1
|
Wannowius M, Neelen C, Lotz P, Daude M, Neubauer A, Fühler B, Diederich WE, Geyer J. Structure-Activity Relationships and Target Selectivity of Phenylsulfonylamino-Benzanilide Inhibitors Based on S1647 at the SLC10 Carriers ASBT, NTCP, and SOAT. J Med Chem 2024. [PMID: 39419503 DOI: 10.1021/acs.jmedchem.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intestinal bile acid carrier ASBT (SLC10A2), the hepatic bile acid carrier NTCP (SLC10A1), and the steroid sulfate carrier SOAT (SLC10A6), all members of the solute carrier family SLC10, are established drug targets. The ASBT inhibitors odevixibat, maralixibat, and elobixibat are used to treat intrahepatic cholestasis, cholestatic pruritus, and obstipation. The peptide drug bulevirtide blocks binding of the hepatitis B and D viruses to NTCP and thereby inhibits the virus's entry into hepatocytes. Experimental SOAT inhibitors have antiproliferative effects on hormone-dependent breast cancer cells. The phenylsulfonylamino-benzanilide S1647 is an inhibitor of ASBT and SOAT. The present study aimed to comparatively analyze a set of newly synthesized and commercially available S1647 derivatives for their transport inhibition against ASBT, NTCP, and SOAT. Structure-activity relationships were systematically analyzed regarding potency and target specificity to elucidate whether this compound class is worth being further developed in preclinical studies for pharmacological ASBT, NTCP, and/or SOAT inhibition.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Christopher Neelen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Philipp Lotz
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Michael Daude
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Anita Neubauer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Bärbel Fühler
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| | - Wibke E Diederich
- Department of Medicinal Chemistry and Core Facility Medicinal Chemistry, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, Giessen 35392, Germany
| |
Collapse
|
2
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
3
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
4
|
The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019; 9:biom9060232. [PMID: 31208099 PMCID: PMC6628048 DOI: 10.3390/biom9060232] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid receptor. BA are also known to be protective against neurodegeneration. Here, we review recent findings regarding the biosynthesis, signaling, and neurological functions of BA.
Collapse
|
5
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
6
|
Peng H, Zhu QS, Zhong S, Levy D. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport. PLoS One 2015; 10:e0125318. [PMID: 25992604 PMCID: PMC4439041 DOI: 10.1371/journal.pone.0125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.
Collapse
Affiliation(s)
- Hui Peng
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Qin-shi Zhu
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Shuping Zhong
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Daniel Levy
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Song P, Rockwell CE, Cui JY, Klaassen CD. Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharmacol 2015; 283:57-64. [PMID: 25582706 DOI: 10.1016/j.taap.2014.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023]
Abstract
Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and pharmacological concentrations of BAs.
Collapse
Affiliation(s)
- Peizhen Song
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Cheryl E Rockwell
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Julia Yue Cui
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Penno CA, Morgan SA, Rose AJ, Herzig S, Lavery GG, Odermatt A. 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Mol Metab 2014; 3:554-64. [PMID: 25061560 PMCID: PMC4099504 DOI: 10.1016/j.molmet.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 12/31/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specific and global 11β-HSD1-deficient mice. 11β-HSD1-deficiency resulted in elevated circulating unconjugated BAs, an effect more pronounced in global than liver-specific knockout mice. Gene expression analyses revealed decreased expression of the BA-CoA ligase Fatp5, suggesting impaired BA amidation. Reduced organic anion-transporting polypeptide-1A1 (Oatp1a1) and enhanced organic solute-transporter-β (Ostb) mRNA expression were observed in livers from global 11β-HSD1-deficient mice. The impact of 11β-HSD1-deficiency on BA homeostasis seems to be GR-independent because intrahepatic corticosterone and GR target gene expression were not substantially decreased in livers from global knockout mice. Moreover, Fatp5 expression in livers from hepatocyte-specific GR knockout mice was unchanged. The results revealed a role for 11β-HSD1 in BA homeostasis.
Collapse
Key Words
- 11β-Hydroxysteroid dehydrogenase
- 11β-hydroxysteroid dehydrogenase 1, 11β-HSD1
- BA coenzyme A: amino acid N-acyltransferase, Baat
- Bile acid conjugation
- Bile acid transport
- Bile acids
- Glucocorticoids
- Na+-taurocholate cotransporting polypeptide, Ntcp
- Organic anion-transporting polypeptide, Oatp
- Organic solute transporter, Ost
- bile acids, BAs
- cholesterol 7α-hydroxylase, Cyp7a1
- farnesoid X receptor, Fxr
- fatty acid transport protein, Fatp
- glucocorticoid receptor, GR
- short heterodimer partner, Shp
- sterol-regulatory element-binding protein 1C, Srebp1c
Collapse
Affiliation(s)
- Carlos A. Penno
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Stuart A. Morgan
- Centre for Endocrinology Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, Medical School Building, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam J. Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | - Stephan Herzig
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | - Gareth G. Lavery
- Centre for Endocrinology Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, Medical School Building, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
11
|
Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2013. [PMID: 24196564 DOI: 10.1007/s00424‐013‐1367‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA,
| | | |
Collapse
|
12
|
Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch 2013; 466:77-89. [PMID: 24196564 DOI: 10.1007/s00424-013-1367-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
|
13
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
14
|
Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 2013; 34:45-78. [PMID: 23115084 DOI: 10.1002/bdd.1823] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances. The importance of the unbound concentration ratio (liver/blood), K(p,uu) , of drugs, which is partly governed by OATPs, is exemplified in interpreting the difference in the IC(50) of statins between the hepatocyte and microsome systems for the inhibition of HMG-CoA reductase activity. The intrinsic activity and/or expression level of OATPs are affected by genetic polymorphisms and drug-drug interactions. Their effects on the elimination rate or intestinal absorption rate of drugs may sometimes depend on the substrate drug. This is partly because of the different contribution of OATP isoforms to clearance or intestinal absorption. When the contribution of the OATP-mediated pathway is substantial, the pharmacokinetics of substrate drugs should be greatly affected. This review describes the estimation of the contribution of OATP1B1 to the total hepatic uptake of drugs from the data of fold-increases in the plasma concentration of substrate drugs by the genetic polymorphism of this transporter. To understand the importance of the OATP family transporters, modeling and simulation with a physiologically based pharmacokinetic model are helpful.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Pharmacokinetics Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Cui JY, Aleksunes LM, Tanaka Y, Fu ZD, Guo Y, Guo GL, Lu H, Zhong XB, Klaassen CD. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G979-96. [PMID: 22268101 PMCID: PMC3362079 DOI: 10.1152/ajpgi.00370.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enterohepatic circulation (EHC) of bile acids (BAs) plays a pivotal role in facilitating lipid absorption. Therefore, initiation of the EHC in newborns is of crucial importance for lipid absorption from milk. The purpose of this study was to determine at what age BA transporters in liver are expressed, and the mechanism for their initiation. Serum and liver samples were collected from C57BL/6 mice at 2 days before birth and various postnatal ages. Messenger RNA assays revealed a dramatic increase at birth in the expression of the BA transporters (Ntcp, Bsep, Mrp4, Ostβ), as well as the phospholipid floppase Mdr2 in mouse liver, with the highest expression at 1 day of age. The mRNA expression of the ileal BA transporters (Ostα and Ostβ) also markedly increased at birth. Meanwhile, taurine-conjugated cholic acid markedly increased in both serum and liver of newborns, correlated with upregulation of the classic pathway of BA biosynthesis in newborn liver. The mRNA levels of the major BA sensors, FXR and PXR, were increased at 1 day of age, and their prototypical target genes were upregulated in liver. The mRNA expression of transporters involved in the EHC of BAs was similar in wild-type and PXR-null mice. In contrast, in FXR-null mice, the "day 1 surge" pattern of Ntcp, Bsep, Ostβ, and Mdr2 was blocked in newborn mouse liver, and the induction of Ostα and Ostβ was also abolished in ileums of FXR-null mice. In conclusion, at birth, BAs from the classic pathway of synthesis trigger the induction of transporters involved in EHC of BAs in mice, through activation of the nuclear receptor FXR.
