antagonist of all known CD91 ligands, did not affect GRP94 cell surface binding, receptor-mediated endocytosis, or peptide re-presentation. These data identify a CD91-independent, GRP94 internalization pathway that functions in peptide Ag re-presentation.
Collapse
Affiliation(s)
- Brent Berwin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
26
|
Misra UK, Gawdi G, Akabani G, Pizzo SV. Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell Signal 2002; 14:327-40. [PMID: 11858940 DOI: 10.1016/s0898-6568(01)00268-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cd(2+) exposure increases the risk of cancer in humans and animals. In this report, we have studied the effect of Cd(2+) on signal transduction and Ca(2+) mobilization in murine macrophages. At micromolar concentrations, Cd(2+) significantly increased cell division as judged by [3H]thymidine uptake and cell counts. Cd(2+)-treated cells continued to proliferate even after more than 4 weeks in culture. Cd(2+) (1 microM) treatment induced a 1.5- to 2-fold increase in cytosolic free Ca(2+), [Ca(2+)](i), which was transitory and/or oscillatory. The sources of this Ca(2+) included both inositol 1,4,5-trisphosphate (IP(3))-sensitive and -insensitive stores. Macrophage treatment with 1-(6-((17beta-3-methoxyestra-1,2,5(10)-triene-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), an inhibitor of phosphatidylinositol-specific phospholipase C (PLC), decreased Cd(2+)-induced formation of IP(3) in a concentration-dependent manner (K(d) about 2 microM). This caused a concomitant, partial decrease in the effect of Cd(2+) on [Ca(2+)](i). Cd(2+) itself crosses the macrophage membrane in part via L-type Ca(2+) channels, but it also interacts with a cell surface membrane protein(s) coupled to a pertussis toxin-sensitive G protein. Use of selective inhibitors of signal transduction and the quantitation of the levels of phosphorylated MAPK/ERK-activating kinase-1 (MEK1), extracellular signal-regulated kinase-1 (ERK1), and p38 mitogen-activated protein kinase (MAPK) suggests that the effects of Cd(2+) are mediated by the p21(ras)-dependent MAPK, but not the phosphoinositide 3 (PI 3)-kinase signalling pathway. The effect of activating these pathways includes increased availability of the transcription factor NFkappaB as well as activation of the early genes c-fos and c-myc.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Box 3712, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Misra UK, Gawdi G, Pizzo SV. Beryllium fluoride‐induced cell proliferation: a process requiring P21
ras
‐dependent activated signal transduction and NF‐κB‐dependent gene regulation. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.3.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Govind Gawdi
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
28
|
Bhattacharjee G, Misra UK, Gawdi G, Cianciolo G, Pizzo SV. Inducible expression of the alpha2-macroglobulin signaling receptor in response to antigenic stimulation: a study of second messenger generation. J Cell Biochem 2002; 82:260-70. [PMID: 11527151 DOI: 10.1002/jcb.1152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thioglycollate (TG)-elicited murine, peritoneal macrophages express two receptors for activated forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*)--namely, the low density lipoprotein receptor-related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). We now report that resident peritoneal macrophages express only 400+/-50 alpha2MSR receptors/cell compared to 5000+/-500 receptor/TG-elicited macrophage. By contrast, LRP expression is only 2-2.5-fold greater on elicited cells. The low level of alpha2MSR expression by resident cells is insufficient to trigger signal transduction in contrast to TG-elicited cells which when exposed to alpha2M* demonstrate a rapid rise in inositol 1,4,5-trisphosphate and a concomitant increase in cytosolic free Ca2+. We then studied a variety of preparations injected subcutaneously for their ability to upregulate alpha2MSR. Macroaggregated bovine serum albumin (macroBSA) injection upregulated alpha2MSR and triggered signaling responses by splenic macrophages. Nonaggregated BSA injection alone or in the presence of alum, by contrast, did not alter alpha2MSR expression. Recombivax (hepatitis B antigen adsorbed to alum) injection also upregulated alpha2MSR on splenic macrophages while the alum carrier had no effect. We conclude that macrophage alpha2M* receptors are inducible and their expression may be regulated, in part, by potential antigens.
