1
|
Luo PM, Boyce M. Directing Traffic: Regulation of COPI Transport by Post-translational Modifications. Front Cell Dev Biol 2019; 7:190. [PMID: 31572722 PMCID: PMC6749011 DOI: 10.3389/fcell.2019.00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
The coat protein complex I (COPI) is an essential, highly conserved pathway that traffics proteins and lipids between the endoplasmic reticulum (ER) and the Golgi. Many aspects of the COPI machinery are well understood at the structural, biochemical and genetic levels. However, we know much less about how cells dynamically modulate COPI trafficking in response to changing signals, metabolic state, stress or other stimuli. Recently, post-translational modifications (PTMs) have emerged as one common theme in the regulation of the COPI pathway. Here, we review a range of modifications and mechanisms that govern COPI activity in interphase cells and suggest potential future directions to address as-yet unanswered questions.
Collapse
Affiliation(s)
- Peter M Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
2
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
3
|
Zhang F, Dong W, Zeng W, Zhang L, Zhang C, Qiu Y, Wang L, Yin X, Zhang C, Liang W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res 2016; 18:38. [PMID: 27036297 PMCID: PMC4818388 DOI: 10.1186/s13058-016-0698-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting the TGF-β1 pathway for breast cancer metastasis therapy has become an attractive strategy. We have previously demonstrated that naringenin significantly reduced TGF-β1 levels in bleomycin-induced lung fibrosis and effectively prevented pulmonary metastases of tumors. This raised the question of whether naringenin can block TGF-β1 secretion from breast cancer cells and inhibit their pulmonary metastasis. METHODS We transduced a lentiviral vector encoding the mouse Tgf-β1 gene into mouse breast carcinoma (4T1-Luc2) cells and inoculated the transformant cells (4T1/TGF-β1) into the fourth primary fat pat of Balb/c mice. Pulmonary metastases derived from the primary tumors were monitored using bioluminescent imaging. Spleens, lungs and serum (n = 18-20 per treatment group) were analyzed for immune cell activity and TGF-β1 level. The mechanism whereby naringenin decreases TGF-β1 secretion from breast cancer cells was investigated at different levels, including Tgf-β1 transcription, mRNA stability, translation, and extracellular release. RESULTS In contrast to the null-vector control (4T1/RFP) tumors, extensive pulmonary metastases derived from 4T1/TGF-β1 tumors were observed. Administration of the TGF-β1 blocking antibody 1D11 or naringenin showed an inhibition of pulmonary metastasis for both 4T1/TGF-β1 tumors and 4T1/RFP tumors, resulting in increased survival of the mice. Compared with 4T1/RFP bearing mice, systemic immunosuppression in 4T1/TGF-β1 bearing mice was observed, represented by a higher proportion of regulatory T cells and myeloid-derived suppressor cells and a lower proportion of activated T cells and INFγ expression in CD8(+) T cells. These metrics were improved by administration of 1D11 or naringenin. However, compared with 1D11, which neutralized secreted TGF-β1 but did not affect intracellular TGF-β1 levels, naringenin reduced the secretion of TGF-β1 from the cells, leading to an accumulation of intracellular TGF-β1. Further experiments revealed that naringenin had no effect on Tgf-β1 transcription, mRNA decay or protein translation, but prevented TGF-β1 transport from the trans-Golgi network by inhibiting PKC activity. CONCLUSIONS Naringenin blocks TGF-β1 trafficking from the trans-Golgi network by suppressing PKC activity, resulting in a reduction of TGF-β1 secretion from breast cancer cells. This finding suggests that naringenin may be an attractive therapeutic candidate for TGF-β1 related diseases.
Collapse
Affiliation(s)
- Fayun Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjuan Dong
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Department of Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Chao Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuqi Qiu
- Department of Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Luoyang Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaozhe Yin
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunling Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Matsui T, Watanabe T, Matsuzawa K, Kakeno M, Okumura N, Sugiyama I, Itoh N, Kaibuchi K. PAR3 and aPKC regulate Golgi organization through CLASP2 phosphorylation to generate cell polarity. Mol Biol Cell 2014; 26:751-61. [PMID: 25518939 PMCID: PMC4325844 DOI: 10.1091/mbc.e14-09-1382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A PAR complex (PAR3, PAR6, and aPKC) plays a central role in the establishment of cell polarity. Another polarity protein, CLASP2, binds directly with PAR3 and is phosphorylated by aPKC. Through CLASP2 phosphorylation, aPKC and PAR3 regulate the localization of CLASP2 to the trans-Golgi network, thereby controlling the Golgi organization. The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex with CLASP2, which is a microtubule plus-end–tracking protein and is involved in organizing the Golgi ribbon. CLASP2 directly interacted with PAR3 and was phosphorylated by aPKC. In epithelial cells, knockdown of either PAR3 or aPKC induced the aberrant accumulation of CLASP2 at the trans-Golgi network (TGN) concomitantly with disruption of the Golgi ribbon organization. The expression of a CLASP2 mutant that inhibited the PAR3-CLASP2 interaction disrupted the organization of the Golgi ribbon. CLASP2 is known to localize to the TGN through its interaction with the TGN protein GCC185. This interaction was inhibited by the aPKC-mediated phosphorylation of CLASP2. Furthermore, the nonphosphorylatable mutant enhanced the colocalization of CLASP2 with GCC185, thereby perturbing the Golgi organization. On the basis of these observations, we propose that PAR3 and aPKC control the organization of the Golgi through CLASP2 phosphorylation.
Collapse
Affiliation(s)
- Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobumasa Okumura
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ikuko Sugiyama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norimichi Itoh
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int J Mol Sci 2014; 15:20876-99. [PMID: 25402647 PMCID: PMC4264201 DOI: 10.3390/ijms151120876] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.
Collapse
|
6
|
Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochem Cell Biol 2013; 140:395-405. [DOI: 10.1007/s00418-013-1130-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/31/2022]
|
7
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
8
|
Cell stress proteins in atherothrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:232464. [PMID: 22792412 PMCID: PMC3389727 DOI: 10.1155/2012/232464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/14/2012] [Indexed: 01/13/2023]
Abstract
Cell stress proteins (CSPs) are a large and heterogenous family of proteins, sharing two main characteristics: their levels and/or location are modified under stress and most of them can exert a chaperon function inside the cells. Nonetheless, they are also involved in the modulation of several mechanisms, both at the intracellular and the extracellular compartments. There are more than 100 proteins belonging to the CSPs family, among them the thioredoxin (TRX) system, which is the focus of the present paper. TRX system is composed of several proteins such as TRX and peroxiredoxin (PRDX), two thiol-containing enzymes that are key players in redox homeostasis due to their ability to scavenge potential harmful reactive oxygen species. In addition to their main role as antioxidants, recent data highlights their function in several processes such as cell signalling, immune inflammatory responses, or apoptosis, all of them key mechanisms involved in atherothrombosis. Moreover, since TRX and PRDX are present in the pathological vascular wall and can be secreted under prooxidative conditions to the circulation, several studies have addressed their role as diagnostic, prognostic, and therapeutic biomarkers of cardiovascular diseases (CVDs).