Collapse
Affiliation(s)
- Julia Yue Cui
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren M. Aleksunes
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuji Tanaka
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Ying Guo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Grace Liejun Guo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiao-bo Zhong
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Cui JY, Gunewardena SS, Yoo B, Liu J, Renaud HJ, Lu H, Zhong XB, Klaassen CD. RNA-Seq reveals different mRNA abundance of transporters and their alternative transcript isoforms during liver development. Toxicol Sci 2012; 127:592-608. [PMID: 22454430 DOI: 10.1093/toxsci/kfs107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During development, the maturation of liver transporters is essential for chemical elimination in newborns and children. One cannot compare the real abundance of transcripts by conventional messenger RNA (mRNA) profiling methods; in comparison, RNA-Seq provides a "true quantification" of transcript counts and an unbiased detection of novel transcripts. The purpose of this study was to compare the mRNA abundance of liver transporters and seek their novel transcripts during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq, with transcript abundance estimated by Cufflinks. Among 498 known transporters, the ontogeny of 62 known critical xenobiotic transporters was examined in detail. The cumulative mRNAs of the uptake transporters increased more than the efflux transporters in livers after birth. A heatmap revealed three ontogenic patterns of these transporters, namely perinatal (reaching maximal expression before birth), adolescent (about 20 days), and adult enriched (about 60 days of age). Before birth, equilibrative nucleoside transporter 1 was the transporter with highest expression in liver (29%), followed by breast cancer resistance protein (Bcrp) (26%). Within 1 day after birth, the mRNAs of these two transporters decreased markedly, and Ntcp became the transporter with highest expression (52%). In adult liver, the transporters with highest expression were organic cation transporter 1 and Ntcp (23% and 22%, respectively). Three isoforms of Bcrp with alternate leading exons were identified (E1a, E1b, and E1c), with E1b being the major isoform. In conclusion, this study reveals the mRNA abundance of transporters in liver and demonstrates that the expression of liver transporters is both age and isoform specific.
Collapse
Affiliation(s)
- Julia Yue Cui
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang C, Tan X, Tan L, Liu T, Liu D, Zhang L, Fan S, Su Y, Cheng T, Zhou Y, Shi C. Labeling Stem Cells with a Near-Infrared Fluorescent Heptamethine Dye for Noninvasive Optical Tracking. Cell Transplant 2011; 20:741-51. [DOI: 10.3727/096368910x536536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Near-infrared (NIR) fluorescent agents hold great promise for noninvasive in vivo imaging. We have recently reported that a NIR fluorescent heptamethine dye, IR-780 iodide, exhibits unique optical properties for biomedical imaging. On the basis of this foregoing work, we further describe here the potential application of IR-780 iodide as a novel NIR agent for stem cell labeling and tracking. The labeling efficiency, subcellular localization, and the effects on cell viability and differentiation of IR-780 iodide were investigated. The in vivo distribution of stem cells after intravenous transplantation was traced by whole-body animal NIR imaging. Our results showed that IR-780 iodide exhibited superior labeling efficiency and biocompatibility with unique optical properties. Following whole-body NIR imaging, the pulmonary passage of stem cells was noninvasively visualized in rats after systemic transplantation of IR-780 iodide-labeled stem cells through intravenous delivery. With this NIR imaging method, we further confirmed that pretreatment with sodium nitroprusside (SNP), a vasodilator agent, significantly reduced the cell trapping in the lung and increased the cell passage through the lung capillaries. Our study suggests that IR-780 iodide may represent an effective NIR fluorophore for stem cell labeling and tracking.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Dengqun Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lilong Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Fan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tianmin Cheng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Choi MK, Shin HJ, Choi YL, Deng JW, Shin JG, Song IS. Differential effect of genetic variants of Na+-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica 2010; 41:24-34. [DOI: 10.3109/00498254.2010.523736] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, Fan S, Zhang L, Zhou Y, Cheng T, Shi C. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010; 31:6612-7. [DOI: 10.1016/j.biomaterials.2010.05.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/07/2010] [Indexed: 11/25/2022]
|
20
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
21
|
Soars MG, Webborn PJH, Riley RJ. Impact of Hepatic Uptake Transporters on Pharmacokinetics and Drug−Drug Interactions: Use of Assays and Models for Decision Making in the Pharmaceutical Industry. Mol Pharm 2009; 6:1662-77. [DOI: 10.1021/mp800246x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mathew G. Soars
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Peter J. H. Webborn
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Robert J. Riley
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| |
Collapse
|
22
|
Abstract
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
23
|
Abstract
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
24
|
Shitara Y, Nagamatsu Y, Wada S, Sugiyama Y, Horie T. Long-lasting inhibition of the transporter-mediated hepatic uptake of sulfobromophthalein by cyclosporin a in rats. Drug Metab Dispos 2009; 37:1172-8. [PMID: 19282398 DOI: 10.1124/dmd.108.025544] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclosporin A (CsA) is a well known inhibitor of the organic anion-transporting polypeptide (OATP/Oatp) family transporters, causing a large number of transporter-mediated drug-drug interactions in clinical situations. In the present study, we examined the inhibitory effect of CsA on the hepatic uptake of sulfobromophthalein (BSP) in rats, focusing on a long-lasting inhibition. Twenty-one hours after the subcutaneous administration of CsA, the hepatic clearance of BSP was decreased. The liver uptake index study revealed that hepatic uptake of BSP was reduced in CsA-treated rats for at least 3 days. Comparison of uptake studies using isolated hepatocytes prepared from control and CsA-treated rats showed that hepatic uptake in CsA-treated rats was decreased. In primary cultured hepatocytes, after preincubation with CsA, the uptake of [(3)H]BSP was reduced even after removal of CsA from the incubation buffer although a preincubation time dependence was not observed. However, the expression of Oatp1a1 and Oatp1b2, which are involved in the hepatic uptake of BSP, and the amount of intrahepatic glutathione, a driving force of Oatp1a1, did not change in CsA-treated rats. Thus, we can conclude that CsA modulates the transporter function sustainably. It can cause a potent in vivo drug-drug interaction. The modulation of transporters is not caused by reduced expression or driving force of transporters. It may be affected by CsA accumulated in the liver or its metabolites. The inhibitory effect of CsA on the transporter-mediated uptake of BSP cannot be explained by a simple competitive mechanism and a novel mechanism should be considered.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