Collapse
Affiliation(s)
- G Bhattacharjee
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
29
|
Misra UK, Pizzo SV. Regulation of cytosolic phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of alpha 2-macroglobulin: role in mitogenesis and cell proliferation. J Biol Chem 2002; 277:4069-78. [PMID: 11733496 DOI: 10.1074/jbc.m109764200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages exposed to receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) demonstrate increased DNA synthesis and cell division. In the current study, we have probed the role of cytosolic phospholipase A(2) (cPLA(2)) activity in the cellular response to alpha(2)M*. Ligation of the alpha(2)M* signaling receptor by alpha(2)M*, or its receptor binding fragment, increased cPLA(2) activity 2-3-fold in a concentration and time-dependent manner. This activation required a pertussis toxin-insensitive G protein. Cellular binding of alpha(2)M* also induced transient translocation of cPLA(2) activity to nuclei and membrane fractions. Inhibition of protein kinase C activity or chelation of Ca(2+) inhibited alpha(2)M*-induced increased cPLA(2) activity. Binding of alpha(2)M* to macrophages, moreover, increased phosphorylation of MEK 1/2, ERK 1/2, p38 MAPK, and JNK. Incubation of macrophages with inhibitors of MEK 1/2 or p38 MAPK before stimulation with alpha(2)M* profoundly decreased phosphorylation of MAPKs, blocking cPLA(2) activation. alpha(2)M*-induced increase in [(3)H]thymidine uptake and cell proliferation was completely abolished if activation of cPLA(2) was prevented. The response of macrophages to alpha(2)M* requires transcription factors nuclear factor kappaB, and cAMP-responsive element-binding protein as well as expression of the proto-oncogenes c-fos and c-myc. These studies indicate that the activation of cPLA(2) plays a crucial role in alpha(2)M*-induced mitogenesis and cell proliferation.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 2771, USA
| | | |
Collapse
|
30
|
Asplin IR, Misra UK, Gawdi G, Gonzalez-Gronow M, Pizzo SV. Selective upregulated expression of the alpha2-macroglobulin signaling receptor in highly metastatic 1-LN prostate carcinoma cells. Arch Biochem Biophys 2000; 383:135-41. [PMID: 11097186 DOI: 10.1006/abbi.2000.2052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.
Collapse
Affiliation(s)
- I R Asplin
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
31
|
Bhattacharjee G, Asplin IR, Wu SM, Gawdi G, Pizzo SV. The Conformation-dependent Interaction of α2-Macroglobulin with Vascular Endothelial Growth Factor. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61447-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Misra UK, Pizzo SV. Cytosolic phospholipase A(2) activity associated with nuclei is not inhibited by arachidonyl trifluoromethyl ketone in macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin. Arch Biochem Biophys 2000; 379:153-60. [PMID: 10864453 DOI: 10.1006/abbi.2000.1878] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the translocation of cytosolic phospholipase A(2) (cPLA(2)) to nuclei in macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*). Translocation of phosphorylated cPLA(2) to nuclei was determined by immunoprecipitation of cPLA(2) in (32)P(i)-labeled cells. The identity of cPLA(2) was established by comparing its mobility on gels with an authentic cPLA(2) standard. cPLA(2) activity was quantified by measuring the release of [(14)C]arachidonic acid from the substrate 1-palmitoyl-2-[1-(14)C]arachidonyl-sn-glycerophosphatidylcholine. alpha(2)M* caused a two- to threefold increase in cPLA(2) phosphorylation and its translocation to nuclei. The p38 MAPK inhibitor SB203580, PKC inhibitor chelerythrin, or depletion of intracellular Ca(2+) profoundly decreased cPLA(2) activity in nuclei isolated from agonist-stimulated cells. The requirement for Ca(2+), PKC, and p38 MAPK activation appears to be of major importance for nuclear cPLA(2) activity. In contrast to cellular cPLA(2) activity, nuclear cPLA(2) activity was not inhibited by arachidonyl trifluoromethyl ketone (AACOCF(3)) in agonist-stimulated cells. It is concluded that the association of cPLA(2) with nuclear membranes in agonist-stimulated cells modifies the activity and the sensitivity of the enzyme to inhibition by AACOCF(3) in this phospholipid environment.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | |
Collapse
|
33
|
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 2000. [DOI: 10.1182/blood.v95.11.3460.011k26_3460_3466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxychloroquine (HCQ), a lysosomotropic amine, is an immunosuppressive agent presently being evaluated in bone marrow transplant patients to treat graft-versus-host disease. While its immunosuppressive properties have been attributed primarily to its ability to interfere with antigen processing, recent reports demonstrate HCQ also blocks T-cell activation in vitro. To more precisely define the T-cell inhibitory effects of HCQ, the authors evaluated T-cell antigen receptor (TCR) signaling events in a T-cell line pretreated with HCQ. In a concentration-dependent manner, HCQ inhibited anti-TCR–induced up-regulation of CD69 expression, a distal TCR signaling event. Proximal TCR signals, including inductive protein tyrosine phosphorylation, tyrosine phosphorylation of phospholipase C γ1, and total inositol phosphate production, were unaffected by HCQ. Strikingly, anti-TCR-crosslinking–induced calcium mobilization was significantly inhibited by HCQ, particularly at the highest concentrations tested (100 μmol/L) in both T-cell lines and primary T cells. HCQ, in a dose-dependent fashion, also reduced a B-cell antigen receptor calcium signal, indicating this effect may be a general property of HCQ. Inhibition of the calcium signal correlated directly with a reduction in the size of thapsigargin-sensitive intracellular calcium stores in HCQ-treated cells. Together, these findings suggest that disruption of TCR-crosslinking–dependent calcium signaling provides an additional mechanism to explain the immunomodulatory properties of HCQ.