Collapse
|
9
|
Sorokina EM, Feinstein SI, Zhou S, Fisher AB. Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε. Am J Physiol Cell Physiol 2011; 300:C1430-41. [PMID: 21346153 DOI: 10.1152/ajpcell.00285.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxiredoxin 6 (Prdx6), a bifunctional protein with GSH peroxidase and lysosomal-type phospholipase A(2) activities, has been localized to both cytosolic and acidic compartments (lamellar bodies and lysosomes) in lung alveolar epithelium. We postulate that Prdx6 subcellular localization affects the balance between the two activities. Immunostaining localized Prdx6 to lysosome-related organelles in the MLE12 and A549 alveolar epithelial cell lines. Inhibition of trafficking by brefeldin A indicated processing of the protein through the vesicular pathway. Trafficking of Prdx6 was decreased by inhibitors of PKC, ERK, and p38 MAPK. Immunocytochemistry, immunoprecipitation, and an in situ proximity ligation assay (Duolink) showed that binding of the lysosomal targeting sequence of Prdx6 (amino acids 31-40) to 14-3-3ε was dependent on activity of PKC, ERK, and p38 MAPK. Knockdown of 14-3-3ε with siRNA inhibited the lysosomal targeting of Prdx6. In vitro study with recombinant proteins by pull-down assay and surface plasmon resonance confirmed the interaction of Prdx6 and 14-3-3ε. These findings suggest that ERK and p38 MAPK regulate subcellular localization of Prdx6 by activation of 14-3-3ε as a chaperone protein, resulting in its translocation to acidic organelles.
Collapse
Affiliation(s)
- Elena M Sorokina
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
10
|
Stross C, Keitel V, Winands E, Häussinger D, Kubitz R. Expression and localization of atypical PKC isoforms in liver parenchymal cells. Biol Chem 2009; 390:235-44. [PMID: 19090727 DOI: 10.1515/bc.2009.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of all three classes of the protein kinase C (PKC) family including atypical PKCzeta (PKCzeta) are involved in central functions of liver parenchymal cells. However, expression and localization of PKCiota (PKCiota), the highly homologous atypical PKC (aPKC) isoform, in hepatocytes is unknown to date. PKCzeta and PKCiota were cloned from human and rat liver and fused to fluorescent protein tags (YFP). The sequence of full-length rat PKCiota is not yet known and was cloned from cDNA of hepatocytes by the use of degenerated primers. PKCzeta-YFP and PKCiota-YFP (human and rat) were expressed in HeLa or HEK293 cells and used to test the specificity of seven aPKC antibodies. Two antibodies were PKCiota-specific and two were specific for PKCzeta in immunofluorescence and Western blot analysis. Subcellular localization was analyzed by immunofluorescence in isolated rat and human hepatocytes and liver sections. Low immunoreactivity for aPKCs was found at the sinusoidal membrane and in the cytosol. The highest density of PKCiota as well as PKCzeta was found at the canalicular membrane in co-localization with ABC-transporters, such as bile salt export pump or multidrug resistance-associated protein 2. This topology suggests a specific function of aPKCs at the canalicular membrane in addition to their known role in cell polarity of epithelial cells.
Collapse
Affiliation(s)
- Claudia Stross
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
11
|
Antiepileptic drugs reduce efficacy of methotrexate chemotherapy by downregulation of Reduced folate carrier transport activity. Leukemia 2009; 23:1087-97. [DOI: 10.1038/leu.2009.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Yamamoto R, Kobayashi H, Yanagita T, Yokoo H, Kurose T, Shiraishi S, Minami SI, Matsukura S, Wada A. Up-Regulation of Cell Surface Insulin Receptor by Protein Kinase C-α in Adrenal Chromaffin Cells. J Neurochem 2008. [DOI: 10.1111/j.1471-4159.2000.750672.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Siddiqi SA, Mansbach CM. PKC zeta-mediated phosphorylation controls budding of the pre-chylomicron transport vesicle. J Cell Sci 2008; 121:2327-38. [PMID: 18577579 DOI: 10.1242/jcs.022780] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary triacylglycerols are absorbed by enterocytes and packaged in the endoplasmic reticulum (ER) in the intestinal specific lipoprotein, the chylomicron, for export into mesenteric lymph. Chylomicrons exit the ER in an ER-to-Golgi transport vesicle, the pre-chylomicron transport vesicle (PCTV), which is the rate-limiting step in the transit of chylomicrons across the cell. Here, we focus on potential mechanisms of control of the PCTV-budding step from the intestinal ER. We incubated intestinal ER with intestinal cytosol and ATP to cause PCTV budding. The budding reaction was inhibited by 60 nM of the PKC inhibitor Gö 6983, suggesting the importance of PKCzeta in the generation of PCTV. Immunodepletion of PKCzeta from the cytosol and the use of washed ER greatly inhibited the generation of PCTVs, but was restored following the addition of recombinant PKCzeta. Intestinal ER incubated with intestinal cytosol and [gamma-(32)P]ATP under conditions supporting the generation of PCTVs showed the phosphorylation of a 9-kDa band following autoradiography. The phosphorylation of this protein correlated with the generation of PCTVs but not the formation of protein vesicles and was inhibited by depletion of PKCzeta. Phosphorylation of the 9-kDa protein was restored following the addition of recombinant PKCzeta. The association of the 9-kDa protein with proteins that are important for PCTV budding was phosphorylation dependent. We conclude that PKCzeta activity is required for PCTV budding from intestinal ER, and is associated with phosphorylation of a 9-kDa protein that might regulate PCTV budding.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- The Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
14
|
Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B. Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci 2006; 119:1504-16. [PMID: 16551695 DOI: 10.1242/jcs.02877] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of dynamin and so-called accessory proteins in endocytosis is well established. However, molecular details of the function(s) of dynamin II at the Golgi are largely unclear. We demonstrate that the ubiquitously expressed syndapin II isoform interacts with the proline-rich domain (PRD) of dynamin II through its Src-homology 3 (SH3) domain. Co-immunoprecipitation of endogenous syndapin II and dynamin II, and successful reconstitutions of such complexes at membranes in COS-7 cells, show the in vivo relevance of the interaction. Syndapin II can associate with Golgi membranes and this association increases upon Golgi exit block. Brefeldin A treatment clearly shows that the observed perinuclear localization of syndapin II co-localizing with syntaxin 6 reflects the Golgi complex and that it requires functional integrity of the Golgi. Syndapins are crucial for Golgi vesicle formation because anti-syndapin antibodies, used either in in vitro reconstitutions or in living cells, inhibited this process. Both types of assays additionally revealed the essential role of syndapin II SH3 interactions with the dynamin II PRD in vesicle formation. An excess of the syndapin SH3 domain strongly inhibited budding from Golgi membranes in vitro. Likewise, overexpression of the syndapin SH3 domain or of a dynamin II variant incapable of associating with syndapin II (dynamin IIΔPRD) impaired trafficking of vesicular stomatitis virus glycoprotein (VSVG)-GFP in vivo. By contrast, full-length syndapin II-l had no negative effect, and instead promoted VSVG-GFP export from the Golgi. Importantly, a cytosolic fraction containing endogenous syndapin-dynamin complexes was sufficient to promote vesicle formation from Golgi membranes in a syndapin-dependent manner. Thus, syndapin-dynamin complexes are crucial and sufficient to promote vesicle formation from the trans-Golgi network.