25
|
Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 2009; 296:C570-82. [PMID: 19129463 DOI: 10.1152/ajpcell.00436.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic anion transporting polypeptides (humans OATPs, rodents Oatps) are expressed in most mammalian tissues and mediate cellular uptake of a wide variety of amphipathic organic compounds such as bile salts, steroid conjugates, oligopeptides, and a large list of drugs, probably by acting as anion exchangers. In the present study we aimed to investigate the role of the extracellular pH on the transport activity of nine human and four rat OATPs/Oatps. Furthermore, we aimed to test the concept that OATP/Oatp transport activity is accompanied by extrusion of bicarbonate. By using amphibian Xenopus laevis oocytes expressing OATPs/Oatps and mammalian cell lines stably transfected with OATPs/Oatps, we could demonstrate that in all OATPs/Oatps investigated, with the exception of OATP1C1, a low extracellular pH stimulated transport activity. This stimulation was accompanied by an increased substrate affinity as evidenced by lower apparent Michaelis-Menten constant values. OATP1C1 is lacking a highly conserved histidine in the third transmembrane domain, which was shown by site-directed mutagenesis to be critically involved in the pH dependency of OATPs/Oatps. Using online intracellular pH measurements in OATP/Oatp-transfected Chinese Hamster Ovary (CHO)-K1 cells, we could demonstrate the presence of a 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-sensitive chloride/bicarbonate exchanger in CHO-K1 cells and that OATP/Oatp-mediated substrate transport is paralleled by bicarbonate efflux. We conclude that the pH dependency of OATPs/Oatps may lead to a stimulation of substrate transport in an acidic microenvironment and that the OATP/Oatp-mediated substrate transport into cells is generally compensated or accompanied by bicarbonate efflux.
Collapse
Affiliation(s)
- Simone Leuthold
- Univ. Hospital, Dept. of Medicine, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
In recent years the discovery of a number of major transporter proteins expressed in the liver and intestine specifically involved in bile acid transport has led to improved understanding of bile acid homeostasis and the enterohepatic circulation. Sodium (Na(+))-dependent bile acid uptake from portal blood into the liver is mediated primarily by the Na(+) taurocholate co-transporting polypeptide (NTCP), while secretion across the canalicular membrane into the bile is carried out by the bile salt export pump (BSEP). In the ileum, absorption of bile acids from the lumen into epithelial cells is mediated by the apical Na(+) bile salt transporter (ASBT), whereas exit into portal blood across the basolateral membrane is mediated by the organic solute transporter alpha/beta (OSTalpha/beta) heterodimer. Regulation of transporter gene expression and function occurs at several different levels: in the nucleus, members of the nuclear receptor superfamily, regulated by bile acids and other ligands are primarily involved in controlling gene expression, while cell signalling events directly affect transporter function, and subcellular localization. Polymorphisms, dysfunction, and impaired adaptive responses of several of the bile acid transporters, e.g. BSEP and ASBT, results in liver and intestinal disease. Bile acid transporters are now understood to play central roles in driving bile flow, as well as adaptation to various pathological conditions, with complex regulation of activity and function in the nucleus, cytoplasm, and membrane.
Collapse
Affiliation(s)
- A Kosters
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Baker M, Parton T. Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake. Xenobiotica 2008; 37:1110-34. [DOI: 10.1080/00498250701658296] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Hepatocyte growth factor increases uptake of estradiol 17β-d-glucuronide and Oatp1 protein level in rat hepatocytes. Eur J Pharmacol 2008; 580:19-26. [DOI: 10.1016/j.ejphar.2007.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 02/08/2023]
|
29
|
Geier A, Dietrich CG, Trauner M, Gartung C. Extrahepatic cholestasis downregulates Oatp1 by TNF-alpha signalling without affecting Oatp2 and Oatp4 expression and sodium-independent bile salt uptake in rat liver. Liver Int 2007; 27:1056-65. [PMID: 17845533 DOI: 10.1111/j.1478-3231.2007.01523.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hepatic uptake of bile salts is mediated by sodium-dependent and sodium-independent transport systems. During extrahepatic cholestasis, both the function and the expression of the Na(+)/taurocholate cotransporting polypeptide (Ntcp) are downregulated. To test whether sodium-independent organic anion-transporting polypeptides are also affected by extrahepatic cholestasis, the function and expression of all three Oatps have been determined in common bile duct-ligated (CBDL) rats. Oatp1/Oatp1a1 protein mass remained unchanged after CBDL for 1 day, but then declined by 75+/-7% and 90+/-17%, respectively, after 3 and 7 days. In contrast, Oatp2/Oatp1a4 and Oatp4/Oatp1b2 protein expression was not affected by CBDL as compared with controls. After CBDL, Oatp1 mRNA was rapidly downregulated by 68+/-21% of untreated controls (P<0.05) within 24 h, and remained at similar levels at 3 and 7 days. Cytokine-inactivation studies with etanercept pretreatment demonstrated that TNF-alpha-dependent signals mediated the down-regulation of this transporter gene at both protein and mRNA levels during obstructive cholestasis. Sodium-independent uptake of taurocholate and cholate into freshly isolated hepatocyte suspensions showed neither significant differences in K(m) nor V(max) values. These results indicate that sodium-independent transport of bile salts may be mediated by Oatp2 and 4 during biliary obstruction, because its expression remains unaffected and may compensate for loss of Oatp1 expression and function in cholestatic hepatocytes.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Medicine III, University Hospital Aachen (UKA), Aachen University (RWTH), Aachen, Germany.