Collapse
|
34
|
Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 2000. [DOI: 10.1182/blood.v95.11.3460] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHydroxychloroquine (HCQ), a lysosomotropic amine, is an immunosuppressive agent presently being evaluated in bone marrow transplant patients to treat graft-versus-host disease. While its immunosuppressive properties have been attributed primarily to its ability to interfere with antigen processing, recent reports demonstrate HCQ also blocks T-cell activation in vitro. To more precisely define the T-cell inhibitory effects of HCQ, the authors evaluated T-cell antigen receptor (TCR) signaling events in a T-cell line pretreated with HCQ. In a concentration-dependent manner, HCQ inhibited anti-TCR–induced up-regulation of CD69 expression, a distal TCR signaling event. Proximal TCR signals, including inductive protein tyrosine phosphorylation, tyrosine phosphorylation of phospholipase C γ1, and total inositol phosphate production, were unaffected by HCQ. Strikingly, anti-TCR-crosslinking–induced calcium mobilization was significantly inhibited by HCQ, particularly at the highest concentrations tested (100 μmol/L) in both T-cell lines and primary T cells. HCQ, in a dose-dependent fashion, also reduced a B-cell antigen receptor calcium signal, indicating this effect may be a general property of HCQ. Inhibition of the calcium signal correlated directly with a reduction in the size of thapsigargin-sensitive intracellular calcium stores in HCQ-treated cells. Together, these findings suggest that disruption of TCR-crosslinking–dependent calcium signaling provides an additional mechanism to explain the immunomodulatory properties of HCQ.
Collapse
|
35
|
Misra UK, Gawdi G, Pizzo SV. Potentiation of calcium levels by extracellular arachidonic acid in nuclei isolated from macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin. Cell Signal 2000; 12:99-104. [PMID: 10679578 DOI: 10.1016/s0898-6568(99)00070-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ligation of macrophage alpha(2)-macroglobulin signalling receptors (alpha(2)MSR) with activated alpha(2)-macroglobulin (alpha(2)M*) increases intracellular Ca(2+), and cytosolic phospholipase A(2) (cPLA(2)) and phospholipase D activities. In view of the relationship between cellular Ca(2+) and mitogenesis, we examined the effect of the product of cPLA(2) activity, arachidonic acid (AA), on nuclear Ca(2+) levels in macrophages stimulated with alpha(2)M*, platelet derived growth factor, and bradykinin. AA addition increased Ca(2+) levels in Fura-2/AM loaded nuclei from both buffer-treated and agonist-stimulated cells, but the increase in stimulated macrophages was 2-4-fold higher. Preincubation of Fura-2/AM loaded nuclei with EGTA or BAPTA/AM abolished AA-induced increase in nuclear Ca(2+) levels. Preincubation of nuclei with indomethacin did not affect AA-induced increase in nuclear Ca(2+) in agonist-stimulated nuclei. It is concluded that in macrophages stimulated with various agonists, AA, derived from cPLA(2)-dependent hydrolysis of phospholipids, plays a significant role in regulating nuclear Ca(2+) levels and thus nuclear functions.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Misra UK, Gawdi G, Pizzo SV. Ligation of low-density lipoprotein receptor-related protein with antibodies elevates intracellular calcium and inositol 1,4, 5-trisphosphate in macrophages. Arch Biochem Biophys 1999; 372:238-47. [PMID: 10600161 DOI: 10.1006/abbi.1999.1521] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have probed the signaling characteristics of the macrophage low-density lipoprotein receptor-related protein (LRP) with monoclonal antibody 8G1, its Fab and F(ab')(2) fragments directed against the ligand binding heavy chain, and monoclonal antibody 5A6 directed against the membrane-spanning light chain of LRP. Ligation of LRP with 8G1, its Fab and F(ab')(2) fragments, or 5A6 increased intracellular Ca(2+) levels two- to threefold. Prior ligation of LRP with 8G1 did not affect the increase in [Ca(2+)](i) observed on subsequent ligation of LRP with lactoferrin, P. exotoxin A, or lipoprotein lipase. Binding to LRP by 8G1, its Fab and F(ab')(2) fragments, or 5A6 increased inositol 