1
|
Santoshi M, Bansia H, Hussain M, Jha AK, Nagaraja V. Identification of a 1-acyl-glycerol-3-phosphate acyltransferase from Mycobacterium tuberculosis, a key enzyme involved in triacylglycerol biosynthesis. Mol Microbiol 2024; 121:1164-1181. [PMID: 38676355 DOI: 10.1111/mmi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Muzammil Hussain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Abodh Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
4
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
6
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
7
|
Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T. Glycerophosphate/Acylglycerophosphate acyltransferases. BIOLOGY 2014; 3:801-30. [PMID: 25415055 PMCID: PMC4280512 DOI: 10.3390/biology3040801] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022]
Abstract
Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT) are involved in the de novo synthesis of triacylglycerol (TAG) and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/pathological roles in the metabolism of glycerolipids have been described and discussed in this review.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yasuhiro Hayashi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Naoki Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yoko Nemoto-Sasaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Saori Oka
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takayuki Sugiura
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 2014; 55:799-807. [PMID: 24646950 PMCID: PMC3995458 DOI: 10.1194/jlr.r046094] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | |
Collapse
|
9
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
10
|
Lee HC, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y, Hattori M, Tanaka F, Udagawa O, Kono N, Itoh T, Ogiso H, Taguchi R, Arita M, Sasaki T, Arai H. LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol Biol Cell 2012; 23:4689-700. [PMID: 23097495 PMCID: PMC3521678 DOI: 10.1091/mbc.e12-09-0673] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is remarkably enriched in phosphatidylinositol (PI). Studies using knockout mice of lysophosphatidylinositol acyltransferase 1, which selectively incorporates AA into PI, reveal that AA-containing PI plays a crucial role in cortical lamination and neuronal migration during brain development. Dietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference–based genetic screen using Caenorhabditis elegans, we recently cloned mboa-7 as an acyltransferase that selectively incorporates AA into PI. Here we show that lysophosphatidylinositol acyltransferase 1 (LPIAT1, also known as MBOAT7), the closest mammalian homologue, plays a crucial role in brain development in mice. Lpiat1−/− mice show almost no LPIAT activity with arachidonoyl-CoA as an acyl donor and show reduced AA contents in PI and PI phosphates. Lpiat1−/− mice die within a month and show atrophy of the cerebral cortex and hippocampus. Immunohistochemical analysis reveals disordered cortical lamination and delayed neuronal migration in the cortex of E18.5 Lpiat1−/− mice. LPIAT1 deficiency also causes disordered neuronal processes in the cortex and reduced neurite outgrowth in vitro. Taken together, these results demonstrate that AA-containing PI/PI phosphates play an important role in normal cortical lamination during brain development in mice.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Koeberle A, Shindou H, Harayama T, Shimizu T. Role of lysophosphatidic acid acyltransferase 3 for the supply of highly polyunsaturated fatty acids in TM4 Sertoli cells. FASEB J 2010; 24:4929-38. [PMID: 20705908 DOI: 10.1096/fj.10-162818] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sertoli cells supply germ cells with nutrients, including highly polyunsaturated fatty acids (hPUFAs), which are essential for testicular function. We have previously reported high expression of lysophosphatidic acid acyltransferase (LPAAT)3 in mature mouse testis and suggested an arachidonoyl-transferase activity to LPA. To investigate the role of LPAAT3 in the storage and release of PUFAs, TM4 Sertoli cells were stably transfected with LPAAT3-small hairpin (sh)RNA. Arachidonoyl-, eicosapentaenoyl-, and docosapentaenoyl-containing phosphatidylcholine (PC) and linoleoyl-containing phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylglycerol were significantly decreased as determined by liquid chromatography coupled to electrospray ionization mass spectrometry. Expression of murine LPAAT3 in Chinese hamster ovary (CHO)-K1 cells had essentially an opposite effect. The level of polyunsaturated PC correlated with cellular levels of free docosapentaenoic acid and eicosapentaenoic acid in TM4 and CHO-K1 cells, respectively. Activity assays using microsomal preparations as a source of LPAAT3 revealed an excessive PA synthesis from LPA acceptors for docosahexaenoyl-, arachidonoyl- and less pronounced for linoleoyl-CoA. We propose that the efficient incorporation of hPUFAs into PA-the precursor of several phospholipids, including PC-and the selective increase of the polyunsaturated PC pool in TM4 Sertoli cells might be required for the controlled release of hPUFAs and their supply to germ cells.
