1
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation. Biochem J 2016; 473:2061-71. [PMID: 27154204 DOI: 10.1042/bcj20160343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory-related diseases triggered by Gram-negative bacteria or by the associated cytokine TNF-α.
Collapse
|
3
|
Yuan Y, Lee SH, Wu S. The role of ROS in ionizing radiation-induced VLA-4 mediated adhesion of RAW264.7 cells to VCAM-1 under flow conditions. Radiat Res 2012. [PMID: 23181590 DOI: 10.1667/rr3119.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alteration of adhesion molecule expression on endothelial cells has a direct connection with ionizing radiation-induced atherosclerosis, which is an adverse effect observed after radiotherapy. However, minimal attention has been given to monocytes/macrophages role in atherosclerosis development, which are exposed to the radiation at the same time. Under flow conditions using a parallel plate flow chamber to mimic physiological shear stress, we demonstrate here that the avidity between very late antigen-4 (VLA-4) of RAW264.7 cells and its ligand vascular cell adhesion molecule-1 (VCAM-1), was increased after low dose (0.5 Gy) irradiation, but was reduced after higher dose (5 Gy) treatment of ionizing radiation despite the fact that the surface expression of VLA-4 was up-regulated at 5 Gy of ionizing radiation. Treating the cells with free radical scavenger N-acetylcysteine had no effect on VLA-4 expression, but did reduce the avidity between RAW264.7 cells and VCAM-1 to a similar level, independent of ionizing radiation dose. The effect of H(2)O(2) treatment (from 1-100 μM) on RAW264.7 cell adhesion to VCAM-1 generated a similar bell-shaped graph as ionizing radiation. These results suggest that ionizing radiation regulates adhesive interactions between VLA-4 and VCAM-1, and that reactive oxygen species might function as a regulator, for this increased adhesiveness but with altered expression of integrin not play a major role.
Collapse
Affiliation(s)
- Ye Yuan
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | | | | |
Collapse
|
4
|
Li YYY, Perez HD, Zollner TM. Fatalities in natalizumab treatment--a 'no go' for leukocyte recirculation approaches? Expert Opin Ther Targets 2007; 10:489-99. [PMID: 16848686 DOI: 10.1517/14728222.10.4.489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Natalizumab (Tysabri), Biogen Idec/Elan) is a humanised neutralising antibody directed against alpha4 integrin expressed by leukocytes. Although it is an effective therapy for multiple sclerosis (MS), the serious adverse effect of progressive multifocal leukoencephalopathy (PML) resulted in its voluntary withdrawal from the market by Biogen Idec/Elan in February 2005. This has raised debates on whether PML was caused by blocking leukocyte trafficking-mediated immune suppression or by other effects through targeting alpha4 integrin per se. The authors propose that natalizumab-associated PML is a target-specific side effect predominantly due to the combination of: i) blocking leukocyte trafficking to peripheral organs resulting in reduced immune surveillance; ii) mobilisation of PML-causative JC virus-carrying bone marrow precursor cells and splenic marginal zone B cells; and iii) migration of these cells to sites of inflammation such as the brain. Therefore, combination of these effects is, so far, specific for the target alpha4 integrin and should not occur in general when interfering with other targets involved in leukocyte trafficking.