1,4,5-trisphosphate (IP(3)) levels by 50 to 100%. Incubation of macrophages with guanosine 5', 3'-O(thio)-triphosphate (GTP-gamma-S) before treatment with antibody potentiated and sustained the 8G1-induced increase in IP(3) levels. Treatment of macrophages with guanyl-5'-yl thiophosphate prior to GTP-gamma-S treatment abolished the GTP-gamma-S-potentiated increase in IP(3) levels in 8G1-treated macrophages. Antibody-induced increases in IP(3) and [Ca(2+)](i) in macrophages on ligation of LRP were pertussis toxin sensitive. Binding of 8G1 or its Fab or F(ab')(2) fragments to LRP stimulated macrophage protein kinase C (PKC) activity as evaluated by histone IIIs phosphorylation by about two- to sevenfold. Staurosporin inhibited the anti-LRP antibody-induced increase in PKC activity. Ligation of LRP with 8G1 increased cellular cAMP levels about twofold. Preincubation of macrophage with the LRP-binding protein receptor-associated protein suppressed the 8G1-induced increase in cAMP levels. Thus, binding of antibodies directed against either chain of LRP triggers complex signaling cascades.
Collapse
MESH Headings
- ADP Ribose Transferases
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Bacterial Toxins
- Binding Sites, Antibody/drug effects
- Calcium/metabolism
- Cells, Cultured
- Cyclic AMP/metabolism
- Enzyme Activation/drug effects
- Exotoxins/metabolism
- Exotoxins/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/antagonists & inhibitors
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Heterotrimeric GTP-Binding Proteins/antagonists & inhibitors
- Heterotrimeric GTP-Binding Proteins/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Lactoferrin/metabolism
- Lactoferrin/pharmacology
- Ligands
- Lipoprotein Lipase/metabolism
- Lipoprotein Lipase/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Pertussis Toxin
- Phosphorylation/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Receptors, LDL/chemistry
- Receptors, LDL/immunology
- Receptors, LDL/physiology
- Second Messenger Systems/drug effects
- Virulence Factors
- Virulence Factors, Bordetella/pharmacology
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | |
Collapse
|
37
|
Misra UK, Gawdi G, Gonzalez-Gronow M, Pizzo SV. Coordinate regulation of the alpha(2)-macroglobulin signaling receptor and the low density lipoprotein receptor-related protein/alpha(2)-macroglobulin receptor by insulin. J Biol Chem 1999; 274:25785-91. [PMID: 10464317 DOI: 10.1074/jbc.274.36.25785] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Bhattacharjee G, Grøn H, Pizzo SV. Incorporation of non-proteolytic proteins by murine alpha2-macroglobulin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1432:49-56. [PMID: 10366727 DOI: 10.1016/s0167-4838(99)00072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human alpha2-macroglobulin is a tetrameric glycoprotein with a molecular weight of 718 kDa that is present in human plasma at high concentrations. Murine alpha2-macroglobulin is homologous to human alpha2-macroglobulin but it undergoes post-translational cleavage in the subunits. Each subunit of alpha2-macroglobulin contains a thiolester which can be cleaved by small nucleophiles. In human alpha2-macroglobulin this results in a conformational change to a receptor-recognized form and a change in the electrophoretic mobility. Recent work has demonstrated that this process is reversible and during this reversal non-proteolytic proteins can become covalently trapped within the human alpha2-macroglobulin molecule. The present study further investigates this observation and examines the question whether reversal of thiolester cleavage occurs in mouse alpha2-macroglobulin. Previous studies suggest that small nucleophiles only partially convert mouse alpha2-macroglobulin to a receptor-recognized form. We demonstrate here that under appropriate conditions, mouse alpha2-macroglobulin is fully converted by NH3. We also demonstrate that despite structural and kinetic differences between human and mouse alpha2-macroglobulin, both molecules are able to incorporate non-proteolytic ligands in a similar manner. This leads us to propose a general model of ligand incorporation via nucleophilic exchange in multimeric alpha-macroglobulins.