Collapse
Affiliation(s)
- Andreas Koeberle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Rastegar F, Gao JL, Shenaq D, Luo Q, Shi Q, Kim SH, Jiang W, Wagner ER, Huang E, Gao Y, Shen J, Yang K, He BC, Chen L, Zuo GW, Luo J, Luo X, Bi Y, Liu X, Li M, Hu N, Wang L, Luther G, Luu HH, Haydon RC, He TC. Lysophosphatidic acid acyltransferase β (LPAATβ) promotes the tumor growth of human osteosarcoma. PLoS One 2010; 5:e14182. [PMID: 21152068 PMCID: PMC2995727 DOI: 10.1371/journal.pone.0014182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 11/10/2010] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Farbod Rastegar
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Jian-Li Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Pharmacy, Zhejiang University, Hangzhou, China
| | - Deana Shenaq
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Qing Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiong Shi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Stephanie H. Kim
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wei Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Eric R. Wagner
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Yanhong Gao
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Geriatrics, Xinhua Hospital of Shanghai Jiatong University, Shanghai, China
| | - Jikun Shen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Bai-Cheng He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Guo-Wei Zuo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jinyong Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiaoji Luo
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Li
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Hu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Key Laboratory of Diagnostic Medicine designated by Chinese Ministry of Education, and Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Linyuan Wang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Gaurav Luther
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Pharmacy, Zhejiang University, Hangzhou, China
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
13
|
Koeberle A, Shindou H, Harayama T, Shimizu T. Role of lysophosphatidic acid acyltransferase 3 for the supply of highly polyunsaturated fatty acids in TM4 Sertoli cells. FASEB J 2010. [DOI: 10.1096/fj.10.162818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Koeberle
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, The University of Tokyo Tokyo Japan
| | - Hideo Shindou
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, The University of Tokyo Tokyo Japan
| | - Takeshi Harayama
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, The University of Tokyo Tokyo Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyFaculty of Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
14
|
Pérez-Chacón G, Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1103-13. [DOI: 10.1016/j.bbalip.2009.08.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/11/2022]
|
15
|
Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 2009; 296:E1195-209. [PMID: 19336658 PMCID: PMC2692402 DOI: 10.1152/ajpendo.90958.2008] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 03/30/2009] [Indexed: 01/19/2023]
Abstract
Triacylglycerol (TAG) synthesis and storage in tissues such as adipose tissue and liver have important roles in metabolic homeostasis. The molecular identification of genes encoding enzymes that catalyze steps in TAG biosynthesis from glycerol 3-phosphate has revealed an unexpected number of protein isoforms of the glycerol phosphate acyltransferase (GPAT), acylglycerolphosphate acyltransferase (AGPAT), and lipin (phosphatidate phosphatase) families that appear to catalyze similar biochemical reactions. However, on the basis of available data for a few members in which genetic deficiencies in mouse and/or human have been studied, we postulate that each GPAT, AGPAT, and lipin family member likely has a specialized role that may be uncovered through careful biochemical and physiological analyses.
Collapse
Affiliation(s)
- Kazuharu Takeuchi
- Dept. of Human Genetics, Gonda 6506A, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | |
Collapse
|
16
|
Yuki K, Shindou H, Hishikawa D, Shimizu T. Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis. J Lipid Res 2008; 50:860-9. [PMID: 19114731 DOI: 10.1194/jlr.m800468-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerophospholipids are structural and functional components of cellular membranes as well as precursors of various lipid mediators. Using acyl-CoAs as donors, glycerophospholipids are formed by the de novo pathway (Kennedy pathway) and modified in the remodeling pathway (Lands' cycle). Various acyltransferases, including two lysophosphatidic acid acyltransferases (LPAATs), have been discovered from a 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family. Proteins of this family contain putative acyltransferase motifs, but their biochemical properties and physiological roles are not completely understood. Here, we demonstrated that mouse LPAAT3, previously known as mouse AGPAT3, possesses strong LPAAT activity and modest lysophosphatidylinositol acyltransferase activity with a clear preference for arachidonoyl-CoA as a donor. This enzyme is highly expressed in the testis, where CDP-diacylglycerol synthase 1 preferring 1-stearoyl-2-arachidonoyl-phosphatidic acid as a substrate is also highly expressed. Since 1-stearoyl-2-arachidonoyl species are the main components of phosphatidylinositol, mouse LPAAT3 may function in both the de novo and remodeling pathways and contribute to effective biogenesis of 1-stearoyl-2-arachidonoyl-phosphatidylinositol in the testis. Additionally, the expression of this enzyme in the testis increases significantly in an age-dependent manner, and beta-estradiol may be an important regulator of this enzyme's induction. Our findings identify this acyltransferase as an alternative important enzyme to produce phosphatidylinositol in the testis.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Cell membranes contain several classes of glycerophospholipids, which have numerous structural and functional roles in the cells. Polyunsaturated fatty acids, including arachidonic acid and eicosapentaenoic acid, are located at the sn-2 (but not sn-1)-position of glycerophospholipids in an asymmetrical manner. Using acyl-CoAs as donors, glycerophospholipids are formed by a de novo pathway (Kennedy pathway) and modified by a remodeling pathway (Lands' cycle) to generate membrane asymmetry and diversity. Both pathways were reported in the 1950s. Whereas enzymes involved in the Kennedy pathway have been well characterized, including enzymes in the 1-acylglycerol-3-phosphate O-acyltransferase family, little is known about enzymes involved in the Lands' cycle. Recently, several laboratories, including ours, isolated enzymes working in the remodeling pathway. These enzymes were discovered not only in the 1-acylglycerol-3-phosphate O-acyltransferase family but also in the membrane-bound O-acyltransferase family. In this review, we summarize recent studies on cloning and characterization of lysophospholipid acyltransferases that contribute to membrane asymmetry and diversity.