Collapse
Affiliation(s)
- Michael M Kessels
- Department of Neurochemistry and Molecular Biology, AG Membrane Trafficking and Cytoskeleton, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Henage LG, Exton JH, Brown HA. Kinetic analysis of a mammalian phospholipase D: allosteric modulation by monomeric GTPases, protein kinase C, and polyphosphoinositides. J Biol Chem 2006; 281:3408-17. [PMID: 16339153 PMCID: PMC3800466 DOI: 10.1074/jbc.m508800200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, phospholipase D activity is tightly regulated by diverse cellular signals, including hormones, neurotransmitters, and growth factors. Multiple signaling pathways converge upon phospholipase D to modulate cellular actions, such as cell growth, shape, and secretion. We examined the kinetics of protein kinase C and G-protein regulation of mammalian phospholipase D1 (PLD1) in order to better understand interactions between PLD1 and its regulators. Activation by Arf-1, RhoA, Rac1, Cdc42, protein kinase Calpha, and phosphatidylinositol 4,5-bisphosphate displayed surface dilution kinetics, but these effectors modulated different kinetic parameters. PKCalpha activation of PLD1 involves N- and C-terminal PLD domains. Rho GTPases were binding activators, enhancing the catalytic efficiency of a purified PLD1 catalytic domain via effects on Km. Arf-1, a catalytic activator, stimulated PLD1 by enhancing the catalytic constant, kcat. A kinetic description of PLD1 activation by multiple modulators reveals a mechanism for apparent synergy between activators. Synergy was observed only when PLD1 was simultaneously stimulated by a binding activator and a catalytic activator. Surprisingly, synergistic activation was steeply dependent on phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine. Together, these findings suggest a role for PLD1 as a signaling node, in which integration of convergent signals occurs within discrete locales of the cellular membrane.
Collapse
Affiliation(s)
- Lee G. Henage
- Department of Pharmacology, Institute for Chemical Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - John H. Exton
- Department of Pharmacology, Institute for Chemical Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - H. Alex Brown
- Department of Pharmacology, Institute for Chemical Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6600
| |
Collapse
|
16
|
Shen SS, Steinhardt RA. The mechanisms of cell membrane resealing in rabbit corneal epithelial cells. Curr Eye Res 2005; 30:543-54. [PMID: 16020288 DOI: 10.1080/02713680590968574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine membrane repair mechanisms in rabbit corneal epithelial (RCE) cells. METHODS Microneedle puncture and fluorescent dye loss were used to wound membranes and assay resealing, respectively. Different repair mechanisms were detected pharmacologically and with antisense oligonucleotides. RESULTS The RCE cells rapidly reseal plasma membranes by calcium-dependent exocytotic mechanisms that exhibit both facilitated and potentiated responses to multiple wounding. The facilitated response was inhibited by specific inhibitors of protein kinase C (PKC) and brefeldin A, and the potentiated response was blocked by inhibitors of cAMP-dependent protein kinase (PKA). Reduction of myosin IIA inhibited the facilitated response, and reduction of IIB inhibited the initial resealing. CONCLUSIONS RCE cells rapidly repair plasma membrane disruptions. At a second wound at the same site, PKC stimulated vesicle formation from the Golgi apparatus, resulting in more rapid membrane resealing for a facilitated response. The RCE cell also contains a PKA-dependent global potentiation of membrane resealing.
Collapse
Affiliation(s)
- Sheldon S Shen
- Department of Genetics, Development and Cellular Biology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
17
|
Webb RJ, Judah JD, Lo LC, Thomas GMH. Constitutive secretion of serum albumin requires reversible protein tyrosine phosphorylation events intrans-Golgi. Am J Physiol Cell Physiol 2005; 289:C748-56. [PMID: 15843442 DOI: 10.1152/ajpcell.00019.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serum albumin secretion from rat hepatocytes proceeds via the constitutive pathway. Although much is known about the role of protein tyrosine phosphorylation in regulated secretion, nothing is known about its function in the constitutive process. Here we show that albumin secretion is inhibited by the tyrosine kinase inhibitor genistein but relatively insensitive to subtype-selective inhibitors or treatments. Secretion is also blocked in a physiologically identical manner by the tyrosine phosphatase inhibitors pervanadate and bisperoxo(1,10-phenanthroline)-oxovanadate. Inhibition of either the kinase(s) or phosphatase(s) leads to the accumulation of albumin between the trans-Golgi and the plasma membrane, whereas the immediate precursor proalbumin builds up in a proximal compartment. The trans-Golgi marker TGN38 is rapidly dispersed under conditions that inhibit tyrosine phosphatase action, whereas the distribution of the cis-Golgi marker GM130 is insensitive to genistein or pervanadate. By using a specifically reactive biotinylation probe, we detected protein tyrosine phosphatases in highly purified rat liver Golgi membranes. These membranes also contain both endogenous tyrosine kinases and their substrates, indicating that enzymes and substrates for reversible tyrosine phosphorylation are normal membrane-resident components of this trafficking compartment. In the absence of perturbation of actin filaments and microtubules, we conclude that reversible protein tyrosine phosphorylation in the trans-Golgi network is essential for albumin secretion and propose that the constitutive secretion of albumin is in fact a regulated process.
Collapse
Affiliation(s)
- Rachel J Webb
- Dept. of Physiology, University College London, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
18
|
Wu SL, Ma J, Qi HL, Zhang Y, Zhang XY, Chen HL. Forskolin up-regulates metastasis-related phenotypes and molecules via protein kinase B, but not PI-3K, in H7721 human hepato-carcinoma cell line. Mol Cell Biochem 2004; 254:193-202. [PMID: 14674698 DOI: 10.1023/a:1027392212341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Forskolin (FSK) is known as an up-regulator of intracellular cAMP and inhibitor of cancer growth and metastasis. The effects of FSK on the metastasis potential and its mechanisms were studied using a human hepatocarcinoma cell line, H7721. It was found that FSK stimulated cell growth, increased cAMP in the cells, and enhanced the metastasis-related phenotypes, including adhesion to laminin (Ln) and human umbilical vein epithelial cells (HUVEC), chemotactic migration and invasion. These effects were supposed to result from the increase of the SLex expression induced by FSK, since only the monoclonal antibody of SLex showed a significant attenuation of the enhanced metastasis-associated phenotypes. Using H7721 cells transfected with the sense or antisense cDNA of protein kinase B (PKB) and some inhibitors of signal transduction, it was discovered that FSK up-regulated the expression of SLex via PKB, but it was independent of phosphotidylinositide-3-kinase (PI-3K). A subtype of atypical protein kinase C (a-PKC) might also participate in the up-regulation of SLex expression by FSK, and cAMP/PKA pathway is a negative regulator of SLex expression on H7721 cells. It can be concluded that FSK shows a metastasis-promoting effect ex vivo.