Collapse
Affiliation(s)
- G Bhattacharjee
- Department of Pathology, P.O. Box 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Misra UK, Pizzo SV. Upregulation of macrophage plasma membrane and nuclear phospholipase D activity on ligation of the alpha2-macroglobulin signaling receptor: involvement of heterotrimeric and monomeric G proteins. Arch Biochem Biophys 1999; 363:68-80. [PMID: 10049500 DOI: 10.1006/abbi.1998.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Misra UK, Gawdi G, Pizzo SV. Cyclosporin A Inhibits Inositol 1,4,5-Trisphosphate Binding to Its Receptors and Release of Calcium from Intracellular Stores in Peritoneal Macrophages. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have studied the effects of the immunosuppressive drug cyclosporin A (CsA) on the generation of inositol 1,4,5-trisphosphate (IP3) and intracellular Ca2+ levels elicited upon ligation of murine macrophage receptors for α2-macroglobulin, bradykinin, epidermal growth factor, and platelet-derived growth factor. Preincubation of cells with CsA (500 ng/ml), either alone or with the various ligands, did not inhibit the synthesis of IP3. However, we observed 70–80% inhibition of the binding of [3H]IP3 to IP3 receptors on macrophage membranes isolated from CsA-treated macrophages. Preincubation of macrophages with CsA abolished IP3-mediated release of Ca2+ from intracellular stores and Ca2+ entry from the extracellular medium observed when macrophage receptors were stimulated with ligands in the absence of CsA. Preincubation of macrophages with CsA also significantly inhibited DNA synthesis induced by ligands for all four receptors studied. Thus in macrophages, as in T cells, CsA blocks receptor-activated signal transmission pathways characterized by an initial increase in intracellular Ca2+ concentration. This inhibition appears to result from a drug effect on IP3 receptors.
Collapse
Affiliation(s)
- Uma K. Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Govind Gawdi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
41
|
Goretzki L, Mueller BM. Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Biochem J 1998; 336 ( Pt 2):381-6. [PMID: 9820815 PMCID: PMC1219882 DOI: 10.1042/bj3360381] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The low-density-lipoprotein-receptor-related protein (LRP) binds and internalizes numerous ligands, including lipoproteins, proteinase-inhibitor complexes and others. We have shown previously that LRP-mediated ligand internalization is dependent on cAMP-dependent protein kinase (PKA) activity. Here, we investigated whether ligation of LRP increases the intracellular cAMP level and PKA activity via a stimulatory GTP-binding protein. Treatment of LRP-expressing cell lines with the LRP ligands lactoferrin or urokinase-type plasminogen activator caused a significant elevation in cAMP and stimulated PKA activity in a dose-dependent manner. Addition of the 39 kDa receptor-associated protein (RAP), an antagonist for ligand interactions with LRP, blocked the lactoferrin-induced increase in PKA activity, demonstrating a requirement for ligand binding to LRP. Incubation of cell membrane fractions with lactoferrin increased GTPase activity in a time- and dose-dependent manner, and treatment with LRP ligands suppressed cholera-toxin-mediated ADP-ribosylation of the Gsalpha subunit of a heterotrimeric G-protein. Affinity precipitation of LRP with RAP resulted in co-precipitation of two isoforms of Gsalpha from detergent extracts. We thus conclude that LRP is a signalling receptor that associates directly with a stimulatory heterotrimeric G-protein and activates a downstream PKA-dependent pathway.