Collapse
Affiliation(s)
- Hideo Shindou
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | |
Collapse
|
18
|
Jackson SK, Abate W, Tonks AJ. Lysophospholipid acyltransferases: novel potential regulators of the inflammatory response and target for new drug discovery. Pharmacol Ther 2008; 119:104-14. [PMID: 18538854 DOI: 10.1016/j.pharmthera.2008.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular and biochemical analyses of membrane phospholipids have revealed that, in addition to their physico-chemical properties, the metabolites of phospholipids play a crucial role in the recognition, signalling and responses of cells to a variety of stimuli. Such responses are mediated in large part by the removal and/or addition of different acyl chains to provide different phospholipid molecular species. The reacylation reactions, catalysed by specific acyltransferases control phospholipid composition and the availability of the important mediators free arachidonic acid and lysophospholipids. Lysophospholipid acyltransferases are therefore key control points for cellular responses to a variety of stimuli including inflammation. Regulation or manipulation of lysophospholipid acyltransferases may thus provide important mechanisms for novel anti-inflammatory therapies. This review will highlight mammalian lysophospholipid acyltransferases with particular reference to the potential role of lysophosphatidylcholine acyltransferase and its substrates in sepsis and other inflammatory conditions and as a potential target for novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Simon K Jackson
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, Frenchay Campus, University of the West of England, Bristol, UK.
| | | | | |
Collapse
|
19
|
Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol Biol Cell 2008; 19:1174-84. [PMID: 18094042 PMCID: PMC2262980 DOI: 10.1091/mbc.e07-09-0893] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/16/2007] [Accepted: 12/12/2007] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylinositol (PI) is a component of membrane phospholipids, and it functions both as a signaling molecule and as a compartment-specific localization signal in the form of polyphosphoinositides. Arachidonic acid (AA) is the predominant fatty acid in the sn-2 position of PI in mammals. LysoPI acyltransferase (LPIAT) is thought to catalyze formation of AA-containing PI; however, the gene that encodes this enzyme has not yet been identified. In this study, we established a screening system to identify genes required for use of exogenous polyunsaturated fatty acids (PUFAs) in Caenorhabditis elegans. In C. elegans, eicosapentaenoic acid (EPA) instead of AA is the predominant fatty acid in PI. We showed that an uncharacterized gene, which we named mboa-7, is required for incorporation of PUFAs into PI. Incorporation of exogenous PUFA into PI of the living worms and LPIAT activity in the microsomes were greatly reduced in mboa-7 mutants. Furthermore, the membrane fractions of transgenic worms expressing recombinant MBOA-7 and its human homologue exhibited remarkably increased LPIAT activity. mboa-7 encodes a member of the membrane-bound O-acyltransferase family, suggesting that mboa-7 is LPIAT. Finally, mboa-7 mutants had significantly lower EPA levels in PI, and they exhibited larval arrest and egg-laying defects.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Takao Inoue
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Rieko Imae
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Nozomu Kono
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichiro Shirae
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Shinji Matsuda
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan; and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan; and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyuki Arai
- *Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Rhodobacter capsulatus OlsA is a bifunctional enzyme active in both ornithine lipid and phosphatidic acid biosynthesis. J Bacteriol 2007; 189:8564-74. [PMID: 17921310 DOI: 10.1128/jb.01121-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis.
Collapse
|
21
|
Tamaki H, Shimada A, Ito Y, Ohya M, Takase J, Miyashita M, Miyagawa H, Nozaki H, Nakayama R, Kumagai H. LPT1 encodes a membrane-bound O-acyltransferase involved in the acylation of lysophospholipids in the yeast Saccharomyces cerevisiae. J Biol Chem 2007; 282:34288-98. [PMID: 17890783 DOI: 10.1074/jbc.m704509200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipids are major components of cellular membranes that participate in a range of cellular processes. Phosphatidic acid (PA) is a key molecule in the phospholipid biosynthetic pathway. In Saccharomyces cerevisiae, SLC1 has been identified as the gene encoding lysophosphatidic acid acyltransferase, which catalyzes PA synthesis. However, despite the importance of PA, disruption of SLC1 does not affect cell viability (Nagiec, M. M., Wells, G. B., Lester, R. L., and Dickson, R. C. (1993) J. Biol. Chem. 268, 22156-22163). We originally aimed to identify the acetyl-CoA:lyso platelet-activating factor acetyltransferase (lysoPAF AT) gene in yeast. Screening of a complete set of yeast deletion clones (4741 homozygous diploid clones) revealed a single mutant strain, YOR175c, with a defect in lysoPAF AT activity. YOR175c has been predicted to be a member of the membrane-bound O-acyltransferase superfamily, and we designated the gene LPT1. An Lpt1-green fluorescent protein fusion protein localized at the endoplasmic reticulum. Other than lysoPAF AT activity, Lpt1 catalyzed acyltransferase activity with a wide variety of lysophospholipids as acceptors, including lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, and lysophosphatidylserine. A liquid chromatography-mass spectrometry analysis indicated that lysophosphatidylcholine and lysophosphatidylethanolamine accumulated in the Deltalpt1 mutant strain. Although the Deltalpt1 mutant strain did not show other detectable defects, the Deltalpt1 Deltaslc1 double mutant strain had a synthetic lethal phenotype. These results indicate that, in concert with Slc1, Lpt1 plays a central role in PA biosynthesis, which is essential for cell viability.