Collapse
|
5
|
Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha HS, Holmes IH, Takada Y, Coulson BS. Rotaviruses interact with alpha4beta7 and alpha4beta1 integrins by binding the same integrin domains as natural ligands. J Gen Virol 2005; 86:3397-3408. [PMID: 16298987 DOI: 10.1099/vir.0.81102-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Group A rotaviruses are major intestinal pathogens that express potential alpha4beta1 and alpha4beta7 integrin ligand sequences Leu-Asp-Val and Leu-Asp-Ile in their outer capsid protein VP7, and Ile-Asp-Ala in their spike protein VP4. Monkey rotavirus SA11 can use recombinant alpha4beta1 as a cellular receptor. In this study a new potential alpha4beta1, alpha4beta7 and alpha9beta1 integrin ligand sequence, Tyr-Gly-Leu, was identified in VP4. It was shown that several human and monkey rotaviruses bound alpha4beta1 and alpha4beta7, but not alpha9beta1. Binding to alpha4beta1 mediated the infectivity and growth of monkey rotaviruses, and binding to alpha4beta7 mediated their infectivity. A porcine rotavirus interacted with alpha4 integrins at a post-binding stage to facilitate infection. Activation of alpha4beta1 increased rotavirus infectivity. Cellular treatment with peptides containing the alpha4 integrin ligand sequences Tyr-Gly-Leu and Ile-Asp-Ala eliminated virus binding to alpha4 integrins and infectivity. In contrast, rotavirus recognition of alpha4 integrins was unaffected by a peptide containing the sequence Leu-Asp-Val or by a mutation in the VP7 Leu-Asp-Val sequence. VP4 involvement in rotavirus recognition of alpha4beta1 was demonstrated with rotavirus reassortants. Swapping and point mutagenesis of alpha4 surface loops showed that rotaviruses required the same alpha4 residues and domains for binding as the natural alpha4 integrin ligands: mucosal addressin cell adhesion molecule-1, fibronectin and vascular cell adhesion molecule-1. Several rotaviruses are able to use alpha4beta7 and alpha4beta1 for cell binding or entry, through the recognition of the same alpha4-subunit domains as natural alpha4 ligands.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Fiona E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Peter Halasz
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Marilyn J Hewish
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Hadya S Nagesha
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Ian H Holmes
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Yoshikazu Takada
- The University of California, Davis, UC Davis Medical Center, Research III, Suite 3300, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 2002; 22:146-67. [PMID: 11857637 DOI: 10.1002/med.10001] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on providing insights into the structural basis and clinical relevance of LFA-1 and VLA-4 inhibition by peptides and small molecules as adhesion-based therapeutic strategies for inflammation and autoimmune diseases. Interactions of cell adhesion molecules (CAM) play central roles in mediating immune and inflammatory responses. Leukocyte function-associated antigen (LFA-1, alpha(L)beta(2), and CD11a/CD18) and very late antigen (VLA-4, alpha(4)beta(1), and CD49d/CD29) are members of integrin-type CAM that are predominantly involved in leukocyte trafficking and extravasation. LFA-1 is exclusively expressed on leukocytes and interacts with its ligands ICAM-1, -2, and -3 to promote a variety of homotypic and heterotypic cell adhesion events required for normal and pathologic functions of the immune systems. VLA-4 is expressed mainly on lymphocyte, monocytes, and eosinophils, but is not found on neutrophils. VLA-4 interacts with its ligands VCAM-1 and fibronectin (FN) CS1 during chronic inflammatory diseases, such as rheumatoid arthritis, asthma, psoriasis, transplant-rejection, and allergy. Blockade of LFA-1 and VLA-4 interactions with their ligands is a potential target for immunosuppression. LFA-1 and VLA-4 antagonists (antibodies, peptides, and small molecules) are being developed for controlling inflammation and autoimmune diseases. The therapeutic intervention of mostly mAb-based has been extensively studied. However, due to the challenging relative efficacy/safety ratio of mAb-based therapy application, especially in terms of systemic administration and immunogenic potential, strategic alternatives in the forms of peptide, peptide mimetic inhibitors, and small molecule non-peptide antagonists are being sought. Linear and cyclic peptides derived from the sequences of LFA-1, ICAM-1, ICAM-2, VCAM-1, and FN C1 have been shown to have inhibitory effects in vitro and in vivo. Finally, understanding the mechanism of LFA-1 and VLA-4 binding to their ligands has become a fundamental basis in developing therapeutic agents for inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Helena Yusuf-Makagiansar
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratory, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
7
|
Coe AP, Askari JA, Kline AD, Robinson MK, Kirby H, Stephens PE, Humphries MJ. Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem 2001; 276:35854-66. [PMID: 11389148 DOI: 10.1074/jbc.m103639200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tertiary structure of the integrin heterodimer is currently unknown, although several predictive models have been generated. Detailed structural studies of integrins have been consistently hampered for several reasons, including the small amounts of purified protein available, the large size and conformational flexibility of integrins, and the presence of transmembrane domains and N-linked glycosylation sites in both receptor subunits. As a first step toward obtaining crystals of an integrin receptor, we have expressed a minimized dimer. By using the Fc dimerization and mammalian cell expression system designed and optimized by Stephens et al. (Stephens, P. E., Ortlepp, S., Perkins, V. C., Robinson, M. K., and Kirby, H. (2000) Cell. Adhes. Commun. 7, 377-390), a series of recombinant soluble human alpha(5)beta(1) integrin truncations have been expressed as Fc fusion proteins. These proteins were examined for their ligand-binding properties and for their expression of anti-integrin antibody epitopes. The shortest functional alpha(5)-subunit truncation contained the N-terminal 613 residues, whereas the shortest beta(1)-subunit was a fragment containing residues 121-455. Each of these minimally truncated integrins displayed the antibody binding characteristics of alpha(5)beta(1) purified from human placenta and bound ligand with the same apparent affinity as the native receptor.