Collapse
Affiliation(s)
- L Goretzki
- The Scripps Research Institute, Department of Immunology, 10550 N. Torrey Pines Road, IMM13, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Talamini MA, McCluskey MP, Buchman TG, De Maio A. Expression of alpha2-macroglobulin by the interaction between hepatocytes and endothelial cells in coculture. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R203-11. [PMID: 9688980 DOI: 10.1152/ajpregu.1998.275.1.r203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction between distinct cell types within the liver seems to be important in regulating hepatic function. However, these interactions have not been well characterized because of difficulty in reproducing the hepatic environment in an ex vivo model. In the present study a coculture system of hepatocytes and endothelial cells was established to investigate the communication between parenchymal and nonparenchymal cells. Freshly isolated rat hepatocytes were placed onto a monolayer of primary aortic rat endothelial cells. Analysis of the proteins secreted into the extracellular medium after pulse labeling with radioactive amino acids revealed the presence of a 180,000-apparent molecular weight glycoprotein, BBB-180, which was not detected in the extracellular medium of hepatocytes or endothelial cells when they were cultured separately. This glycoprotein was identified as alpha2-macroglobulin after sequencing of the proteolytic peptides derived from the purified protein. This finding was confirmed by Northern and Western blotting, immunoprecipitation, and RT-PCR. The expression of alpha2-macroglobulin required direct contact between hepatocytes and viable endothelial cells. These findings suggest that endothelial cells modulate hepatocyte gene expression by direct cellular interactions.
Collapse
Affiliation(s)
- M A Talamini
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
43
|
Misra UK, Gawdi G, Lewis JG, Pizzo SV. Alterations in calcium metabolism in murine macrophages by the benzene metabolite 1,4-benzoquinone. Toxicol Appl Pharmacol 1998; 151:1-8. [PMID: 9705881 DOI: 10.1006/taap.1998.8415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of murine peritoneal macrophages to very low concentrations of 1,4-benzoquinone (BQ) induced immediate increases in intracellular Ca2+ concentrations ([Ca2+]i). Increases in [Ca2+]i were induced by concentrations as low as 5 nM and the response was dose dependent and linear up to 1 microM. The sources of Ca2+ were from both internal inositol triphosphate (IP3)-sensitive and -insensitive sites and from the external medium. BQ did not induce IP3 formation and did not affect binding to its receptors. 1, 4-Hydroquinone had no effect on [Ca2+]i. Catechol did elicit some increases in [Ca2+]i, but did so only at much higher concentrations (5 microM). The action of BQ was almost identical to that of the established Ca2+-ATPase inhibitor thapsigargin except that there were some intracellular stores of Ca2+ released by thapsigargin that were not released by BQ. BQ also was mitogenic for macrophages in conjunction with phorbol myristate acetate. These data suggest that BQ raises [Ca2+]i by inhibition of Ca2+-ATPases, is a comitogen, and does so at concentrations that could be achieved in vivo in the general urban population.
Collapse
MESH Headings
- Animals
- Benzoquinones/toxicity
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium-Transporting ATPases/antagonists & inhibitors
- Carcinogens/toxicity
- Catechols/toxicity
- Cells, Cultured
- Dithiothreitol/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/toxicity
- Glutathione/pharmacology
- Hydroquinones/toxicity
- Inositol 1,4,5-Trisphosphate/analysis
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate Receptors
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mutagens/toxicity
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sulfhydryl Reagents/pharmacology
- Tetradecanoylphorbol Acetate/toxicity
- Thapsigargin/toxicity
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
44
|
Misra UK, Pizzo SV. Ligation of the alpha2M signalling receptor elevates the levels of p21Ras-GTP in macrophages. Cell Signal 1998; 10:441-5. [PMID: 9720766 DOI: 10.1016/s0898-6568(97)00171-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligation of the alpha2-macroglobulin signalling receptor (alpha2MSR) with alpha2-macroglobulin (alpha2M)-methylamine or a cloned and expressed receptor binding fragment (RBF) stimulates DNA synthesis. To examine the possible role of the Ras pathway in the mitogenic effects observed on ligating alpha2MSR, we studied the formation of p2 Ras-GTP in murine peritoneal macrophages upon treatment with alpha2M-methylamine and RBF, respectively. Both alpha2M-methylamine (50 pM) and RBF (50 pM) stimulated a 2-3-fold increase in the formation of the p21Ras-GTP complex compared with unstimulated cells. p21Ras-GT32P complex formation was both time and RBF concentration dependent and was comparable to p21Ras-GT32P complex formation induced by EGF (200 ng/mL) and platelet derived growth factor (50 mg/mL). Up-regulation of cells with phorbol dibutyrate prior to stimulation with RBF had no effect on p2 Ras-GT32P formation. However, treatment of macrophages with the tyrosine kinase inhibitor genestein drastically reduced RBF-induced formation of the p21 Ras-GT32P complex. Wortmannin, an inhibitor of phosphatidylinositol-3'-kinase (PI3K), had no effect on p21Ras-GT32P complex formation. It is concluded that the mitogenic effects of ligating alpha2MSR are mediated through a Ras-dependent pathway.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