Collapse
Affiliation(s)
- Hisanori Tamaki
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamashita A, Nakanishi H, Suzuki H, Kamata R, Tanaka K, Waku K, Sugiura T. Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1202-15. [PMID: 17707131 DOI: 10.1016/j.bbalip.2007.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 11/20/2022]
Abstract
1-acyl-sn-glycero-3-phosphate (AGP) acyltransferases (AGPAT) are involved in de novo biosynthesis of glycerolipids, such as phospholipids and triacylglycerol. Alignment of amino acid sequences from AGPAT, sn-glycerol-3-phosphate acyltransferase, and dihydroxyacetonephosphate acyltransferase reveals four regions with strong homology (acyltransferase motifs I-IV). The invariant amino acids within these regions may be part of a catalytically important site in this group of acyl-CoA acyltransferases. However, in human AGPAT1 a transmembrane domain is predicted to separate motif I on the cytosolic side from motifs II-III on the lumenal side, with motif IV near surface of the membrane. The topology of motifs I and III was confirmed by experiments with recombinant AGPAT1 containing potential glycosylation site near the motifs. This topology conflicts with the expectation that catalytically important sites are near one another, raising questions of whether the acyltransferase motifs really are important for AGPAT catalysis, and how substrates access motifs II-III on the lumenal side of the endoplasmic reticulum membrane. Using human AGPAT1 as a model, we have examined the catalytic roles of highly conserved residues in the four acyltransferase motifs by site-directed mutagenesis. Modifications of the sidechain structures of His104, Asp109, Phe146, Arg149, Glu178, Gly179, Thr180, Arg181 and Ile208 all affected AGPAT1 activity, indicating that the acyltransferase motifs indeed are important for AGPAT catalysis. In addition, we examined substrate accessibility to the catalytic domain of human AGPAT1 using a competition assay. Lysophosphatidic acid (LPA) with fatty acid chains shorter than 10 carbons did not access the catalytic domain, suggesting that LPA hydrophobicity is important. In contrast, short chain acyl-CoAs did access the catalytic domain but did not serve as the second substrate. These results suggest that motifs II and III are involved in LPA binding and motifs I and IV are involved in acyl-CoA binding.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 229-0195, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem 2006; 281:20140-7. [PMID: 16704971 DOI: 10.1074/jbc.m600225200] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), is an important constituent of biological membranes. It is also the major component of serum lipoproteins and pulmonary surfactant. In the remodeling pathway of PC biosynthesis, 1-acyl-sn-glycero-3-phosphocholine (LPC) is converted to PC by acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23). Whereas LPCAT activity has been detected in several tissues, the structure and detailed biochemical information on the enzyme have not yet been reported. Here, we present the cloning and characterization of a cDNA for mouse lung-type LPCAT (LPCAT1). The cDNA encodes an enzyme of 60 kDa, with three putative transmembrane domains. When expressed in Chinese hamster ovary cells, mouse LPCAT1 exhibited Ca(2+)-independent activity with a pH optimum between 7.4 and 10. LPCAT1 demonstrated a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl- or 1-palmitoyl-LPC as acyl donors and acceptors, respectively. Furthermore, the enzyme was predominantly expressed in the lung, in particular in alveolar type II cells. Thus, the enzyme might synthesize phosphatidylcholine in pulmonary surfactant and play a pivotal role in respiratory physiology.
Collapse
Affiliation(s)
- Hiroki Nakanishi
- Department of Metabolome, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ye GM, Chen C, Huang S, Han DD, Guo JH, Wan B, Yu L. Cloning and characterization a novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase gene AGPAT7. ACTA ACUST UNITED AC 2006; 16:386-90. [PMID: 16243729 DOI: 10.1080/10425170500213712] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The 1-Acylglycerolphosphate acyltransferase is crucial enzyme for synthesis of glycerolipids as well as triacylglylcerol biosynthesis in eukaryotes. Six members of 1-acyl-sn-glycerol-3-phosphate acyltransferase family in human have been described, which were AGPAT1, 2, 3, 4, 5 and 6. Here we report the cloning and characterization of another novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase member AGPAT7 (1-acyl-sn-glycerol-3-phosphate acyltransferase 7) gene, which was mapped to human chromosome 15q14. The AGPAT7 cDNA is 1898 bp in length, encoding a putative protein with 524 amino acid residues, which contains an acyltransferase domain in 123-234 aa. RT PCR amplification in 18 human tissues indicated that human AGPAT7 gene was widely expressed in uterus, thymus, pancreas, skeletal muscle, bladder, stomach, lung and testis. AGPAT7 protein was mainly localized to the endoplasmic reticulum (ER) in Hela cells.
Collapse
Affiliation(s)
- Guang-Ming Ye
- School of Life Sciences, Fudan University, State Key Laboratory of Genetic Engineering, Shanghai, 200433, P R China
| | | | | | | | | | | | | |
Collapse
|
25
|
Hollenback D, Bonham L, Law L, Rossnagle E, Romero L, Carew H, Tompkins CK, Leung DW, Singer JW, White T. Substrate specificity of lysophosphatidic acid acyltransferase beta -- evidence from membrane and whole cell assays. J Lipid Res 2005; 47:593-604. [PMID: 16369050 DOI: 10.1194/jlr.m500435-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membranes of mammalian cells contain lysophosphatidic acid acyltransferase (LPAAT) activities that catalyze the acylation of sn-1-acyl lysophosphatidic acid (lysoPA) to form phosphatidic acid. As the biological roles and biochemical properties of the six known LPAAT isoforms have yet to be fully elucidated, we have characterized human LPAAT-beta activity using two different assays. In a membrane-based assay, LPAAT-beta used lysoPA and lysophosphatidylmethanol (lysoPM) but not other lysophosphoglycerides as an acyl acceptor, and it preferentially transferred 18:1, 18:0, and 16:0 acyl groups over 12:0, 14:0, 20:0, and 20:4 acyl groups. The fact that lysoPM could traverse cell membranes permitted additional characterization of LPAAT-beta activity in cells: PC-3 and DU145 cells converted exogenously added lysoPM and (14)C-labeled 18:1 into (14)C-labeled phosphatidylmethanol (PM). The rate of PM formation was higher in cells that overexpressed LPAAT-beta and was inhibited by the LPAAT-beta inhibitor CT-32501. In contrast, if lysoPM and (14)C-labeled 20:4 were added to PC-3 or DU145 cells, (14)C-labeled PM was also formed, but the rate was neither higher in cells that overexpressed LPAAT-beta nor inhibited by CT-32501. We propose that LPAAT-beta catalyzes the intracellular transfer of 18:1, 18:0, and 16:0 acyl groups but not 20:4 groups to lysoPA.