| | | | | | | |
Collapse
|
30
|
Alrefai WA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007; 24:1803-23. [PMID: 17404808 DOI: 10.1007/s11095-007-9289-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 12/11/2022]
Abstract
Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.
Collapse
Affiliation(s)
- Waddah A Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
31
|
Zhou M, Engel K, Wang J. Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem Pharmacol 2007; 73:147-54. [PMID: 17046718 PMCID: PMC1828907 DOI: 10.1016/j.bcp.2006.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 01/20/2023]
Abstract
The high affinity serotonin transporter (SERT) constitutes the principal pathway for removal of serotonin (5-HT) from extracellular fluid of brain, but evidence indicates that other transporters may also be involved in this process. We recently reported the cloning of a novel plasma membrane monoamine transporter (PMAT), which is abundantly expressed in the human brain and avidly transports 5-HT [Engel K, Zhou M, Wang J. Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 2004;279:50042-9]. In this study, we evaluated whether PMAT contributes to total human brain uptake of 5-HT using a hybrid depletion approach in Xenopus laevis oocytes. We also examined whether PMAT interacts with selective serotonin reuptake inhibitors (SSRIs) using MDCK cells stably expressing recombinant human PMAT. Microinjection of total human brain poly(A)(+) mRNA into oocytes elicited approximately 2.5-3-fold increase in 5-HT uptake. Pre-hybridization of poly(A)(+) mRNA with PMAT or SERT antisense oligonucleotides significantly reduced mRNA-induced 5-HT uptake. An additive inhibitory effect was observed when poly(A)(+) mRNA was co-hybridized with both PMAT and SERT antisense oligonucleotides. In contrast, mRNA-induced 5-HT uptake was not affected by pre-hybridization with sense oligonucleotides. These data suggest that functional transcripts of PMAT are present in the human brain, and the PMAT transporter may be significantly involved in brain uptake of 5-HT. All five tested SSRIs inhibited PMAT with IC(50) values ranging from 11 to 116 microM, which are much greater than clinically encountered concentrations, suggesting that PMAT activity is minimally affected by SSRI therapies.
Collapse
Affiliation(s)
- Mingyan Zhou
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Soars MG, McGinnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact 2006; 168:2-15. [PMID: 17208208 DOI: 10.1016/j.cbi.2006.11.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
This review promotes the value of isolated hepatocytes in modern Drug Discovery programmes and outlines how increased understanding, particularly in the area of in vitro-in vivo extrapolation (IVIVE), has led to more widespread use. The importance of in vitro metabolic intrinsic clearance data for predicting in vivo clearance has been acknowledged for several years and the greater utility of hepatocytes, compared with hepatic microsomes and liver slices, for this application is discussed. The application of hepatocytes in predicting drug-drug interactions (DDIs) resulting from reversible and irreversible (time-dependent) inhibition is relatively novel but affords the potential to study both phase I and phase II processes together with any impact of drug efflux and/or uptake (cellular accumulation). Progress in this area is reviewed along with current opinions on the comparative use of primary hepatocytes and higher throughput reporter gene-based systems for studying cytochrome P450 (CYP) induction. The appreciation of the role of transporter proteins in drug disposition continues to evolve. The study of hepatic uptake using isolated hepatocytes and the interplay between drug transport and metabolism with respect to both clearance and DDIs and subsequent IVIVE is also considered.
Collapse
Affiliation(s)
- Matthew G Soars
- Department of Physical and Metabolic Science, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, UK.
| | | | | | | |
Collapse
|
33
|
Huber RD, Gao B, Sidler Pfändler MA, Zhang-Fu W, Leuthold S, Hagenbuch B, Folkers G, Meier PJ, Stieger B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 2006; 292:C795-806. [PMID: 16971491 DOI: 10.1152/ajpcell.00597.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study we isolated two splice variants of organic anion transporting polypeptide 3A1 (OATP3A1_v1 and OATP3A1_v2) from human brain. OATP3A1_v2 lacks 18 amino acids (aa) at the COOH-terminal end (692 aa) but is otherwise similar in sequence to OATP3A1_v1 (710 aa). OATP3A1_v1 exhibits a wide tissue distribution, with expression in testis, various brain regions, heart, lung, spleen, peripheral blood leukocytes, and thyroid gland, whereas OATP3A1_v2 is predominantly expressed in testis and brain. On the cellular and subcellular levels OATP3A1_v1 could be immunolocalized in testicular germ cells, the basolateral plasma membrane of choroid plexus epithelial cells, and neuroglial cells of the gray matter of human frontal cortex. Immunolocalization of OATP3A1_v2 included Sertoli cells in testis, apical and/or subapical membranes in choroid plexus epithelial cells, and neurons (cell bodies and axons) of the gray and white matter of human frontal cortex. The rodent ortholog Oatp3a1 was also widely distributed in rat brain, and its localization included somatoneurons as well as astroglial cells. Transport studies in cRNA-injected Xenopus laevis oocytes and in stably transfected Chinese hamster ovary FlpIn cells revealed a similar broad substrate specificity for both splice variants. Transported substrates include prostaglandin (PG)E(1) and PGE(2), thyroxine, and the cyclic oligopeptides BQ-123 (endothelin receptor antagonist) and vasopressin. These studies provide further evidence for the involvement of OATPs in oligopeptide transport. They specifically suggest that OATP3A1 variants might be involved in the regulation of extracellular vasopressin concentration in human brain and thus might influence the neuromodulation of neurotransmission by cerebral neuropeptides such as vasopressin.