Collapse
Affiliation(s)
- Shi-liang Wu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry, Shanghai Medical College of Fu-Dan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
19
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
González MI, Kazanietz MG, Robinson MB. Regulation of the neuronal glutamate transporter excitatory amino acid carrier-1 (EAAC1) by different protein kinase C subtypes. Mol Pharmacol 2002; 62:901-10. [PMID: 12237337 DOI: 10.1124/mol.62.4.901] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous studies, we have shown that activation of protein kinase C (PKC) rapidly (within minutes) increases the activity and cell surface expression of the glutamate transporter EAAC1 in two systems that endogenously express this transporter (C6 glioma cells and cocultures of neurons and astrocytes). However, the magnitude of the increase in activity is greater than the increase in cell surface expression. In addition, certain compounds completely block the increase in cell surface expression but only partially attenuate the increase in activity. We hypothesized that PKC increases EAAC1 activity by increasing cell surface expression and catalytic efficiency and that two different subtypes of PKC mediate these effects. To address these hypotheses, the PKC subtypes expressed by C6 glioma cells were identified. Of the PKC subtypes that are activated by phorbol esters, only PKCalpha, PKCdelta, and PKCepsilon were observed. Gö6976, a compound that blocks PKCalpha at concentrations that do not inhibit PKCdelta or PKCepsilon, partially inhibited the increase in uptake but completely abolished the increase in EAAC1 cell surface expression. The 'Gö6976-insensitive' increase in activity was not associated with a change in total transporter expression but was associated with an increase in the V(max). Na(+)-dependent glycine transport was not increased, providing indirect evidence that the Gö6976-insensitive increase in activity was not caused by a change in the Na(+) electrochemical gradient required for activity. Finally, by down-regulating different subtypes of PKC, we found evidence that PKCepsilon mediates the increase in EAAC1 activity that is independent of changes in cell surface expression and found further evidence that PKCalpha mediates the increase in cell surface expression. The potential relationship of the present work with a previously identified role for PKCalpha in certain forms of synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics and Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
Milkiewicz P, Roma MG, Elias E, Coleman R. Hepatoprotection with tauroursodeoxycholate and beta muricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut 2002; 51:113-9. [PMID: 12077103 PMCID: PMC1773293 DOI: 10.1136/gut.51.1.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Tauroursodeoxycholate (TUDC) provides partial protection against taurolithocholate (TLC) induced cholestasis, possibly by inducing a signalling cascade activating protein kinase C (PKC). The potential protective effects of beta muricholic acid (beta-MC), another 7-beta-hydroxylated bile salt, have not previously been studied in TLC cholestasis. AIMS To study the effect of beta-MC on TLC induced cholestasis and also to investigate further the effects of agents affecting intracellular signalling, notably DBcAMP (a cell permeable cAMP analogue) and several protein kinase inhibitors. METHODS Functional studies were carried out analysing the proportion of hepatocyte couplets able to accumulate the fluorescent bile acid analogue cholyl-lysyl-fluorescein (CLF) into their sealed canalicular vacuole (cVA of CLF assay). RESULTS It was found that both beta-MC and DBcAMP were as effective as TUDC in protecting against TLC induced cholestasis. The PKC inhibitors staurosporin and H7 but not the specific protein kinase A (PKA) inhibitor KT5720 abolished the protective effects of TUDC and beta-MC. BAPTA/AM, a chelator of intracellular Ca(2+), significantly decreased the protective effect of both bile salts, and that of DBcAMP. PKC and PKA inhibitors had no effect on protection with DBcAMP. CONCLUSIONS Beta-MC was as effective as TUDC in protecting against TLC cholestasis. Mobilisation of Ca(2+) and activation of PKC, but not of PKA, are involved in the anticholestatic effect of the two 7-beta-hydroxylated bile salts. The hepatoprotective effects of DBcAMP involved Ca(2+) mobilisation, but not PKC or PKA activation.
Collapse
Affiliation(s)
- P Milkiewicz
- School of Biosciences, and Liver and Hepatobiliary Unit, University of Birmingham, Birmingham B17 2TT, UK
| | | | | | | |
Collapse
|
22
|
Rivera-Bermúdez MA, Bertics PJ, Albrecht RM, Mosavin R, Mellon WS. 1,25-Dihydroxyvitamin D3 selectively translocates PKCalpha to nuclei in ROS 17/2.8 cells. Mol Cell Endocrinol 2002; 188:227-39. [PMID: 11911960 DOI: 10.1016/s0303-7207(01)00670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated protein kinase C (PKC) regulation by 1,25-(OH)2D3 in the rat osteosarcoma cell line ROS 17/2.8 since previous reports have implicated PKC in the 1,25-(OH)2D3-mediated regulation of osteocalcin gene expression (J. Biol. Chem. 267 (1992) 12562; Endocrinology 136 (1995) 5685). Here we report that 1,25-(OH)2D3 increased PKCalpha, but not PKCbetaI, epsilon or zeta, levels in the nuclear fraction in a time-dependent manner. Unlike PMA, 1,25-(OH)2D3 did not alter the association of any of the expressed PKC isoenzymes with the plasma membrane. Treatment with 20 nM 1,25-(OH)2D3 for 15 min, 30 min, 1 h and 24 h increased PKCalpha levels in the nuclear fraction by 2.3- to 2.6-fold. Nuclear PKCalpha expression was also increased with doses of 1,25-(OH)2D3 as low as a 0.05 nM. 1,25-(OH)2D3-mediated stabilization of osteocalcin mRNA (Arch. Biochem. Biophys. 332 (1996) 142) was inhibited with bisindolylmaleimide treatment, suggesting that PKCalpha may be involved in the 1,25-(OH)2D3-mediated regulation of osteocalcin gene expression.
Collapse
Affiliation(s)
- Moisés A Rivera-Bermúdez
- Northwestern University Medical School, Dept. Molecular Pharmacology and Biological Chemistry, 303 E, Chicago Ave, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
23
|
Yang H, Wang X, Sumners C, Raizada MK. Obligatory role of protein kinase Cbeta and MARCKS in vesicular trafficking in living neurons. Hypertension 2002; 39:567-72. [PMID: 11882609 DOI: 10.1161/hy0202.103052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotransmitter release from neurons involves both vesicular trafficking and subsequent fusion of synaptic vesicles with the plasma membrane. The mechanisms involving the formation and fusion of vesicles that allow the exocytotic release of transmitters are understood well. Little is known, however, about the signaling mechanism involved in the trafficking of vesicles along the neurites. In this study, we used real-time confocal microscopy to search for evidence that vesicular trafficking in neurons requires the activation of protein kinase Cbeta (PKCbeta) and the myristoylated alanine-rich C kinase substrate (MARCKS) signaling pathway. Dopamine-beta-hydroxylase fused to green fluorescent protein has been used to trace vesicular movement. Angiotensin II, an established neuromodulatory hormone, stimulates translocation of green fluorescent protein-dopamine-beta-hydroxylase vesicles from the cell body to neurites. This translocation was blocked by an antisense oligonucleotide to PKCbeta and MARCKS. Stimulation of PKC by other means, such as phorbol-12-myristate-13-acetate or carbachol, also resulted in the redistribution of fluorescence in a manner similar to that observed for angiotensin II. These observations demonstrate that PKCbeta-MARCKS signaling may be a general mechanism for the stimulation of vesicular trafficking in brain neurons.
Collapse
Affiliation(s)
- Hong Yang
- Department of Physiology and Functional Genomics, College of Medicine, and University of Florida McKnight Brain Institute, Gainesville 32610-0274, USA
| | | | | | | |
Collapse
|
24
|
Abousalham A, Hobman TC, Dewald J, Garbutt M, Brindley DN. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor. Biochem J 2002; 361:653-61. [PMID: 11802796 PMCID: PMC1222349 DOI: 10.1042/0264-6021:3610653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation.
Collapse
Affiliation(s)
- Abdelkarim Abousalham
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
25
|
Long A, Kelleher D, Lynch S, Volkov Y. Cutting edge: protein kinase C beta expression is critical for export of Il-2 from T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:636-40. [PMID: 11441065 DOI: 10.4049/jimmunol.167.2.636] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein kinase C (PKC) plays an integral part in T cell activation and IL-2 secretion. We investigated the role of a particular PKC isoform, PKCbeta, in IL-2 production and secretion. The T cell lymphoma line HuT 78 secretes IL-2 in response to the phorbol ester PMA. A PKCbeta-deficient clone of HuT 78, K-4, did not secrete IL-2 in response to PMA stimulation. As assessed by RT-PCR, K-4 expressed mRNA for IL-2 following PMA activation, and intracellular IL-2 protein was detected by immunofluorescence. An enhanced green fluorescent protein-linked PKCbeta construct was microinjected into K-4 cells, which were then stimulated with PMA; those cells that expressed PKCbeta could secrete IL-2, as determined by an in situ immunofluorescent assay. This study demonstrates that PKCbeta is not necessary for transcription of the IL-2 gene or translation of mRNA to protein, but that expression of this PKC isoform is critical to the export of IL-2 molecules from T cells.