Collapse
Affiliation(s)
- David Hollenback
- Department of Biochemistry, Cell Therapeutics, Inc., Seattle, WA 98119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hong F, Hollenback D, Singer JW, Klein P. Diamino-C,N-diarylpyridine positional isomers as inhibitors of lysophosphatidic acid acyltransferase-β. Bioorg Med Chem Lett 2005; 15:4703-7. [PMID: 16143520 DOI: 10.1016/j.bmcl.2005.07.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/14/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
2,6-Diamino-4,N-diarylpyridines were identified as potent, isoform selective inhibitors of the enzymatic activity of lysophosphatidic acid acyltransferase-beta (LPAAT-beta).
Collapse
Affiliation(s)
- Feng Hong
- Cell Therapeutics, Inc., 201 Elliott Ave. W., Suite 400, Seattle, WA 98119, USA
| | | | | | | |
Collapse
|
27
|
Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR. Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 2005; 46:2448-57. [PMID: 16150824 DOI: 10.1194/jlr.m500258-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipids are a major class of lipids in epidermis, where they serve as a source of free fatty acids that are important for the maintenance of epidermal permeability barrier function. The phospholipid biosynthetic enzyme, 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT), catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, the major precursor of all glycerolipids. We identified an expression pattern of AGPAT isoforms that is unique to epidermis, with relatively high constitutive expression of mouse AGPAT (mAGPAT) 3, 4, and 5 but low constitutive expression of mAGPAT 1 and 2. Localization studies indicate that all five isoforms of AGPAT were expressed in all nucleated layers of epidermis. Furthermore, rat AGPAT 2 and 5 mRNAs increased in parallel with both an increase in enzyme activity and permeability barrier formation late in rat epidermal development. Moreover, after two methods of acute permeability barrier disruption, mAGPAT 1, 2, and 3 mRNA levels increased rapidly and were sustained for at least 24 h. In parallel with the increase in mRNA levels, an increase in AGPAT activity also occurred. Because upregulation of mAGPAT mRNAs after tape-stripping could be partially reversed by artificial barrier restoration by occlusion, these studies suggest that an increase in the expression of AGPATs is linked to barrier requirements.
Collapse
Affiliation(s)
- Biao Lu
- Dermatology and Medicine Services, Veterans Administration Medical Center and University of California School of Medicine, San Francisco, CA 94121, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lu B, Jiang Y, Zhou Y, Xu F, Hatch G, Choy P. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart. Biochem J 2005; 385:469-77. [PMID: 15367102 PMCID: PMC1134718 DOI: 10.1042/bj20041348] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AGPAT (1-acyl-sn-glycerol 3-phosphate acyltransferase) exists in at least five isoforms in humans, termed as AGPAT1, AGPAT2, AGPAT3, AGPAT4 and AGPAT5. Although they catalyse the same biochemical reaction, their relative function, tissue expression and regulation are poorly understood. Linkage studies in humans have revealed that AGPAT2 contributes to glycerolipid synthesis and plays an important role in regulating lipid metabolism. We report the molecular cloning, tissue distribution, and enzyme characterization of mAGPATs (murine AGPATs) and regulation of cardiac mAGPATs by PPARalpha (peroxisome-proliferator-activated receptor alpha). mAGPATs demonstrated differential tissue expression profiles: mAGPAT1 and mAGPAT3 were ubiquitously expressed in most tissues, whereas mAGPAT2, mAGPAT4 and mAGPAT5 were expressed in a tissue-specific manner. mAGPAT2 expressed in in vitro transcription and translation reactions and in transfected COS-1 cells exhibited specificity for 1-acyl-sn-glycerol 3-phosphate. When amino acid sequences of five mAGPATs were compared, three highly conserved motifs were identified, including one novel motif/pattern KX2LX6GX12R. Cardiac mAGPAT activities were 25% lower (P<0.05) in PPARalpha null mice compared with wild-type. In addition, cardiac mAGPAT activities were 50% lower (P<0.05) in PPARalpha null mice fed clofibrate compared with clofibrate fed wild-type animals. This modulation of AGPAT activity was accompanied by significant enhancement/reduction of the mRNA levels of mAGPAT3/mAGPAT2 respectively. Finally, mRNA expression of cardiac mAGPAT3 appeared to be regulated by PPARalpha activation. We conclude that cardiac mAGPAT activity may be regulated by both the composition of mAGPAT isoforms and the levels of each isoform.