45
|
Misra UK, Pizzo SV. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase. J Biol Chem 1998; 273:13399-402. [PMID: 9593670 DOI: 10.1074/jbc.273.22.13399] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
46
|
Grøn H, Pizzo SV. Nonproteolytic incorporation of protein ligands into human alpha 2-macroglobulin: implications for the binding mechanism of alpha 2-macroglobulin. Biochemistry 1998; 37:6009-14. [PMID: 9558338 DOI: 10.1021/bi973027c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
alpha 2-Macroglobulin (alpha 2M) is a complex tetrameric protein of 718 kDa. In native alpha 2M, each of the four subunits contains a thiol ester between the side chains of Cys949 and Gln952. Cleavage of the thiol ester with small nucleophiles destabilizes the native conformation and causes a major conformational change in alpha 2M, which leads to exposure of receptor binding sites and a change in electrophoretic mobility. Recently it has been shown that nucleophilic cleavage of the four thiol esters in alpha 2M is a reversible process with energy requirements dependent on the nucleophile [Grøn, H., Thøgersen, I. B., Enghild, J. J., and Pizzo, S. V. (1996) Biochem. J. 318, 539-545]. The present study is a further investigation of the properties of alpha 2M with cleaved thiol esters and the potential for incorporation of protein ligands at the site of the thiol ester. The thiol ester in alpha 2M was cleaved by NH3. After removal of excess NH3, the alpha 2M derivative was incubated with excess protein ligand (hen egg lysozyme or bovine insulin) at 23, 37, or 50 degreesC, leading to covalent incorporation of the ligands in alpha 2M as analyzed by SDS-PAGE, gel filtration, and centrifugal microfiltration. Receptor binding studies and native pore-limit PAGE confirmed that the alpha 2M derivatives with ligand incorporated remained in the receptor-recognized, "fast" migrating conformation. This is the first demonstration of nonproteolytic, covalent incorporation of protein ligands into receptor-recognized alpha 2M.
Collapse
Affiliation(s)
- H Grøn
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
47
|
Misra UK, Pizzo SV. Ligation of the alpha2M signaling receptor with receptor-recognized forms of alpha2-macroglobulin initiates protein and DNA synthesis in macrophages. The effect of intracellular calcium. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1401:121-8. [PMID: 9459492 DOI: 10.1016/s0167-4889(97)00123-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously reported that receptor-recognized forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M) bind to a distinct receptor (alpha2MSR), Kd approximately 50-100 pM, activating a signaling cascade, triggering tyrosine phosphorylation of phospholipase Cgamma1, and raising cytosolic pH. We have now studied the effects of alpha2M or a cloned and expressed receptor binding fragment (RBF) on protein and DNA synthesis by macrophages. A nearly linear increase in total protein and DNA synthesis was noted at ligand concentrations up to 100 pM; thereafter, synthesis plateaued. The increase (1.5-2-fold) in protein and DNA synthesis was similar to that observed with known growth factors such as epidermal growth factor and platelet derived growth factor. Mutants of RBF which bind well to alpha2MSR, also caused a similar increase in DNA synthesis. By contrast, mutant K1374R which binds poorly to alpha2MSR demonstrated much less of an effect on DNA synthesis. Chelation of intracellular Ca2+ drastically reduced protein and DNA synthesis induced by RBF or the human growth factors. These studies suggest that activation of native alpha2M, such as would occur during tissue injury, produces a molecule with properties which are similar to growth factors.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
48
|
Odom AR, Misra UK, Pizzo SV. Nickel inhibits binding of alpha2-macroglobulin-methylamine to the low-density lipoprotein receptor-related protein/alpha2-macroglobulin receptor but not the alpha2-macroglobulin signaling receptor. Biochemistry 1997; 36:12395-9. [PMID: 9376342 DOI: 10.1021/bi970806k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A previous study demonstrated that activated alpha2-macroglobulin (alpha2M*) binding to the low-density receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) is blocked by Ni2+ [Hussain, M. M., et al. (1995) Biochemistry 34, 16074-16081]. We now report that the effect of Ni2+ is on a region of the alpha2M molecule upstream of the carboxyl terminal receptor recognition domain. This observation is consistent with previous observations from this laboratory suggesting that alpha2M* binding to LRP/alpha2MR involves a region of the alpha2M molecule immediately upstream of the receptor recognition domain [Enghild, J. J., et al. (1989) Biochemistry 28, 1406-1412]. We further demonstrate that Ni2+ has no effect on the binding of alpha2M* or a cloned and expressed receptor binding fragment (RBF) to the recently described alpha2M signaling receptor as assessed by direct binding and signal transduction studies.