Collapse
Affiliation(s)
- A Long
- Departments of. Biochemistry and Pharmacology, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
26
|
Yu RK, Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Mol Cell Endocrinol 2001; 177:19-24. [PMID: 11377816 DOI: 10.1016/s0303-7207(01)00457-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biosynthesis of gangliosides is known to be under strict metabolic control. One level of control is through post-translational modification of the glycosyltransferases responsible for their biosynthesis. Thus, the activities of several sialyltransferases have been demonstrated to be downregulated by the action of protein kinase C (PKC) in cell-free and intact cell systems. This modulatory effect can be reversed at least in part by the action of membrane-bound phosphatases. In contrast, the activity of N-acetylgalactosaminyltransferase can be upregulated by the action of protein kinase A (PKA) in cultured cells. In addition, studies from several laboratories have demonstrated that phosphorylation of certain glycosyltransferases can affect their intracellular processing and translocation. Thus, modulation of glycosyltransferases by phosphorylation and dephosphorylation should represent an important regulatory mechanism for ganglioside biosynthesis.
Collapse
Affiliation(s)
- R K Yu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
27
|
Hannan AJ, Blakemore C, Katsnelson A, Vitalis T, Huber KM, Bear M, Roder J, Kim D, Shin HS, Kind PC. PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 2001; 4:282-8. [PMID: 11224545 DOI: 10.1038/85132] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development of the cerebral cortex, the invasion of thalamic axons and subsequent differentiation of cortical neurons are tightly coordinated. Here we provide evidence that glutamate neurotransmission triggers a critical signaling mechanism involving the activation of phospholipase C-beta1 (PLC-beta1) by metabotropic glutamate receptors (mGluRs). Homozygous null mutation of either PLC-beta1 or mGluR5 dramatically disrupts the cytoarchitectural differentiation of 'barrels' in the mouse somatosensory cortex, despite segregation in the pattern of thalamic innervation. Furthermore, group 1 mGluR-stimulated phosphoinositide hydrolysis is dramatically reduced in PLC-beta1-/- mice during barrel development. Our data indicate that PLC-beta1 activation via mGluR5 is critical for the coordinated development of the neocortex, and that presynaptic and postsynaptic components of cortical differentiation can be genetically dissociated.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/ultrastructure
- Carbachol/pharmacology
- Cell Differentiation/physiology
- Cycloleucine/analogs & derivatives
- Cycloleucine/pharmacology
- Glutamic Acid/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Mice
- Mice, Knockout
- Neuroprotective Agents/pharmacology
- Phosphatidylinositols/metabolism
- Phospholipase C beta
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Somatosensory Cortex/growth & development
- Somatosensory Cortex/metabolism
- Synaptic Transmission/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Type C Phospholipases/deficiency
- Type C Phospholipases/genetics
Collapse
Affiliation(s)
- A J Hannan
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong J, Misselwitz R, Welfle H, Westermann P. Expression and purification of dynamin II domains and initial studies on structure and function. Protein Expr Purif 2000; 20:314-23. [PMID: 11049755 DOI: 10.1006/prep.2000.1305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamin II, a large GTP-binding protein, is involved in endocytosis and in vesicle formation at the trans-Golgi network. To further elucidate functions of dynamin II, the pleckstrin homology domain (PHD), the proline-rich domain (PRD), and the C-terminal part of dynamin II (dynamin(500-870)) were expressed in Escherichia coli. The PHD, tagged C-terminally by a (His)(6) peptide, was expressed to 15% of cellular proteins and could be purified on nickel-chelating agarose. On the contrary, the PRD and dynamin(500-870) had to be tagged with a (His)(6) peptide at the N-terminus to bind to nickel-chelating agarose. Additional tagging with the S-peptide, which forms a stable complex with immobilized S-protein, allowed removal of strongly interacting E. coli proteins. Circular dichroic spectra indicate a structured recombinant PHD with a secondary structure content similar to that of the known PHD from dynamin I. The N-terminally tagged, recombinant PRD is unfolded but nevertheless binds specifically to the SH3 domain of amphiphysin II as well as to proteins extracted from rat brain. The described methods are suitable to isolate functionally active domains of dynamin II in sufficient amount and purity for further studies.
Collapse
Affiliation(s)
- J Dong
- Max-Delbrück-Centre for Molecular Medicine, Berlin, D-13092, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 2000; 119:782-93. [PMID: 10982773 DOI: 10.1053/gast.2000.17834] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network, which appears incompatible with a role of ATP7B in biliary copper excretion. The aim of this study was to elucidate this discrepancy. METHODS Immunofluorescence and electron-microscopic methods were used to study the effects of excess copper on ATP7B localization in polarized HepG2 hepatoma cells. RESULTS ATP7B is localized to the trans-Golgi network only when extracellular copper concentration is low (<1 micromol/L). At increased copper levels, ATP7B redistributes to vesicular structures and to apical vacuoles reminiscent of bile canaliculi. After copper depletion, ATP7B returns to the trans-Golgi network. Brefeldin A and nocodazole impair copper-induced apical trafficking of ATP7B and cause accumulation of apically retrieved transporters in a subapical compartment, suggesting continuous recycling of ATP7B between this vesicular compartment and the apical membrane when copper is increased. CONCLUSIONS Copper induces trafficking of its own transporter from the trans-Golgi network to the apical membrane, where it may facilitate biliary copper excretion. This system of ligand-induced apical sorting provides a novel mechanism to control copper homeostasis in hepatic cells.
Collapse
Affiliation(s)
- H Roelofsen
- Groningen University Institute for Drug Exploration (GUIDE), Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The small GTPase Rab2 initiates the recruitment of soluble components necessary for protein sorting and recycling from pre-Golgi intermediates. Our previous studies showed that Rab2 required protein kinase C (PKC) or a PKC-like protein to recruit beta-COP to membrane (Tisdale EJ, Jackson M. Rab2 protein enhances coatomer recruitment to pre-Golgi intermediates. J Biol Chem 1998;273: 17269-17277). We investigated the role of PKC in Rab2 function by first determining the active isoform that associates with membranes used in our assay. Western blot analysis detected three isoforms: PKC alpha, gamma and iota/lambda. A quantitative binding assay was used to measure recruitment of these kinases when incubated with Rab2. Only PKC iota/lambda translocated to membrane in a dose-dependent manner. Microsomes treated with anti-PKC iota/lambda lost the ability to bind beta-COP, suggesting that Rab2 requires PKC iota/lambda for beta-COP recruitment. The recruitment of beta-COP to membranes is not regulated by PKC iota/lambda kinase activity. However, PKC iota/lambda activity was necessary for Rab2-mediated vesicle budding. We found that the addition of either a kinase-deficient PKC iota/lambda mutant or atypical PKC pseudosubstrate peptide to the binding assay drastically reduced vesicle formation. These data suggest that Rab2 causes translocation of PKC iota/lambda to vesicular tubular clusters (VTCs), which promotes the recruitment of COPI to generate retrograde-transport vesicles.
Collapse
Affiliation(s)
- E J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| |
Collapse
|
31
|
Dong J, Radau B, Otto A, Müller E, Lindschau C, Westermann P. Profilin I attached to the Golgi is required for the formation of constitutive transport vesicles at the trans-Golgi network. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:253-60. [PMID: 10903430 DOI: 10.1016/s0167-4889(00)00056-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Profilin I was identified, by mass spectrometric sequencing and immunoblotting, as a component of purified Golgi cisternae from HepG2 cells. Binding to the Golgi was verified by indirect immunofluorescence in MT-1 cells showing that a fraction of profilin I colocalizes with TGN38, a marker of the trans-Golgi network (TGN). Studying the formation of constitutive exocytic vesicles at the TGN in a cell-free system demonstrated that cytosolic profilin I has no effect, while incubation of Golgi cisternae with a profilin I-specific antibody reduced vesicle formation by about 50%. Notably, the antibody displaces a fraction of the Golgi-bound dynamin II indicating that profilin I may indirectly promote vesicle formation by supporting the binding of dynamin II to the Golgi membrane. The impact of dynamin II on vesicle formation is demonstrated by incubating the Golgi with the proline-rich domain of dynamin II which concomitantly displaces dynamin II and inhibits vesicle formation. The data provide evidence that profilin I attaches to the Golgi apparatus and is required for the formation of constitutive transport vesicles.