Collapse
Affiliation(s)
- Biao Lu
- *Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| | - Yan J. Jiang
- †Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| | - Yaling Zhou
- *Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
- ‡Center for Research and Treatment of Atherosclerosis, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| | - Fred Y. Xu
- †Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| | - Grant M. Hatch
- †Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
- ‡Center for Research and Treatment of Atherosclerosis, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
- To whom correspondence should be addressed, at Department of Pharmacology and Therapeutics (email )
| | - Patrick C. Choy
- *Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
- ‡Center for Research and Treatment of Atherosclerosis, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0T6
| |
Collapse
|
29
|
Scaife S, Brown R, Kellie S, Filer A, Martin S, Thomas AMC, Bradfield PF, Amft N, Salmon M, Buckley CD. Detection of differentially expressed genes in synovial fibroblasts by restriction fragment differential display. Rheumatology (Oxford) 2004; 43:1346-52. [PMID: 15292528 DOI: 10.1093/rheumatology/keh347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To identify differentially expressed genes in synovial fibroblasts and examine the effect on gene expression of exposure to TNF-alpha and IL-1beta. METHODS Restriction fragment differential display was used to isolate genes using degenerate primers complementary to the lysophosphatidic acid acyl transferase gene family. Differential gene expression was confirmed by reverse transcription-polymerase chain reaction and immunohistochemistry using a variety of synovial fibroblasts, including cells from patients with osteoarthritis and self-limiting parvovirus arthritis. RESULTS Irrespective of disease process, synovial fibroblasts constitutively produced higher levels of IL-6 and monocyte chemoattractant protein 1 (MCP-1) (CCL2) than skin fibroblasts. Seven genes were differentially expressed in synovial fibroblasts compared with skin fibroblasts. Of these genes, four [tissue factor pathway inhibitor 2 (TFPI2), growth regulatory oncogene beta (GRObeta), manganese superoxide dismutase (MnSOD) and granulocyte chemotactic protein 2 (GCP-2)] were all found to be constitutively overexpressed in synoviocytes derived from patients with osteoarthritis. These four genes were only weakly expressed in other synovial fibroblasts (rheumatoid and self-limiting parvovirus infection). However, expression in all types of fibroblasts was increased after stimulation with TNF-alpha and IL-1beta. Three other genes (aggrecan, biglycan and caldesmon) were expressed at higher levels in all types of synovial fibroblasts compared with skin fibroblasts even after stimulation with TNF-alpha and IL-1. CONCLUSIONS Seven genes have been identified with differential expression patterns in terms of disease process (osteoarthritis vs rheumatoid arthritis), state of activation (resting vs cytokine activation) and anatomical location (synovium vs skin). Four of these genes, TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6), were selectively overexpressed in osteoarthritis fibroblasts rather than rheumatoid fibroblasts. While these differences may represent differential behaviour of synovial fibroblasts in in vitro culture, these observations suggest that TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6) may represent new targets for treatments specifically tailored to osteoarthritis.
Collapse
Affiliation(s)
- S Scaife
- Yamanouchi Research Institute, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xie T, Rowen L, Aguado B, Ahearn ME, Madan A, Qin S, Campbell RD, Hood L. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res 2004; 13:2621-36. [PMID: 14656967 PMCID: PMC403804 DOI: 10.1101/gr.1736803] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals, the Major Histocompatibility Complex class I and II gene clusters are separated by an approximately 700-kb stretch of sequence called the MHC class III region, which has been associated with susceptibility to numerous diseases. To facilitate understanding of this medically important and architecturally interesting portion of the genome, we have sequenced and analyzed both the human and mouse class III regions. The cross-species comparison has facilitated the identification of 60 genes in human and 61 in mouse, including a potential RNA gene for which the introns are more conserved across species than the exons. Delineation of global organization, gene structure, alternative splice forms, protein similarities, and potential cis-regulatory elements leads to several conclusions: (1) The human MHC class III region is the most gene-dense region of the human genome: >14% of the sequence is coding, approximately 72% of the region is transcribed, and there is an average of 8.5 genes per 100 kb. (2) Gene sizes, number of exons, and intergenic distances are for the most part similar in both species, implying that interspersed repeats have had little impact in disrupting the tight organization of this densely packed set of genes. (3) The region contains a heterogeneous mixture of genes, only a few of which have a clearly defined and proven function. Although many of the genes are of ancient origin, some appear to exist only in mammals and fish, implying they might be specific to vertebrates. (4) Conserved noncoding sequences are found primarily in or near the 5'-UTR or the first intron of genes, and seldom in the intergenic regions. Many of these conserved blocks are likely to be cis-regulatory elements.
Collapse
Affiliation(s)
- Tao Xie
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li D, Yu L, Wu H, Shan Y, Guo J, Dang Y, Wei Y, Zhao S. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family. J Hum Genet 2003; 48:438-442. [PMID: 12938015 DOI: 10.1007/s10038-003-0045-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 05/26/2003] [Indexed: 11/24/2022]
Abstract
Lysophosphatidic acid (LPA) is a naturally occurring component of phospholipid and plays a critical role in the regulation of many physiological and pathophysiological processes including cell growth, survival, and pro-angiogenesis. LPA is converted to phosphatidic acid by the action of lysophosphatidic acid acyltransferase (LPAAT). Five members of the LPAAT gene family have been detected in humans to date. Here, we report the identification of a novel LPAAT member, which is designated as LPAAT-zeta. LPAAT-zeta was predicted to encode a protein consisting of 456 amino acid residues with a signal peptide sequence and the acyltransferase domain. Northern blot analysis showed that LPAAT-zeta was ubiquitously expressed in all 16 human tissues examined, with levels in the skeletal muscle, heart, and testis being relatively high and in the lung being relatively low. The human LPAAT-zeta gene consisted of 13 exons and is positioned at chromosome 8p11.21.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China.