Collapse
Affiliation(s)
- Robert D Huber
- Univ. Hospital, Dept. of Internal Medicine, Institute of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:413-31. [PMID: 16541252 DOI: 10.1007/s00210-006-0043-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/31/2006] [Indexed: 12/18/2022]
Abstract
The solute carrier family 10 (SLC10) comprises two sodium-dependent bile acid transporters, i.e. the Na(+)/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2). These carriers are essentially involved in the maintenance of the enterohepatic circulation of bile acids mediating the first step of active bile acid transport through the membrane barriers in the liver (NTCP) and intestine (ASBT). Recently, four new members of the SLC10 family were described and referred to as P3 (SLC10A3), P4 (SLC10A4), P5 (SLC10A5) and sodium-dependent organic anion transporter (SOAT; SLC10A6). Experimental data supporting carrier function of P3, P4, and P5 is currently not available. However, as demonstrated for SOAT, not all members of the SLC10 family are bile acid transporters. SOAT specifically transports steroid sulfates such as oestrone-3-sulfate and dehydroepiandrosterone sulfate in a sodium-dependent manner, and is considered to play an important role for the cellular delivery of these prohormones in testes, placenta, adrenal gland and probably other peripheral tissues. ASBT and SOAT are the most homologous members of the SLC10 family, with high sequence similarity ( approximately 70%) and almost identical gene structures. Phylogenetic analyses of the SLC10 family revealed that ASBT and SOAT genes emerged from a common ancestor gene. Structure-activity relationships of NTCP, ASBT and SOAT are discussed at the amino acid sequence level. Based on the high structural homology between ASBT and SOAT, pharmacological inhibitors of the ASBT, which are currently being tested in clinical trials for cholesterol-lowering therapy, should be evaluated for their cross-reactivity with SOAT.
Collapse
Affiliation(s)
- J Geyer
- Institut für Pharmakologie und Toxikologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, 35392, Giessen, Germany.
| | | | | |
Collapse
|
35
|
Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 2006; 27:425-46. [PMID: 16488580 DOI: 10.1016/j.ejps.2005.12.003] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 01/02/2023]
Abstract
Transporters play an important role in the processes of drug absorption, distribution and excretion. In this review, we have focused on the involvement of transporters in drug excretion in the liver and kidney. The rate of transporter-mediated uptake and efflux determines the rate of renal and hepatobiliary elimination. Transporters are thus important as a determinant of the clearance in the body. Even when drugs ultimately undergo metabolism, their elimination rate is sometimes determined by the uptake rate mediated by transporters. Transporters regulate the pharmacological and/or toxicological effect of drugs because they limit their distribution to tissues responsible for their effect and/or toxicity. For example, the liver-specific distribution of some statins via organic anion transporters helps them to produce their high pharmacological effect. On the other hand, as in the case of metformin taken up by organic cation transporter 1, drug distribution to the tissue(s) may enhance its toxicity. As transporter-mediated uptake is a determinant of the drug elimination rate, drug-drug interactions involving the process of transporter-mediated uptake can occur. In this review, we have introduced some examples and described their mechanisms. More recently, some methods to analyze such transporter-mediated transport have been reported. The estimation of the contributions of transporters to the net clearance of a drug makes it possible to predict the net clearance from data involving drug transport in transporter-expressing cells. Double transfected cells, where both uptake and efflux transporters are expressed on the same polarized cells, are also helpful for the analysis of the rate of transporter-mediated transcellular transport.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chou-ku, Chiba 260-8675, Japan
| | | | | |
Collapse
|
36
|
Wang P, Wang JJ, Xiao Y, Murray JW, Novikoff PM, Angeletti RH, Orr GA, Lan D, Silver DL, Wolkoff AW. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem 2005; 280:30143-9. [PMID: 15994332 DOI: 10.1074/jbc.m503969200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many organic anion transport protein (Oatp) family members have PDZ consensus binding sites at their C termini, the functional significance is unknown. In the present study, we utilized rat Oatp1a1 (NM_017111) as a prototypical member of this family to examine the mechanism governing its subcellular trafficking. A peptide corresponding to the C-terminal 16 amino acids of rat Oatp1a1 was used to affinity-isolate interacting proteins from rat liver cytosol. Protein mass fingerprinting identified PDZK1 as the major interacting protein. This was confirmed by immunoprecipitation of an Oatp1a1-PDZK1 complex from cotransfected 293T cells as well as from native rat liver membrane extracts. Oatp1a1 bound predominantly to the first and third PDZ binding domains of PDZK1, whereas the high density lipoprotein receptor, scavenger receptor B type I binds to the first domain. Although it is possible that PDZK1 forms a complex with these two integral membrane proteins, this did not occur, suggesting that as yet undescribed factors lead to selectivity in the interaction of these protein ligands with PDZK1. Oatp1a1 protein expression was near normal in PDZK1 knock-out mouse liver. However, it was located predominantly in intracellular structures, in contrast to its normal basolateral plasma membrane distribution. Plasma disappearance of the Oatp1a1 ligand [35S]sulfobromophthalein was correspondingly delayed in knock-out mice. These studies show a critical role for oligomerization of Oatp1a1 with PDZK1 for its proper subcellular localization and function. Because its ability to transport substances into the cell requires surface expression, this must be considered in any assessment of physiologic function.