Collapse
Affiliation(s)
- A P Coe
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Zeller Y, Mechtersheimer S, Altevogt P. Critical amino acid residues of the alpha4 subunit for alpha4beta7 integrin function. J Cell Biochem 2001; 83:304-19. [PMID: 11573247 DOI: 10.1002/jcb.1197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A characteristic feature of integrin-ligand interactions is the requirement for divalent cations. Putative cation binding sites have been identified in the alpha and beta subunit of the alpha4 integrins, alpha4beta1 and alpha4beta7, and within their ligands which display the tripeptide LDV in fibronectin and homologous motifs in VCAM-1 and MAdCAM-1. The extracellular domain of the murine and human alpha4-subunit contains three conserved LDV motifs, designated LDV-1 to -3. Using site directed mutagenesis and transfection studies, we now examined the functional relevance of the LDV motifs for alpha4beta7 integrins. We present evidence that LDV-1 mutants (D489N) behave like alpha4 wt cells, but LDV-3 mutants (D811N) are impaired in alpha4beta7 integrin-triggered homotypic cell aggregation and in adhesion and spreading on alpha4 specific ligands. Further characterization of LDV-3 mutants revealed a defect in mAb-induced alpha4beta7-cell surface cluster formation. Mutation of the LDV-2 motif (D698N) caused loss of alpha4beta7 integrin cell surface expression. Our results indicate: (i) that LDV-3, located proximal to the cell membrane, is important for alpha4beta7 integrin-triggered functions and for lateral clustering and (ii) that LDV-2 affects alpha4beta7 heterodimer stability.
Collapse
Affiliation(s)
- Y Zeller
- Tumor Immunology Programme, G0100, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Burns JA, Issekutz TB, Yagita H, Issekutz AC. The alpha 4 beta 1 (very late antigen (VLA)-4, CD49d/CD29) and alpha 5 beta 1 (VLA-5, CD49e/CD29) integrins mediate beta 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4644-9. [PMID: 11254723 DOI: 10.4049/jimmunol.166.7.4644] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The beta(2) integrin cell adhesion molecules (CAM) mediate polymorphonuclear leukocyte (PMNL) emigration in most inflamed tissues, but, in the lung, other yet to be identified CAMs appear to be involved. In Lewis rats, the intratracheal injection of Escherichia coli-LPS induced acute (6-h) PMNL accumulation in the lung parenchyma (280 x 10(6) by myeloperoxidase assay; PBS control = 35 x 10(6)) and bronchoalveolar lavage fluid (BALF = 27 x 10(6); PBS = 0.1 x 10(6)). Parenchymal accumulation was not inhibited by a blocking Ab to beta(2) integrins and only minimally inhibited (20.5%; p < 0.05) in BALF. We examined the role of alpha(4)beta(1) and alpha(5)beta(1) integrins and of selectins in this PMNL recruitment. Treatment with mAbs to alpha(4)beta(1) or alpha(5)beta(1), even in combination, had no effect on PMNL accumulation induced by intratracheal LPS. However, anti-alpha(4) combined with anti-beta(2) mAbs inhibited PMNL recruitment to the parenchyma by 56% (p < 0.001) and to BALF by 58% (p < 0.01). The addition of anti-alpha(5) mAb to beta(2) plus alpha(4) blockade inhibited PMNL accumulation further (by 79%; p < 0.05). In contrast, blockade of L-, P-, and E-selectins in combination or together with beta(2), alpha(4), and alpha(5) integrins had no effect. LPS-induced BALF protein accumulation was not inhibited by treatment with anti-beta(2) plus alpha(4) mAbs, but was prevented when alpha(5)beta(1) was also blocked. Thus, while selectins appear to play no role, alpha(4)beta(1) and alpha(5)beta(1) function as major alternate CAMs to the beta(2) integrins in mediating PMNL migration to lung and to pulmonary vascular and epithelial permeability.