Collapse
Affiliation(s)
- J Dong
- Department of Cell Biology, Max-Delbrück-Centrum for Molecular Medicine, D-13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Golgi-enriched membranes were phosphorylated in order to understand the mechanism for protein kinase C (PKC) regulation of exocytic vesicle formation at the trans-Golgi network. Two of the main PKC substrates were identified as MARCKS and Mac-MARCKS by two-dimensional electrophoresis (2-DE) and mass spectrometric sequencing. Annexin IV and profilin I, two other Golgi-associated proteins--although known as in vitro PKC substrates--were not phosphorylated in the Golgi-bound state.
Collapse
Affiliation(s)
- B Radau
- Cell Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 2000; 278:G992-9. [PMID: 10859230 DOI: 10.1152/ajpgi.2000.278.6.g992] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxic bile salts induce hepatocyte apoptosis by a Fas-dependent, Fas ligand-independent mechanism. To account for this observation, we formulated the hypothesis that toxic bile salts induce apoptosis by effecting translocation of cytoplasmic Fas to the cell surface, resulting in transduction of Fas death signals. In McNtcp.24 cells the majority of Fas was cytoplasmic, as assessed by cell fractionation and immunofluorescence studies. However, cell surface Fas increased sixfold after treatment with the toxic bile salt glycochenodeoxycholate (GCDC) in the absence of increased Fas protein expression. Moreover, in cells transfected with Fas-green fluorescence protein, cell surface fluorescence also increased in GCDC-treated cells, directly demonstrating Fas translocation to the plasma membrane. Both brefeldin A, a Golgi-disrupting agent, and nocodazole, a microtubule inhibitor, prevented the GCDC-induced increase in cell surface Fas and apoptosis. In conclusion, toxic bile salts appear to induce apoptosis by promoting cytoplasmic transport of Fas to the cell surface by a Golgi- and microtubule-dependent pathway.
Collapse
Affiliation(s)
- T Sodeman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
34
|
Baron W, de Vries EJ, de Vries H, Hoekstra D. Protein kinase C prevents oligodendrocyte differentiation: modulation of actin cytoskeleton and cognate polarized membrane traffic. JOURNAL OF NEUROBIOLOGY 1999; 41:385-98. [PMID: 10526317 DOI: 10.1002/(sici)1097-4695(19991115)41:3<385::aid-neu7>3.0.co;2-e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the predominant phosphorylation of an 80-kD protein, identified as myristoylated alanine-rich C-kinase substrate (MARCKS). Upon phosphorylation, MARCKS is translocated from the plasma membrane to the cytosol. Furthermore, PKC activation perturbed the organization of the actin cytoskeleton, causing a redistribution of actin filaments to the submembranous or cortical actin cytoskeleton. As a consequence, transport of a protein traffic marker, the vesicular stomatitis virus glycoprotein, from the trans-Golgi network to the plasma membrane becomes perturbed. The effect of disruption of the actin filament network by cytochalasin D perfectly matched the effect of PKC. These data thus favor the existence of a causal relationship between actin rearrangement and docking and/or fusion of proteins to the plasma membrane. Interestingly, neither in control cells nor in PKC-activated cells did another protein traffic marker, influenza hemagglutinin (HA), reach the cell surface. However, an eminent and specific accumulation of HA just underneath the plasma membrane became apparent upon PKC activation. Yet, this effect could not be simulated by cytochalasin D treatment. Therefore, these observations imply that although MARCKS represents a prominent PKC target site in regulating differentiation, another target involves the differential control of cognate polarized trafficking pathways, which are apparently operating in oligodendrocyte progenitor cells.
Collapse
Affiliation(s)
- W Baron
- Department of Physiological Chemistry, Faculty of Medical Sciences, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Auger R, Robin P, Camier B, Vial G, Rossignol B, Tenu JP, Raymond MN. Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A. J Biol Chem 1999; 274:28652-9. [PMID: 10497234 DOI: 10.1074/jbc.274.40.28652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colonic epithelial HT29-cl19A cells are polarized and secrete proteins among which alpha(1)-antitrypsin represents about 95%. Secretion occurs via a constitutive pathway, so that the rates of secretion directly reflect the rates of protein transit. In this paper we have demonstrated that: 1) in resting cells phospholipase D (PLD) is implicated in the control of apical protein transit; 2) phorbol esters stimulate apical protein transit (stimulation factor 2.2), which is correlated with a PLD-catalyzed production of phosphatidic acid (PA) (2.45-fold increase); 3) the stimulation of cholinergic receptors by carbachol results in an increase (stimulation factor 1.45) of apical protein transit which is independent of protein kinase C and PLD activities, but related to PA formation (1.7-fold increase) via phospholipase(s) C and diacylglycerol kinase activation; 4) an elevation of the cAMP level enhances apical protein transit by a PA-independent mechanism; 5) a trans-Golgi network or post-trans-Golgi network step of the transit is the target for the regulatory events. In conclusion, we have shown that PA can be produced by two independent signaling pathways; whatever the pathway followed, a close relationship between the amount of PA and the level of secretion was observed.
Collapse
Affiliation(s)
- R Auger
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, Unité Mixte de Recherche 8619, Bâtiment 432, Université Paris XI, 91 405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Douziech M, Laberge G, Grondin G, Daigle N, Blouin R. Localization of the mixed-lineage kinase DLK/MUK/ZPK to the Golgi apparatus in NIH 3T3 cells. J Histochem Cytochem 1999; 47:1287-96. [PMID: 10490457 DOI: 10.1177/002215549904701008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DLK/MUK/ZPK is a serine/threonine kinase that belongs to the mixed-lineage (MLK) subfamily of protein kinases. As is the case for most members of this family, relatively little is known about the physiological role of DLK/MUK/ZPK in mammalian cells. Because analysis of subcellular distribution may provide important clues concerning the potential in vivo function of a protein, an antiserum was generated against the amino terminal region of murine DLK/MUK/ZPK and used for localization studies in wild-type NIH 3T3 cells. Light microscopic immunocytochemistry experiments performed with the antiserum revealed that DLK/MUK/ZPK was specifically localized in a juxtanuclear structure characteristic of the Golgi complex. In support of this, treatment of cells with brefeldin A, a drug known to disintegrate the Golgi apparatus, caused disruption of DLK/MUK/ZPK perinuclear staining. Ultrastructural observation of NIH 3T3 cells also confirmed this localization, showing that most of the immunoreactivity was detected on membranes of the stacked Golgi cisternae. Consistent with localization studies, biochemical analyses revealed that DLK/MUK/ZPK was predominantly associated with Golgi membranes on fractionation of cellular extracts and was entirely partitioned into the aqueous phase when membranes were subjected to Triton X-114 extraction. On the basis of these findings, we suggest that DLK/MUK/ZPK is a peripheral membrane protein tightly associated with the cytoplasmic face of the Golgi apparatus. (J Histochem Cytochem 47:1287-1296, 1999)
Collapse
Affiliation(s)
- M Douziech
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
37
|
Bouscarel B, Kroll SD, Fromm H. Signal transduction and hepatocellular bile acid transport: cross talk between bile acids and second messengers. Gastroenterology 1999; 117:433-52. [PMID: 10419927 DOI: 10.1053/gast.1999.0029900433] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B Bouscarel
- Division of Gastroenterology and Nutrition, Department of Medicine, George Washington University Medical Center, Washington, D.C., USA
| | | | | |
Collapse
|
38
|
Jamora C, Yamanouye N, Van Lint J, Laudenslager J, Vandenheede JR, Faulkner DJ, Malhotra V. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 1999; 98:59-68. [PMID: 10412981 DOI: 10.1016/s0092-8674(00)80606-6] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have shown previously that the betagamma subunits of the heterotrimeric G proteins regulate the organization of the pericentriolarly localized Golgi stacks. In this report, evidence is presented that the downstream target of Gbetagamma is protein kinase D (PKD), an isoform of protein kinase C. PKD, unlike other members of this class of serine/threonine kinases, contains a pleckstrin homology (PH) domain. Our results demonstrate that Gbetagamma directly activates PKD by interacting with its PH domain. Inhibition of PKD activity through the use of pharmacological agents, synthetic peptide substrates, and, more specifically, the PH domain of PKD prevents Gbetagamma-mediated Golgi breakdown. Our findings suggest a possible mechanism by which the direct interaction of Gbetagamma with PKD regulates the dynamics of Golgi membranes and protein secretion.