Collapse
Affiliation(s)
- A R Odom
- Department of Pathology, The Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
49
|
Wu SM, Boyer CM, Pizzo SV. The binding of receptor-recognized alpha2-macroglobulin to the low density lipoprotein receptor-related protein and the alpha2M signaling receptor is decoupled by oxidation. J Biol Chem 1997; 272:20627-35. [PMID: 9252378 DOI: 10.1074/jbc.272.33.20627] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Receptor-recognized forms of alpha2-macroglobulin (alpha2M*) bind to two classes of cellular receptors, a high affinity site comprising approximately 1500 sites/cell and a lower affinity site comprising about 60,000 sites/cell. The latter class has been identified as the so-called low density lipoprotein receptor-related protein (LRP). Ligation of receptors distinct from LRP activates cell signaling pathways. Strong circumstantial evidence suggests that the high affinity binding sites are responsible for cell signaling induced by alpha2M*. Using sodium hypochlorite, a powerful oxidant produced by the H2O2-myeloperoxidase-Cl- system, we now demonstrate that binding to the high affinity sites correlates directly with activation of the signaling cascade. Oxidation of alpha2M* using 200 microM hypochlorite completely abolishes its binding to LRP without affecting its ability to activate the macrophage signaling cascade. Scatchard analysis shows binding to a single class of high affinity sites (Kd - 71 +/- 12 pM). Surprisingly, oxidation of native alpha2-macroglobulin (alpha2M) with 125 microM hypochlorite results in the exposure of its receptor-binding site to LRP, but the ligand is unable to induce cell signaling. Scatchard analysis shows binding to a single class of lower affinity sites (Kd - 0.7 +/- 0.15 nM). Oxidation of a cloned and expressed carboxyl-terminal 20-kDa fragment of alpha2M (RBF), which is capable of binding to both LRP and the signaling receptor, results in no significant change in its binding Kd, supporting our earlier finding that the oxidation-sensitive site is predominantly outside of RBF. Attempts to understand the mechanism responsible for the selective exposure of LRP-binding sites in oxidized native alpha2M suggest that partial protein unfolding may be the most likely mechanism. These studies provide strong evidence that the high affinity sites (Kd - 71 pM) are the alpha2M* signaling receptor.
Collapse
Affiliation(s)
- S M Wu
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
50
|
Misra UK, Gawdi G, Pizzo SV. Chloroquine, quinine and quinidine inhibit calcium release from macrophage intracellular stores by blocking inositol 1,4,5-trisphosphate binding to its receptor. J Cell Biochem 1997; 64:225-32. [PMID: 9027583 DOI: 10.1002/(sici)1097-4644(199702)64:2<225::aid-jcb6>3.0.co;2-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of many ligands to cellular receptors induces a signaling cascade which generates inositol 1,4,5-trisphosphate (IP3). IP3 binding to its receptors in various internal compartments causes a rapid Ca2+ efflux into the cytosol. We now demonstrate that chloroquine blocks ligand-induced Ca2+ mobilization without affecting IP3 synthesis. The effect is independent of the ligand employed and occurred with five unrelated ligands; namely, alpha 2-macroglobulin-methylamine, angiotensin II, bradykinin, carbachol, and epidermal growth factor. Chloroquine, quinidine, and quinine, however, block binding of [3H]IP3 to its receptors by 90%, 88%, and 71%, respectively. These observations suggest a previously undetected mechanism by which these agents may in part function as antimalarials.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|