Collapse
Affiliation(s)
- J A Burns
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
10
|
Mould AP, Askari JA, Humphries MJ. Molecular basis of ligand recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino acid sequences in the second and third NH2-terminal repeats of the alpha subunit. J Biol Chem 2000; 275:20324-36. [PMID: 10764748 DOI: 10.1074/jbc.m000572200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH(2)-terminal portion (putative ligand-binding domain) of alpha subunits contains 7 homologous repeats, the last 3 or 4 of which possess divalent cation binding sequences. These repeats are predicted to form a seven-bladed beta-propeller structure. To map ligand recognition sites on the alpha(5) subunit we have taken the approach of constructing and expressing alpha(V)/alpha(5) chimeras. Although the NH(2)-terminal repeats of alpha(5) and alpha(V) are >50% identical at the amino acid level, alpha(5)beta(1) and alpha(V)beta(1) show marked differences in their ligand binding specificities. Thus: (i) although both integrins recognize the Arg-Gly-Asp (RGD) sequence in fibronectin, the interaction of alpha(5)beta(1) but not of alpha(V)beta(1) with fibronectin is strongly dependent on the "synergy" sequence Pro-His-Ser-Arg-Asn; (ii) alpha(5)beta(1) binds preferentially to RGD peptides in which RGD is followed by Gly-Trp (GW) whereas alpha(V)beta(1) has a broader specificity; (iii) only alpha(5)beta(1) recognizes peptides containing the sequence Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Therefore, amino acid residues involved in ligand recognition by alpha(5)beta(1) can potentially be identified in gain-of-function experiments by their ability to switch the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1). By introducing appropriate restriction enzyme sites, or using site-directed mutagenesis, parts of the NH(2)-terminal repeats of alpha(V) were replaced with the corresponding regions of the alpha(5) subunit. Chimeric subunits were expressed on the surface of Chinese hamster ovary-B2 cells (which lack endogenous alpha(5)) as heterodimers with hamster beta(1). Stable cell lines were generated and tested for their ability to attach to alpha(5)beta(1)-selective ligands. Our results demonstrate that: (a) the first three NH(2)-terminal repeats contain the amino acid sequences that determine ligand binding specificity and the same repeats include the epitopes of function blocking anti-alpha subunit mAbs; (b) the divalent cation-binding sites (in repeats 4-7) do not confer alpha(5)beta(1)- or alpha(V)beta(1)-specific ligand recognition; (c) amino acid residues Ala(107)-Tyr(226) of alpha(5) (corresponding approximately to repeats 2 and 3) are sufficient to change all the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1); (d) swapping a small part of a predicted loop region of alpha(V) with the corresponding region of alpha(5) (Asp(154)-Ala(159)) is sufficient to confer selectivity for RGDGW and the ability to recognize RRETAWA.
Collapse
Affiliation(s)
- A P Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
11
|
Telen MJ. Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease. Semin Hematol 2000; 37:130-42. [PMID: 10791882 DOI: 10.1016/s0037-1963(00)90038-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human erythrocytes express a relatively large number of known adhesion receptors, despite the fact that red blood cells (RBCs) are generally considered to be nonadhesive for endothelial cell surfaces. Some of these adhesion receptors are expressed by many other tissues, while others have more limited tissue distribution. Some adhesion receptors, including CD36 and VLA-4, are only expressed by immature erythroid cells, while others are present on mature erythrocytes. The structure and function of these proteins is reviewed here. LW, CD36, CD58, and CD147 have been shown in other tissues to mediate cell-cell interaction. Other receptors, such as CD44, VLA-4, and B-CAM/LU, can mediate adhesion to components of extracellular matrix. In addition, their roles in normal erythropolesis, as well as in the pathophysiology of human disease, are summarized. The most convincing evidence for a pathophysiologic role for any of these receptors on erythrocytes comes from studies of cells from patients homozygous for hemoglobin S, as RBC adhesion is thought to contribute to vaso-occlusion. Thus, receptors such as B-CAM/LU may become targets for future therapy aimed at preventing or ameliorating this thrombotic process.