Collapse
Affiliation(s)
- C Jamora
- Biology Department, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 ( Pt 5):719-31. [PMID: 9973606 DOI: 10.1242/jcs.112.5.719] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Go-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Go-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing of the second membrane disruption. Since vesicle pools were implicated in both membrane resealing and facilitation of membrane resealing, we reasoned that artificial decreases in membrane surface tension would have the same result. Decreases in surface tension induced by the addition of a surfactant (Pluronic F68 NF) or cytochalasin D facilitated resealing at first wounding. Furthermore, Pluronic F68 NF restored resealing when exocytosis was blocked by tetanus toxin. These results suggest that membrane resealing requires a decrease in surface tension and under natural conditions this is provided by Ca2+-dependent exocytosis of new membrane near the site of disruption.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
40
|
Rodríguez-Martín E, Boyano-Adánez MC, Bodega G, Martín M, Hernández C, Quin Y, Vadillo M, Arilla-Ferreiro E. Redistribution of protein kinase C isoforms in rat pancreatic acini during lactation and weaning. FEBS Lett 1999; 445:356-60. [PMID: 10094489 DOI: 10.1016/s0014-5793(99)00133-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Freshly enzymatically isolated pancreatic acini from lactating and weaning Wistar rats were used to investigate the role of protein kinase C (PKC) isoforms during these physiologically relevant pancreatic secretory and growth processes. The combination of immunoblot and immunohistochemical analysis shows that the PKC isoforms alpha, delta, and epsilon are present in pancreatic acini from control, lactating and weaning rats. A vesicular distribution of PKC-alpha, -delta, and -epsilon was detected by immunohistochemical analysis in the pancreatic acini from all the experimental groups. PKC-delta showed the strongest PKC immunoreactivity (PKC-IR). In this vesicular distribution, PKC-IR was located at the apical region of the acinar cells. No differences were observed between control, lactating and weaning rats. However, the immunoblot analysis of pancreatic PKC isoforms during lactation and weaning showed a significant translocation of PKC-delta from the cytosol to the membrane fraction when compared with control animals. Translocation of PKC isoforms (alpha, delta and epsilon) in response to 12-O-tetradecanoyl phorbol 13-acetate (TPA) 1 microM (15 min, 37 degrees C) was comparable in pancreatic acini from control, lactating and weaning rats. In the control group, a significant translocation of all the isoforms (alpha, delta and epsilon) from the cytosol to the membrane was observed. The PKC isoform most translocated by TPA was PKC-delta. In contrast, no statistically significant increase in PKC-delta translocation was detected in pancreatic acini isolated from lactating or weaning rats. These results suggest that the PKC isoforms are already translocated to the surface of the acinar cells from lactating or weaning rats. In addition, they suggest that isoform specific spatial PKC distribution and translocation occur in association with the growth response previously described in the rat exocrine pancreas during lactation and weaning.
Collapse
Affiliation(s)
- E Rodríguez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zegers MM, Hoekstra D. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem J 1998; 336 ( Pt 2):257-69. [PMID: 9820799 PMCID: PMC1219866 DOI: 10.1042/bj3360257] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epithelial cells express plasma-membrane polarity in order to meet functional requirements that are imposed by their interaction with different extracellular environments. Thus apical and basolateral membrane domains are distinguished that are separated by tight junctions in order to maintain the specific lipid and protein composition of each domain. In hepatic cells, the plasma membrane is also polarized, containing a sinusoidal (basolateral) and a bile canalicular (apical)-membrane domain. Relevant to the biogenesis of these domains are issues concerning sorting, (co-)transport and regulation of transport of domain-specific membrane components. In epithelial cells, specific proteins and lipids, destined for the apical membrane, are sorted in the trans-Golgi network (TGN), which involves their sequestration into cholesterol/sphingolipid 'rafts', followed by 'direct' transport to the apical membrane. In hepatic cells, a direct apical transport pathway also exists, as revealed by transport of sphingolipids from TGN to the apical membrane. This is remarkable, since in these cells numerous apical membrane proteins are 'indirectly' sorted, i.e. they are first transferred to the basolateral membrane prior to their subsequent transcytosis to the apical membrane. This raises intriguing questions as to the existence of specific lipid rafts in hepatocytes. As demonstrated in studies with HepG2 cells, it has become evident that, in hepatic cells, apical transport pathways can be regulated by protein kinase activity, which in turn modulates cell polarity. Finally, an important physiological function of hepatic cells is their involvement in intracellular transport and secretion of bile-specific lipids. Mechanisms of these transport processes, including the role of multidrug-resistant proteins in lipid translocation, will be discussed in the context of intracellular vesicular transport. Taken together, hepatic cell systems provide an important asset to studies aimed at elucidating mechanisms of sorting and trafficking of lipids (and proteins) in polarized cells in general.
Collapse
Affiliation(s)
- M M Zegers
- Department of Physiological Chemistry, University of Groningen, A. Deusinglaan 1, 9713 EV Groningen, The Netherlands
| | | |
Collapse
|
42
|
Domenicotti C, Paola D, Vitali A, Nitti M, Cottalasso D, Pronzato MA, Poli G, Melloni E, Marinari UM. Ethanol-induced effects on expression level, activity, and distribution of protein kinase C isoforms in rat liver Golgi apparatus. Chem Biol Interact 1998; 114:33-43. [PMID: 9744554 DOI: 10.1016/s0009-2797(98)00039-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute ethanol administration induces significant modifications both in secretive and formative membranes of rat liver Golgi apparatus. The decrease in glycolipoprotein secretion and their retention into the hepatocyte contribute to the pathogenesis of alcohol-induced fatty liver. Molecular and cellular mechanisms behind the ethanol-induced injury of the liver secretory pathway are not yet completely defined. In this study on intact livers from ethanol-treated rats, the involvement of the Golgi compartment in the impairment of hepatic glycolipoprotein secretion has been correlated with changes in the expression level, subcellular distribution and enzymatic activity of protein kinase C (PKC) isoforms. Acute ethanol exposure determined a translocation of classic PKCs and delta isoform from the cytosol to cis and trans Golgi membranes, the site of glycolipoprotein retention in the hepatic cell. A marked stimulation of cytosolic epsilon PKC activity was observed throughout the period of treatment. The presence of activated PKC isozymes at the Golgi compartment of alcohol-treated rat livers may play a role in hepatic secretion and protein accumulation. Direct and indirect effects of ethanol consumption on PKC isozymes and Golgi function are discussed.