Collapse
Affiliation(s)
- Pijun Wang
- Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005; 45:689-723. [PMID: 15822193 DOI: 10.1146/annurev.pharmtox.44.101802.121444] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent studies have revealed the import role played by transporters in the renal and hepatobiliary excretion of many drugs. These transporters exhibit a broad substrate specificity with a degree of overlap, suggesting the possibility of transporter-mediated drug-drug interactions with other substrates. This review is an overview of the roles of transporters and the possibility of transporter-mediated drug-drug interactions. Among the large number of transporters, we compare the Ki values of inhibitors for organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) and their therapeutic unbound concentrations. Among them, cephalosporins and probenecid have the potential to produce clinically relevant OAT-mediated drug-drug interactions, whereas cyclosporin A and rifampicin may trigger OATP-mediated ones. These drugs have been reported to cause drug-drug interactions in vivo with OATs or OATP substrates, suggesting the possibility of transporter-mediated drug-drug interactions. To avoid adverse consequences of such transporter-mediated drug-drug interactions, we need to be more aware of the role played by drug transporters as well as those caused by drug metabolizing enzymes.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | |
Collapse
|
38
|
Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 2005; 203:257-63. [PMID: 15737679 DOI: 10.1016/j.taap.2004.08.012] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/23/2004] [Indexed: 11/18/2022]
Abstract
Microcystins are toxins produced by freshwater cyanobacteria. They are cyclic heptapeptides that exhibit hepato- and neurotoxicity. However, the transport systems that mediate uptake of microcystins into hepatocytes and across the blood-brain barrier have not yet been identified. Using the Xenopus laevis oocyte expression system we tested whether members of the organic anion transporting polypeptide superfamily (rodent: Oatps; human: OATPs) are involved in transport of the most common microcystin variant microcystin-LR by measuring uptake of a radiolabeled derivative dihydromicrocystin-LR. Among the tested Oatps/OATPs, rat Oatp1b2, human OATP1B1, human OATP1B3, and human OATP1A2 transported microcystin-LR 2- to 5-fold above water-injected control oocytes. This microcystin-LR transport was inhibited by co-incubation with the known Oatp/OATP substrates taurocholate (TC) and bromosulfophthalein (BSP). Microcystin-LR transport mediated by the human OATPs was further characterized and showed saturability with increasing microcystin-LR concentrations. The apparent K(m) values amounted to 7 +/- 3 microM for OATP1B1, 9 +/- 3 microM for OATP1B3, and 20 +/- 8 microM for OATP1A2. No microcystin-LR transport was observed in oocytes expressing Oatp1a1, Oatp1a4, and OATP2B1. These results may explain some of the observed organ-specific toxicity of microcystin-LR. Oatp1b2, OATP1B1, and OATP1B3 are responsible for microcystin transport into hepatocytes, whereas OATP1A2 mediates microcystin-LR transport across the blood-brain barrier.
Collapse
Affiliation(s)
- W J Fischer
- Environmental Toxicology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Chang P, Hung DY, Siebert GA, Bridle K, Roberts MS. Therapeutic effects and possible mechanisms of a snake venom preparation in the fibrotic rat liver. Dig Dis Sci 2005; 50:745-52. [PMID: 15844712 DOI: 10.1007/s10620-005-2567-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The effects of a Chinese snake venom preparation from Agkistrodon halys pallas, used for treatment of hepatic fibrosis/cirrhosis in China, was investigated in an in vivo rat model and using in situ hepatic perfusion. Four groups were used in the experiments: (i) healthy, (ii) healthy/venom-treated, (iii) carbon tetrachloride (CCl4)-treated, and (iv) CCl4/venom-treated. Treatment effects were assessed by determining hepatic histopathology, biochemistry and fibrosis index parameters, bile production, biliary taurocholate recovery, hepatic mRNA expression of four bile salt transporters (Ntcp, Bsep, Oatp-1, and Oatp-3), comparison of hepatic microcirculation, fibrinolytic activity, and antithrombotic effects. Liver histopathology, biochemistry, and fibrosis index showed a dramatic improvement in venom-treated animals. There were significant differences in bile production between healthy/venom-treated and all other experimental groups and between CCl4/venom-treated and CCl4-treated animals, but no significant differences were found between CCl4/venom-treated and healthy animals. Biliary taurocholate recovery was significantly increased in healthy/venom-treated and CCl4/venom-treated animals. The expression of mRNA levels of the four bile salt transporters showed an increase after venom treatment. The hepatic microcirculation studies showed normalized sinusoidal beds in CCl4/venom-treated animals compared to healthy animals, whereas CCl4-treated animals showed abnormal profiles to the healthy and the CCl4/AHPV-treated animals. The fibrinogen and plasma thromboxane B2 levels of healthy rats decreased with increasing dose after venom treatment. It was concluded that snake venom treatment may be therapeutic in treatment of hepatic fibrosis/cirrhosis by possibly a combination of increased bile flow and improved hepatic microcirculation, changes in bile salt transporter expression, and fibrinolytic and antithrombotic effects of the snake venom preparation.
Collapse
Affiliation(s)
- Ping Chang
- Department of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Qld 4102, Australia
| | | | | | | | | |
Collapse
|
40
|
Meier-Abt F, Faulstich H, Hagenbuch B. Identification of phalloidin uptake systems of rat and human liver. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:64-9. [PMID: 15238259 DOI: 10.1016/j.bbamem.2004.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/07/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 microM (Oatp1b2), 17 microM (OATP1B1) and 7.5 microM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.
Collapse
Affiliation(s)
- Fabienne Meier-Abt
- Department of Medicine, Division of Clinical Pharmacology and Toxicology, University Hospital, Ramistr. 100, CH-8091, Zurich, Switzerland
| | | | | |
Collapse
|
41
|
Geyer J, Godoy JR, Petzinger E. Identification of a sodium-dependent organic anion transporter from rat adrenal gland. Biochem Biophys Res Commun 2004; 316:300-6. [PMID: 15020217 DOI: 10.1016/j.bbrc.2004.02.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Indexed: 11/17/2022]
Abstract
In this study, a novel sodium-dependent organic anion transporter (Soat) was identified. Soat is expressed in rat brain, heart, kidney, lung, muscle, spleen, testis, adrenal gland, small intestine, and colon. The Soat protein consists of 370 amino acids and shows 42% and 31% overall amino acid sequence identity to the ileal sodium-dependent bile acid transporter (Isbt) and the Na(+)/taurocholate cotransporting polypeptide (Ntcp), respectively. Soat is predicted to have nine transmembrane domains, with an N-terminus outside the cell and an intracellular C-terminus. The Soat gene is localized on chromosome 14 and is coded by six exons mapped in region 14p22. When expressed in Xenopus laevis oocytes, Soat shows transport function for estrone-3-sulfate (Km = 31 microM, Vmax = 5557 fmol/oocyte/30 min) and dehydroepiandrosterone sulfate (Km = 30 microM, Vmax = 5682 fmol/oocyte/30 min). Soat does not transport taurocholate, estradiol-17beta-glucuronide, nor ouabain.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus-Liebig-University of Giessen, Giessen 35392, Germany
| | | | | |
Collapse
|
42
|
Ho RH, Leake BF, Roberts RL, Lee W, Kim RB. Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 2004; 279:7213-22. [PMID: 14660639 DOI: 10.1074/jbc.m305782200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The key transporter responsible for hepatic uptake of bile acids from portal circulation is Na+-taurocholate cotransporting polypeptide (NTCP, SLC10A1). This transporter is thought to be critical for the maintenance of enterohepatic recirculation of bile acids and hepatocyte function. Therefore, functionally relevant polymorphisms in this transporter would be predicted to have an important impact on bile acid homeostasis/liver function. However, little is known regarding genetic heterogeneity in NTCP. In this study, we demonstrate the presence of multiple single nucleotide polymorphisms in NTCP in populations of European, African, Chinese, and Hispanic Americans. Specifically four nonsynonymous single nucleotide polymorphisms associated with a significant loss of transport function were identified. Cell surface biotinylation experiments indicated that the altered transport activity of T668C (Ile223-->Thr), a variant seen only in African Americans, was due at least in part to decreased plasma membrane expression. Similar expression patterns were observed when the variant alleles were expressed in HepG2 cells, and plasma membrane expression was assessed using immunofluorescence confocal microscopy. Interestingly the C800T (Ser267-->Phe) variant, seen only in Chinese Americans, exhibited a near complete loss of function for bile acid uptake yet fully normal transport function for the non-bile acid substrate estrone sulfate, suggesting this position may be part of a region in the transporter critical and specific for bile acid substrate recognition. Accordingly, our study indicates functionally important polymorphisms in NTCP exist and that the likelihood of being carriers of such polymorphisms is dependent on ethnicity.