Collapse
Affiliation(s)
- M J Telen
- Division of Hematology and Comprehensive Sickle Cell Center, Duke University Medical Center, Durham NC 27710, USA
| |
Collapse
|
12
|
Ruiz-Velasco N, Guerrero-Esteo M, Briskin MJ, Teixidó J. The alpha(4) integrin subunit Tyr(187) has a key role in alpha(4)beta(7)-dependent cell adhesion. J Biol Chem 2000; 275:7052-9. [PMID: 10702270 DOI: 10.1074/jbc.275.10.7052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrin alpha(4)beta(7) is the cell adhesion receptor for the mucosal vascular addressin MAdCAM-1, and this interaction is dominant in lymphocyte homing to Peyer's patch high endothelial venules, and plays key roles in lymphocyte recruitment at sites of inflammation. To identify alpha(4) subunit amino acids important for alpha(4)beta(7)/MAdCAM-1 interaction, we expressed mutant alpha(4) and wild type beta(7) chains in K562 cells and analyzed the effect of the mutations on cell adhesion to a soluble MAdCAM-1 (sMAdCAM-1-Ig). Transfectants expressing mutated alpha(4) at Tyr(187) displayed a substantial decrease in adhesion to this ligand, which was associated with a reduced alpha(4)beta(7)/sMAdCAM-1-Ig interaction, as determined by soluble binding assays. Addition of Mn(2+) to the adhesion assays did not restore the impaired adhesion. Mutations at alpha(4) Gln(152)Asp(153) also affected transfectant adhesion to sMAdCAM-1-Ig, but did not involve an alteration of alpha(4)beta(7)/MAdCAM-1 binding, and adhesion was restored by Mn(2+). Instead, mutations at alpha(4) Asn(123)Glu(124) did not affect this adhesion. Mutation of alpha(4) Tyr(187) abolished alpha(4)beta(7)-mediated cell adhesion to CS-1/fibronectin, an additional ligand for alpha(4)beta(7), while alpha(4) Gln(152)Asp(153) transfectant mutants showed a reduced adhesion. These results identify alpha(4) Tyr(187) as a key residue during receptor alpha(4)beta(7)/ligand interactions, indicating that it plays important roles in alpha(4)beta(7)-mediated leukocyte adhesion, and provide a potential target for therapeutic intervention in several inflammatory pathologies.
Collapse
Affiliation(s)
- N Ruiz-Velasco
- Department of Immunology, Centro de Investigaciones Biológicas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Boyle DL, Shi Y, Gay S, Firestein GS. Regulation of CS1 fibronectin expression and function by IL-1 in endothelial cells. Cell Immunol 2000; 200:1-7. [PMID: 10716877 DOI: 10.1006/cimm.2000.1610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VLA-4 is a critical adhesion molecule that regulates mononuclear cell trafficking to sites of inflammation. VCAM-1 is a primary ligand of VLA-4, although alternatively spliced fibronectin (FN) containing the CS1 region (CS1 FN) also binds to VLA-4. CS1 FN is expressed by rheumatoid arthritis (RA) synovial endothelial cells, but the factors that regulate CS1 FN expression are not known. We incubated human umbilical vein endothelial cells (HUVEC) with IL-1 (0.1-10 ng/ml) for 8-48 h and determined total FN and CS1 FN mRNA by Northern blot analysis. Both were constitutively expressed by HUVEC, and IL-1 increased total FN mRNA and the CS1-containing isoform (P < 0.05). IL-1 also increased CS1 FN protein expression on HUVEC as determined by Western blot analysis. An adhesion assay using (51)Cr-labeled Jurkat cells and IL-1-stimulated HUVEC was used to determine if IL-1-induced CS1 FN mediates cell binding. Cyclic CS1 peptide (10 microg/ml) blocked 49 +/- 5% of IL-1-induced Jurkat cell adhesion to HUVEC (P < 0.01), whereas anti-VCAM-1 antibody inhibited binding by only 35 +/- 5% (P < 0.01). CS1 peptide and anti-VCAM antibody treatment were not additive (50 +/- 7% inhibition), and 38 +/- 6% of new VLA-4-mediated adhesion to IL-1-treated HUVEC was due to an increase in CS1 FN. These data show that IL-1 increases CS1 FN expression by HUVEC and increases CS1-mediated cell adhesion. CS1 mimetics might have therapeutic efficacy by blocking recruitment of VLA-4-bearing cells.