Collapse
Affiliation(s)
- C Domenicotti
- Department of Experimental Medicine, University of Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sanchez P, De Carcer G, Sandoval IV, Moscat J, Diaz-Meco MT. Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol Cell Biol 1998; 18:3069-80. [PMID: 9566925 PMCID: PMC110686 DOI: 10.1128/mcb.18.5.3069] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Accepted: 02/12/1998] [Indexed: 02/07/2023] Open
Abstract
An increasing number of independent studies indicate that the atypical protein kinase C (PKC) isoforms (aPKCs) are critically involved in the control of cell proliferation and survival. The aPKCs are targets of important lipid mediators such as ceramide and the products of the PI 3-kinase. In addition, the aPKCs have been shown to interact with Ras and with two novel proteins, LIP (lambda-interacting protein; a selective activator of lambda/iotaPKC) and the product of par-4 (a gene induced during apoptosis), which is an inhibitor of both lambda/iotaPKC and zetaPKC. LIP and Par-4 interact with the zinc finger domain of the aPKCs where the lipid mediators have been shown to bind. Here we report the identification of p62, a previously described phosphotyrosine-independent p56(lck) SH2-interacting protein, as a molecule that interacts potently with the V1 domain of lambda/iotaPKC and, albeit with lower affinity, with zetaPKC. We also show in this study that ectopically expressed p62 colocalizes perfectly with both lambda/iotaPKC and zetaPKC. Interestingly, the endogenous p62, like the ectopically expressed protein, displays a punctate vesicular pattern and clearly colocalizes with endogenous lambda/iotaPKC and endogenous zetaPKC. P62 colocalizes with Rab7 and partially with lamp-1 and limp-II as well as with the epidermal growth factor (EGF) receptor in activated cells, but not with Rab5 or the transferrin receptor. Of functional relevance, expression of dominant negative lambda/iotaPKC, but not of the wild-type enzyme, severely impairs the endocytic membrane transport of the EGF receptor with no effect on the transferrin receptor. These findings strongly suggest that the aPKCs are anchored by p62 in the lysosome-targeted endosomal compartment, which seems critical for the control of the growth factor receptor trafficking. This is particularly relevant in light of the role played by the aPKCs in mitogenic cell signaling events.
Collapse
Affiliation(s)
- P Sanchez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid), Universidad Autónoma, Canto Blanco, Spain
| | | | | | | | | |
Collapse
|
44
|
Mochly-Rosen D, Kauvar LM. Modulating protein kinase C signal transduction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:91-145. [PMID: 9547885 DOI: 10.1016/s1054-3589(08)60126-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Mochly-Rosen
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
45
|
Cardell M, Landsend AS, Eidet J, Wieloch T, Blackstad TW, Ottersen OP. High resolution immunogold analysis reveals distinct subcellular compartmentation of protein kinase C gamma and delta in rat Purkinje cells. Neuroscience 1998; 82:709-25. [PMID: 9483530 DOI: 10.1016/s0306-4522(97)00305-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High resolution immunogold cytochemistry was used to investigate the subcellular distribution of protein kinase C gamma and delta in Purkinje cells of the rat cerebellum. Postembedding incubation with an antibody raised to a peptide sequence near the C-terminus of protein kinase C gamma resulted in strong labelling along the dendrosomatic plasma membrane. A quantitative analysis indicated that this labelling reflected the existence of two pools of protein kinase C gamma; one membrane associated pool and one cytoplasmic pool located within 50 nm of the plasma membrane. The labelling along the plasma membrane showed a pronounced and abrupt increase when moving from the cell body into the axon initial segment. Gold particles signalling protein kinase C gamma were also enriched in putative Purkinje axon terminals in the dentate nucleus. The only organelle showing a consistent immunolabelling for protein kinase C gamma was the Golgi apparatus where the gold particles were restricted to the trans face. Protein kinase C gamma immunoreactivity also occurred in the Purkinje cell spines, with an enrichment in or near the postsynaptic density. Antibodies to protein kinase C delta produced a very different labelling pattern in the Purkinje cells. Most of the gold particles were associated with rough endoplasmic reticulum, particularly with those cisternae that were located close to the nucleus or in the nuclear indentations. No significant protein kinase C delta immunolabelling was detected at the plasma membrane or in Purkinje cell spines. The present data point to a highly specific compartmentation of the two major protein kinase C isozymes in Purkinje cells and suggest that these isozymes act on different substrates and hence have different regulatory functions within these neurons.
Collapse
Affiliation(s)
- M Cardell
- Department of Anatomy, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
46
|
Drouin S, Kiley S, Carlino J, Barnum SR. Transforming growth factor-β2 regulates C3 secretion in monocytes through a protein kinase C-dependent pathway. Mol Immunol 1998. [DOI: 10.1016/s0161-5890(98)80012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Muñiz M, Martín ME, Hidalgo J, Velasco A. Protein kinase A activity is required for the budding of constitutive transport vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A 1997; 94:14461-6. [PMID: 9405635 PMCID: PMC25021 DOI: 10.1073/pnas.94.26.14461] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1997] [Accepted: 10/22/1997] [Indexed: 02/05/2023] Open
Abstract
We have examined the role played by protein kinase A (PKA) in vesicle-mediated protein transport from the trans-Golgi network (TGN) to the cell surface. In vivo this transport step was inhibited by inhibitors of PKA catalytic subunits (C-PKA) such as the compound known as H89 and a myristoylated form of the inhibitory peptide sequence contained in the thermostable PKA inhibitor. Inhibition by H89 occurred at an early stage during the transfer of vesicular stomatitis virus G glycoprotein from the TGN to the cell surface. Reversal from this inhibition correlated with a transient increase in the number of free coated vesicles in the Golgi area. Vesicle budding from the TGN was studied in vitro using vesicular stomatitis virus-infected, permeabilized cells. Addition to this assay of C-PKA stimulated vesicle release while it was suppressed by PKA inhibitory peptide, H89, and antibody against C-PKA. Furthermore, vesicle release was decreased when PKA-depleted cytosol was used and restored by addition of C-PKA. These results indicate a regulatory role for PKA activity in the production of constitutive transport vesicles from the TGN.
Collapse
Affiliation(s)
- M Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | | | | | | |
Collapse
|
48
|
Galve-Roperh I, Haro A, Díaz-Laviada I. Ceramide-induced translocation of protein kinase C zeta in primary cultures of astrocytes. FEBS Lett 1997; 415:271-4. [PMID: 9357981 DOI: 10.1016/s0014-5793(97)00985-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present research was undertaken to study the possible involvement of the atypical protein kinase C (PKC) zeta in ceramide signal transduction in primary cultures of rat astrocytes. As shown by Western blot analysis, translocation of immunoreactive PKCzeta to the particulate fraction occurred upon exposure of astrocytes to cell-permeable ceramide analogs or to exogenous sphingomyelinase. The particulate fraction may correspond to a perinuclear area, as indicated by immunocytochemical techniques. Furthermore, treatment of cells with N-octanoylsphingosine led to an increased phosphorylation of PKCzeta. Results thus show that stimulation of PKCzeta may be one of the intracellular events triggered by activation of the sphingomyelin pathway.
Collapse
Affiliation(s)
- I Galve-Roperh
- Department of Biochemistry and Molecular Biology I, Faculty of Biology, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
49
|
Abstract
Proteins synthesized on membrane-bound ribosomes are transported through the Golgi apparatus and, on reaching the trans-Golgi network, are sorted for delivery to various cellular destinations. Sorting involves the assembly of cytosol-oriented coat structures which preferentially package cargo into vesicular transport intermediates. Recent studies have shed new light on both the molecular machinery involved and the complexity of the sorting processes.
Collapse
Affiliation(s)
- L M Traub
- Division of Hematology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|