Collapse
Affiliation(s)
- Richard H Ho
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | |
Collapse
|
43
|
Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126:322-42. [PMID: 14699511 DOI: 10.1053/j.gastro.2003.06.005] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vectorial transport of bile salts from blood into bile is essential for the generation of bile flow, solubilization of cholesterol in bile, and emulsification of lipids in the intestine. Major transport proteins involved in the enterohepatic circulation of bile salts include the hepatocellular bile salt export pump (BSEP, ABCB11), the apical sodium-dependent bile salt transporter (ASBT, SLC10A2) in cholangiocytes and enterocytes, the sodium-dependent hepatocyte bile salt uptake system NTCP (SLC10A1), the organic anion transporting polypeptides OATP-C (SLC21A6), OATP8 (SLC21A8) and OATP-A (SLC21A3), and the multidrug resistance protein MRP3 (ABCC3). Synthesis and transport of bile salts are intricately linked processes that undergo extensive feedback and feed-forward regulation by transcriptional and posttranscriptional mechanisms. A key regulator of hepatocellular bile salt homeostasis is the bile acid receptor/farnesoid X receptor FXR, which activates transcription of the BSEP and OATP8 genes and of the small heterodimer partner 1 (SHP). SHP is a transcriptional repressor that mediates bile acid-induced repression of the bile salt uptake systems rat Ntcp and human OATP-C. A nuclear receptor that activates rodent Oatp2 (Slc21a5) and human MRP2 (ABCC2) is the pregnane X receptor/steroid X receptor PXR/SXR. Intracellular trafficking and membrane insertion of bile salt transporters is regulated by lipid, protein, and extracellular signal-related kinases in response to physiologic stimuli such as cyclic adenosine monophosphate or taurocholate. Finally, dysfunction of individual bile salt transporters such as BSEP, on account of genetic mutations, steric inhibition, suppression of gene expression, or disturbed signaling, is an important cause of cholestatic liver disease.
Collapse
Affiliation(s)
- Gerd A Kullak-Ublick
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital, Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Lischka K, Starke D, Failing K, Herling A, Kramer W, Petzinger E. Hepatobiliary elimination of bile acid-modified oligodeoxynucleotides in Wistar and TR- rats: evidence for mrp2 as carrier for oligodeoxynucleotides. Biochem Pharmacol 2003; 66:565-77. [PMID: 12906921 DOI: 10.1016/s0006-2952(03)00339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As therapeutic antisense tools, oligonucleotides (ODNs) must enter cells to bind to their target structures. ODNs distribute in nearly each tissue with relatively high concentrations in kidney and liver from where excretion into urine and bile occurs. To investigate mechanisms involved in hepatic ODN transport, normal mixed backbone phosphodiester/phosphorothioate ODNs (n-ODN) and two different bile acid-conjugated mixed backbone ODNs (1BA-ODN and 2BA-ODN) were applied to two different rat strains, normal Wistar rats and Wistar TR- rats. In normal Wistar rats, concentration-dependent hepatobiliary elimination of the ODNs was observed with a remarkable increase of excretion of the cholic acid BA-ODN conjugates. In contrast to normal Wistar rats, n-ODN excretion into bile by TR- rats, a mutant Wistar rat strain lacking a functional multidrug resistance-associated protein 2 (mrp2) at the canalicular membrane, was strongly diminished, whereas these rats excreted an ODN conjugated with two cholic acid molecules (2BA-ODN) into bile. Concomitant application of substrates transported by mrp2 such as bromosulfophthalein (BSP) or the synthetic chlorogenic acid derivative S 3025 significantly reduced the biliary appearance of normal ODN and 2BA-ODN in Wistar rats and also in TR- rats. To inhibit the expression of cRNA derived from the Na+ -dependent taurocholate cotransporting polypeptide (Ntcp), antisense ODNs were constructed which fully retained the antisense properties when coupled with two bile acid molecules. The results indicate that ODNs are secreted via the mrp2 into bile. In the absence of mrp2, further excretory transport systems with affinity for bile acids seem to be relevant for their excretion. The results further indicate that bile acid tagged ODNs are useful tools for liver specific antisense therapy.