Collapse
Affiliation(s)
- D L Boyle
- Division of Rheumatology, UCSD School of Medicine, La Jolla, California 92093-0656, USA
| | | | | | | |
Collapse
|
14
|
Brown DC, Tsuji H, Larson RS. All-trans retinoic acid regulates adhesion mechanism and transmigration of the acute promyelocytic leukaemia cell line NB-4 under physiologic flow. Br J Haematol 1999; 107:86-98. [PMID: 10520028 DOI: 10.1046/j.1365-2141.1999.01671.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of all-trans retinoic acid (ATRA) in the therapy of acute promyelocytic leukaemia (APL) has received increased attention. Unfortunately, life-threatening multiorgan failure commonly occurs, i.e. retinoic acid syndrome, and is thought to be the result of organ infiltration by leukaemic cells. We hypothesized that ATRA-induced differentiation of APL cells leads to adhesion receptor alterations responsible for leucocyte extravasation from the blood into tissue. Changes in adhesive properties of the APL cell line NB-4 in response to ATRA were investigated using a parallel plate flow chamber under conditions that recapitulate physiologic flow conditions. Untreated NB-4 cells initially tether and roll on activated human umbilical vein endothelial cell monolayers using a combination of E-selectin, P-selectin and alpha4 integrin. After ATRA treatment, > 80% of initial NB-4 cell attachment to endothelial cells was E-selectin dependent. Stable arrest (firm adherence) of NB-4 cells on activated endothelium was also altered by ATRA treatment. Untreated NB-4 cells used alpha4 integrin to arrest on endothelium, but beta2 integrin dependent arrest was induced by ATRA. With the acquisition of beta2 integrin function, ATRA-treated cells acquired the ability to transmigrate through activated endothelium. Thus, ATRA dramatically altered the adhesion phenotype on NB-4 cells: ATRA induced rolling largely attributable to E-selectin, abrogated alpha4 integrin dependent rolling, and promoted acquisition of beta2 integrin dependent firm adherence and transmigration. These findings represent novel cellular and differentiation effects of ATRA, and, to our knowledge, are the first demonstration that a therapeutic agent differentially regulates alpha4 and beta2 integrin on the same leucocyte.
Collapse
Affiliation(s)
- D C Brown
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
15
|
Guerrero-Esteo M, Ruiz-Velasco N, Muñoz M, Teixidó J. Role of two conserved glycine residues in the beta-propeller domain of the integrin alpha4 subunit in VLA-4 conformation and function. FEBS Lett 1998; 429:123-8. [PMID: 9657396 DOI: 10.1016/s0014-5793(98)00576-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The N-terminal region of the alpha integrin subunits is predicted to fold into a beta-propeller domain. Using K562 alpha4 transfectants we show that mutations at alpha4 subunit residues Gly130 and Gly190 affect the conformation of this domain causing a reduction in the recognition of alpha4 by anti-alpha4 antibodies which map to the beta-propeller. The improper alpha4 conformation also led to an altered association with the beta1 subunit, and to a lack of alpha4beta1 adhesion to VCAM-1 and CS-1/fibronectin, as well as an abolishment of anti-alpha4- and anti-beta1-dependent homotypic aggregation. The total conservation of Gly130 and Gly190 among integrin alpha subunits suggests their importance in the correct folding of their respective beta-propeller domains, and thus, in the adhesive activity of the integrins.
Collapse
Affiliation(s)
- M Guerrero-Esteo
- Centro de Investigaciones Biológicas, Departamento de Immunología, Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Mould AP, Garratt AN, Puzon-McLaughlin W, Takada Y, Humphries MJ. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 1998; 331 ( Pt 3):821-8. [PMID: 9560310 PMCID: PMC1219423 DOI: 10.1042/bj3310821] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The molecular mechanisms that regulate integrin-ligand binding are unknown; however, bivalent cations are essential for integrin activity. According to recent models of integrin tertiary structure, sites involved in ligand recognition are located on the upper face of the seven-bladed beta-propeller formed by the N-terminal repeats of the alpha subunit and on the von Willebrand factor A-domain-like region of the beta subunit. The epitopes of function-altering monoclonal antibodies (mAbs) cluster in these regions of the alpha and beta subunits; hence these mAbs can be used as probes to detect changes in the exposure or shape of the ligand-binding sites. Bivalent cations were found to alter the apparent affinity of binding of the inhibitory anti-alpha5 mAbs JBS5 and 16, the inhibitory anti-beta1 mAb 13, and the stimulatory anti-beta1 mAb 12G10 to alpha5 beta1. Analysis of the binding of these mAbs to alpha5beta1 over a range of Mn2+, Mg2+ or Ca2+ concentrations demonstrated that there was a concordance between the ability of cations to elicit conformational changes and the ligand-binding potential of alpha5 beta1. Competitive ELISA experiments provided evidence that the domains of the alpha5 and beta1 subunits recognized by mAbs JBS5/16 and 13/12G10 are spatially close, and that the distance between these two domains is increased when alpha5 beta1 is occupied by bivalent cations. Taken together, our findings suggest that bivalent cations induce a conformational relaxation in the integrin that results in exposure of ligand-binding sites, and that these sites lie near an interface between the alpha subunit beta-propeller and the beta subunit putative A-domain.
Collapse
Affiliation(s)
- A P Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|