- Institute of Genetics, Fudan University, 220 Handan Road, 200433, Shanghai, P.R. China.
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Yuxi Shan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Jinhu Guo
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Yongjun Dang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| | - Shouyuan Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 200433, Shanghai, P.R. China
| |
Collapse
|
32
|
Yamashita A, Kawagishi N, Miyashita T, Nagatsuka T, Sugiura T, Kume K, Shimizu T, Waku K. ATP-independent fatty acyl-coenzyme A synthesis from phospholipid: coenzyme A-dependent transacylation activity toward lysophosphatidic acid catalyzed by acyl-coenzyme A:lysophosphatidic acid acyltransferase. J Biol Chem 2001; 276:26745-52. [PMID: 11352914 DOI: 10.1074/jbc.m101795200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT.
Collapse
Affiliation(s)
- A Yamashita
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- N Nagan
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Foundation Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 2001; 20:77-103. [PMID: 10940327 DOI: 10.1146/annurev.nutr.20.1.77] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although triacylglycerol stores play the critical role in an organism's ability to withstand fuel deprivation and are strongly associated with such disorders as diabetes, obesity, and atherosclerotic heart disease, information concerning the enzymes of triacylglycerol synthesis, their regulation by hormones, nutrients, and physiological conditions, their mechanisms of action, and the roles of specific isoforms has been limited by a lack of cloned cDNAs and purified proteins. Fortunately, molecular tools for several key enzymes in the synthetic pathway are becoming available. This review summarizes recent studies of these enzymes, their regulation under varying physiological conditions, their purported roles in synthesis of triacylglycerol and related glycerolipids, the possible functions of different isoenzymes, and the evidence for specialized cellular pools of triacylglycerol and glycerolipid intermediates.
Collapse
Affiliation(s)
- R A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
35
|
Eberhardt C, Gray PW, Tjoelker LW. cDNA cloning, expression and chromosomal localization of two human lysophosphatidic acid acyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:351-6. [PMID: 10667352 DOI: 10.1007/978-1-4615-4793-8_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this report we describe a pair of human LPAAT isozymes. These isozymes are encoded by distinct genes located on different chromosomes, but share sequence homology, substrate specificity, and intracellular location. The biological value of maintaining the two closely related LPAAT genes in the human genome is not clear. We find that both isozymes are widely expressed, although expression levels do diverge significantly in tissues such as the liver, placenta, testes, and pancreas. We also find that, at least in the artificial system of over-expression in COS7 cells, both isozymes localize to the ER membrane. Thus, distinct tissue-specific or subcellular compartment-specific roles for the two isozymes are not supported by the current experimental evidence. It does remain possible that induction of expression or subcellular translocation of one or the other isozyme may distinguish their functions. A survey of a limited number of acyl CoA substrates indicates that the two isozymes display similar substrate specificities, although slight differences are suggested by the data. However, extensive analysis of both isozymes with multiple substrates in the same assay system will be required to detect physiologically relevant differences in substrate specificity. LPA and PA are central intermediates in phospholipid biogenesis. Furthermore, they have the capacity to mediate signaling both between and within cells. The importance of these mediators is reflected in the growing body of literature dedicated to unraveling the mechanistic basis for their actions. Until recently, the field has been hampered by a dearth of reagents appropriate for the molecular dissection of the LPA and PA metabolic and signaling pathways in eukaryotes. However, the recent cloning of possible LPA receptors will promote further understanding of LPA signaling. Similarly, the recent appearance of LPAAT homologs in the EST database has prompted a flurry of reports describing their characterization. These clones will afford opportunity for defining the function of LPAAT in eukaryotic phospholipid metabolism.
Collapse
|
36
|
Athenstaedt K, Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1-16. [PMID: 10542045 DOI: 10.1046/j.1432-1327.1999.00822.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidic acid (PtdOH) is a key intermediate in glycerolipid biosynthesis. Two different pathways are known for de novo formation of this compound, namely (a) the Gro3P (glycerol 3-phosphate) pathway, and (b) the GrnP (dihydroxyacetone phosphate) pathway. Whereas the former route of PtdOH synthesis is present in bacteria and all types of eukaryotes, the GrnP pathway is restricted to yeast and mammalian cells. In this review article, we describe the enzymes catalyzing de novo formation of PtdOH, their properties and their occurrence in different cell types and organelles. Much attention has recently been paid to the subcellular localization of enzymes involved in the biosynthesis of PtdOH. In all eukaryotic cells, microsomes (ER) harbour the complete set of enzymes catalyzing these pathways and are thus the usual organelle for PtdOH formation. In contrast, the contribution of mitochondria to PtdOH synthesis is restricted to certain enzymes and depends on the cell type. In addition, chloroplasts of plants, lipid particles of the yeast, and peroxisomes of mammalian cells are significantly involved in PtdOH biosynthesis. Redundant systems of acyltransferases, the interplay of organelles, regulation of the pathway on the compartmental level, and finally the contribution of alternative pathways (phosphorylation of diacylglycerol and cleavage of phospholipids by phospholipases) to PtdOH biosynthesis appear to be required for the balanced formation of this important lipid intermediate. Dysfunction of enzymes involved in PtdOH synthesis can result in severe defects of various cellular processes. In this context, the possible physiological role(s) of PtdOH and its related metabolites, lysophosphatidic acid and diacylglycerol, will be discussed.