Collapse
Affiliation(s)
- Kerstin Lischka
- Institute of Pharmacology and Toxicology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83:633-71. [PMID: 12663868 DOI: 10.1152/physrev.00027.2002] [Citation(s) in RCA: 668] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular medicine has led to rapid advances in the characterization of hepatobiliary transport systems that determine the uptake and excretion of bile salts and other biliary constituents in the liver and extrahepatic tissues. The bile salt pool undergoes an enterohepatic circulation that is regulated by distinct bile salt transport proteins, including the canalicular bile salt export pump BSEP (ABCB11), the ileal Na(+)-dependent bile salt transporter ISBT (SLC10A2), and the hepatic sinusoidal Na(+)- taurocholate cotransporting polypeptide NTCP (SLC10A1). Other bile salt transporters include the organic anion transporting polypeptides OATPs (SLC21A) and the multidrug resistance-associated proteins 2 and 3 MRP2,3 (ABCC2,3). Bile salt transporters are also present in cholangiocytes, the renal proximal tubule, and the placenta. Expression of these transport proteins is regulated by both transcriptional and posttranscriptional events, with the former involving nuclear hormone receptors where bile salts function as specific ligands. During bile secretory failure (cholestasis), bile salt transport proteins undergo adaptive responses that serve to protect the liver from bile salt retention and which facilitate extrahepatic routes of bile salt excretion. This review is a comprehensive summary of current knowledge of the molecular characterization, function, and regulation of bile salt transporters in normal physiology and in cholestatic liver disease and liver regeneration.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
46
|
Wolkoff AW, Cohen DE. Bile acid regulation of hepatic physiology: I. Hepatocyte transport of bile acids. Am J Physiol Gastrointest Liver Physiol 2003; 284:G175-9. [PMID: 12529265 DOI: 10.1152/ajpgi.00409.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acids are cholesterol derivatives that serve as detergents in bile and the small intestine. Approximately 95% of bile acids secreted by hepatocytes into bile are absorbed from the distal ileum into the portal venous system. Extraction from the portal circulation by the hepatocyte followed by reexcretion into the bile canaliculus completes the enterohepatic circulation of these compounds. Over the past few years, candidate bile acid transport proteins of the sinusoidal and canalicular plasma membranes of the hepatocyte have been identified. The physiology of hepatocyte bile acid transport and its relationship to these transport proteins is the subject of this Themes article.
Collapse
Affiliation(s)
- Allan W Wolkoff
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
47
|
Abstract
Metabolism alone does not adequately account for the observed intersubject variability in drug disposition or response. Carrier-mediated processes, or transporters, are increasingly recognized to be importantly involved in drug absorption, distribution, and excretion. Thus for many drugs, transport and metabolism must be considered together to better predict drug disposition in vivo. Accordingly, this review will outline relevant background information regarding drug transporters and the role of such transporters in the drug disposition process.
Collapse
Affiliation(s)
- Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, 572 RRB1, 23rd Avenue at Pierce Avenue, Nashville, TN 37323-6602, USA.
| |
Collapse
|
48
|
Hung DY, Chang P, Cheung K, Winterford C, Roberts MS. Quantitative evaluation of altered hepatic spaces and membrane transport in fibrotic rat liver. Hepatology 2002; 36:1180-9. [PMID: 12395328 DOI: 10.1053/jhep.2002.36820] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl(4)-treated group (phenobarbital with CCl(4) treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of (3)H-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl(4)-treated rats were found to have the smallest vascular space, extravascular albumin space, (3)H-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of (3)H-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.
Collapse
Affiliation(s)
- Daniel Y Hung
- Department of Medicine and Division of Chemical Pathology, University of Queensland, Princess Alexandra Hospital, Woollongabba, Australia
| | | | | | | | | |
Collapse
|
49
|
Wolters H, Elzinga BM, Baller JFW, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. J Hepatol 2002; 37:556-63. [PMID: 12399219 DOI: 10.1016/s0168-8278(02)00247-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Expression of hepatic bile salt transporters is partly regulated by bile salts via activation of nuclear farnesoid X-activated receptor (Fxr). We investigated the physiological relevance of this regulation by evaluating transporter expression in mice experiencing different transhepatic bile salt fluxes. METHODS Bile salt flux was manipulated by dietary supplementation with taurocholate (0.5% w/w) or cholestyramine (2% w/w) or by disruption of the cholesterol 7alpha-hydroxylase-gene (Cyp7A(-/-) mice) leading to reduced bile salt pool size. Expression of hepatic transporters was assessed (polymerase chain reaction (PCR), immunoblotting, and immunohistochemistry). RESULTS Biliary bile salt secretion was increased (+350%) or decreased (-50%) after taurocholate or cholestyramine feeding, respectively, but plasma bile salt concentrations and hepatic Fxr expression were not affected. The bile salt uptake system Na(+)-taurocholate co-transporting polypeptide (Ntcp) and organic anion transporting polypeptide-1 (Oatp1) were down-regulated by taurocholate and not affected by cholestyramine feeding. Cyp7A(-/-) mice did not show altered Ntcp or Oatp1 expression. Canalicular bile salt export pump (Bsep) was up-regulated by 65% in taurocholate-fed mice, and slightly down-regulated in Cyp7A(-/-) mice. CONCLUSIONS Large variations in hepatic bile salt flux have minor effects on expression of murine Ntcp and Bsep in vivo, suggesting that these transporters are abundantly expressed and able to accommodate a wide range of 'physiological' bile salt fluxes.
Collapse
Affiliation(s)
- Henk Wolters
- Center for Liver, Digestive and Metabolic Diseases, Groningen University Institute for Drug Exploration, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
van Montfoort JE, Schmid TE, Adler ID, Meier PJ, Hagenbuch B. Functional characterization of the mouse organic-anion-transporting polypeptide 2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:183-8. [PMID: 12101011 DOI: 10.1016/s0005-2736(02)00445-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have isolated and functionally characterized an additional murine member of the organic-anion-transporting polypeptide (Oatp) family of membrane transport proteins from mouse liver. The 3.6 kb cDNA insert contains an open reading frame of 2010 bp coding for a 670 amino acid protein. Based on its amino acid identity of 88% to the rat Oatp2, it is considered the mouse Oatp2 orthologue. Functional expression in Xenopus laevis oocytes demonstrated that mouse Oatp2 transports several general Oatp substrates such as estrone-3-sulfate, dehydroepiandrosterone sulfate (DHEAS), ouabain and BQ-123 but hardly any taurocholate nor rocuronium or deltorphin II. The high-affinity rat Oatp2 substrate digoxin is transported with a rather low affinity with an apparent K(m) value of 5.7 microM. Bromosulfophthalein (BSP), a substrate not transported by the rat Oatp2, is transported very well by mouse Oatp2. Northern blot analysis demonstrated a predominant expression in the liver with additional signals in kidney and brain. Using fluorescence in situ hybridization, the Oatp2 gene (gene symbol Slc21a5) was mapped to chromosome 6G1-G3.
Collapse
Affiliation(s)
- Jessica E van Montfoort
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Rämistr. 100, CH-8091 Zürich, Switzerland
| | | | | | | | | |
Collapse
|