Collapse
Affiliation(s)
- K Athenstaedt
- Institut für Biochemie, Technische Universität, Graz, Austria
| | | |
Collapse
|
37
|
le Balle F, Simon MF, Meijer S, Fourcade O, Chap H. Membrane sidedness of biosynthetic pathways involved in the production of lysophosphatidic acid. ADVANCES IN ENZYME REGULATION 1999; 39:275-84. [PMID: 10470378 DOI: 10.1016/s0065-2571(98)00024-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lysophosphatidic acid (LPA) is a novel phospholipid mediator with diverse biological activities such as smooth muscle contraction, and proliferative effects or modifications of cytoskeleton. Activated blood platelets are the best identified source, explaining accumulation of LPA in serum upon blood coagulation. However, the metabolic pathways responsible for LPA synthesis are still poorly known. Using a model of human erythrocytes treated with the calcium ionophore A23187, we have shown that type II secretory phospholipase A2 (sPLA2) is able to produce LPA by hydrolyzing phosphatidic acid exposed on the cell surface after phospholipid scrambling. A similar mechanism does not appear to occur in platelets, where inhibitors of sPLA2 or genetic lack of the enzyme do not modify LPA production. However, this does not definitely eliminate the possibility that LPA is also produced in platelets in the external leaflet of the membrane by other phospholipases, which have to be better characterized.
Collapse
Affiliation(s)
- F le Balle
- Institut Fédératif de Recherche en Immunologie Cellulaire et Moléculaire, Université Paul Sabatier, Hôpital Purpan, Toulouse, France
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- L Dircks
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA
| | | |
Collapse
|
39
|
Aguado B, Campbell RD. Characterization of a human MHC class III region gene product with S-thioesterase activity. Biochem J 1999; 341 ( Pt 3):679-89. [PMID: 10417332 PMCID: PMC1220406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Palmitoylated proteins contain a 16-carbon saturated fatty acyl group that is post-translationally attached by a labile thioester bond. These modified proteins are mainly membrane-bound; the lability of the thioester bond allows the process to be reversible, a unique property of this modification. We report here that the gene for G14, located in the class III region of the human MHC, encodes a polypeptide with significant sequence similarity to mammalian palmitoyl protein thioesterase (PPT1), an enzyme that removes palmitate from palmitoylated proteins. The gene for G14, also known as PPT2, is transcribed as at least five different transcripts, which are expressed in different cell lines of the immune system. Immunoprecipitation of these mammalian cells, with an anti-G14 antiserum, showed a specific band of approx. 42 kDa in cell extracts and supernatants. Expression of the G14 cDNA in the baculovirus system revealed that it encoded a secreted glycosylated polypeptide with S-thioesterase activity. The enzymic activity of the recombinant G14 protein was further characterized in quantitative spectrophotometric assays, which revealed that it had the highest S-thioesterase activity for the acyl groups palmitic and myristic acid followed by other long-chain acyl substrates. The S-thioesterase activity of the G14 protein was found to be considerably higher in supernatants than in cell extracts, which was consistent with the protein's being secreted. The G14 polypeptide contains, in addition to an N-terminal lipase domain, a C-terminal domain common to the cytokine receptor superfamily, which might determine the substrate specificity and/or the protein target of the G14 protein.
Collapse
Affiliation(s)
- B Aguado
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | | |
Collapse
|
40
|
Aguado B, Campbell RD. Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J Biol Chem 1998; 273:4096-105. [PMID: 9461603 DOI: 10.1074/jbc.273.7.4096] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sequence analysis of cDNA clones corresponding to a number of genes located in the class III region of the human major histocompatibility complex (MHC), in the chromosome band 6p21.3, has shown that the G15 gene encodes a 283-amino acid polypeptide with significant homology over the entire polypeptide with the enzyme lysophosphatidic acid acyltransferase (LPAAT) from different yeast, plant, and bacterial species. The amino acid sequence of the MHC-encoded human LPAAT (hLPAATalpha) is 48% identical to the recently described hLPAAT (Eberhardt, C., Gray, P. W., and Tjoelker, L. W. (1997) J. Biol. Chem. 272, 20299-20305), which is encoded by a gene located on chromosome 9p34.3. LPAAT is the enzyme that in lipid metabolism converts lysophosphatidic acid (LPA) into phosphatidic acid (PA). The expression of the hLPAATalpha polypeptide in the baculovirus system and in mammalian cells has shown that it is an intracellular protein that contains LPAAT activity. Cell extracts from insect cells overexpressing hLPAATalpha were analyzed in different LPAAT enzymatic assays using, as substrates, different acyl acceptors and acyl donors. These cell extracts were found to contain up to 5-fold more LPAAT activity compared with control cell extracts, indicating that the hLPAATalpha specifically converts LPA into PA, incorporating different acyl-CoAs with different affinities. The hLPAATalpha polypeptide expressed in the mammalian Chinese hamster ovary cell line was found, by confocal immunofluorescence, to be localized in the endoplasmic reticulum. Due to the known role of LPA and PA in intracellular signaling and inflammation, the hLPAATalpha gene represents a candidate gene for some MHC-associated diseases.
Collapse
Affiliation(s)
- B Aguado
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|