1
|
Gee S, Glover KJ, Wittenberg NJ, Im W. CHARMM-GUI Membrane Builder for Lipid Droplet Modeling and Simulation. Chempluschem 2024; 89:e202400013. [PMID: 38600039 PMCID: PMC11324394 DOI: 10.1002/cplu.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Lipid droplets (LDs) are organelles that are necessary for eukaryotic and prokaryotic metabolism and energy storage. They have a unique structure consisting of a spherical phospholipid monolayer encasing neutral lipids such as triacylglycerol (TAG). LDs have garnered increased interest for their implications in disease and for drug delivery applications. Consequently, there is an increased need for tools to study their structure, composition, and dynamics in biological contexts. In this work, we utilize CHARMM-GUI Membrane Builder to simulate and analyze LDs with and without a plant LD protein, oleosin. The results show that Membrane Builder can generate biologically relevant all-atom LD systems with relatively short equilibration times using a new TAG library having optimized headgroup parameters. TAG molecules originally inserted into a lipid bilayer aggregate in the membrane center, forming a TAG-only core flanked by two monolayers. The TAG-only core thickness stably grows with increasing TAG mole fraction. A 70 % TAG system has a core that is thick enough to house oleosin without its interactions with the distal leaflet or disruption of its secondary structure. We hope that Membrane Builder can aid in the future study of LD systems, including their structure and dynamics with and without proteins.
Collapse
Affiliation(s)
- Stephen Gee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania, United States, 18015
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr., Bethlehem, Pennsylvania, United States, 18015
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, Pennsylvania, United States, 18015
| |
Collapse
|
2
|
Honaker LW, Eijffius A, Plankensteiner L, Nikiforidis CV, Deshpande S. Biosensing with Oleosin-Stabilized Liquid Crystal Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309053. [PMID: 38602194 DOI: 10.1002/smll.202309053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Indexed: 04/12/2024]
Abstract
Liquid crystals (LCs) are emerging as novel platforms for chemical, physical, and biological sensing. They can be used to detect biological amphiphiles such as lipids, fatty acids, digestive surfactants, and bacterial endotoxins. However, designing LC-based sensors in a manner that preserves their sensitivity and responsiveness to these stimuli, and possibly improves biocompatibility, remains challenging. In this work, the stabilization of LC droplets by oleosins, plant-sourced and highly surface active proteins due to their extended amphipathic helix, is investigated. Purified oleosins, at sub-micromolar concentrations, are shown to readily stabilize nematic LC droplets without switching their alignment, allowing them to detect surfactants at micromolar concentrations. Direct evidence of localization of oleosins at the LC-water interface is provided with fluorescent labeling, and the stabilized droplets remain stable over months. Interestingly, chiral LC droplets readily switch in the presence of nanomolar oleosin concentrations, an unexpected behavior that is explained by accounting for the energy barriers required for switching the alignment between the two cases. This leads thus to a twofold conclusion: oleosin-stabilized nematic LC droplets present a biocompatible alternative for bioanalyte detection, while chiral LCs can be further investigated for use as highly sensitive sensors for detecting amphipathic helices in biological systems.
Collapse
Affiliation(s)
- Lawrence W Honaker
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Axel Eijffius
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Lorenz Plankensteiner
- Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Patel P, Wang JY, Mineroff J, Jagdeo J. The potential cutaneous benefits of Carthamus tinctorius oleosomes. Arch Dermatol Res 2023; 316:26. [PMID: 38060028 DOI: 10.1007/s00403-023-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023]
Abstract
Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.
Collapse
Affiliation(s)
- Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jessica Mineroff
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Hao J, Wang Q, Li X, Xu D. Extraction of structurally intact and well-stabilized rice bran oil bodies as natural pre-emulsified O/W emulsions and investigation of their rheological properties and components interaction. Food Res Int 2023; 164:112457. [PMID: 36738012 DOI: 10.1016/j.foodres.2023.112457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of β-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.
Collapse
Affiliation(s)
- Jia Hao
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Qiuyu Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Xiaoyu Li
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Duoxia Xu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
5
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
6
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
7
|
Li X, Wang Q, Hao J, Xu D. Stability, Structure, Rheological Properties, and Tribology of Flaxseed Gum Filled with Rice Bran Oil Bodies. Foods 2022; 11:foods11193110. [PMID: 36230186 PMCID: PMC9561989 DOI: 10.3390/foods11193110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, rice bran oil bodies (RBOBs) were filled with varying concentrations of flaxseed gum (FG) to construct an RBOB-FG emulsion-filled gel system. The particle size distribution, zeta potential, physical stability, and microstructure were measured and observed. The molecular interaction of RBOBs and FG was studied by Fourier transform infrared spectroscopy (FTIR). In addition, the rheological and the tribology properties of the RBOB-FG emulsion-filled gels were evaluated. We found that the dispersibility and stability of the RBOB droplets was improved by FG hydrogel, and the electrostatic repulsion of the system was enhanced. FTIR analysis indicated that the hydrogen bonds and intermolecular forces were the major driving forces in the formation of RBOB-FG emulsion-filled gel. An emulsion-filled gel-like structure was formed, which further improved the rheological properties, with increased firmness, storage modulus values, and viscoelasticity, forming thermally stable networks. In the tribological test, with increased FG concentration, the friction coefficient (μ) decreased. The elasticity of RBOB-FG emulsion-filled gels and the ball-bearing effect led to a minimum boundary friction coefficient (μ). These results might contribute to the development of oil-body-based functional ingredients for applications in plant-based foods as fat replacements and delivery systems.
Collapse
Affiliation(s)
- Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-106-898-5645; Fax: +86-106-898-5645
| |
Collapse
|
8
|
Şen A, Acevedo-Fani A, Dave A, Ye A, Husny J, Singh H. Plant oil bodies and their membrane components: new natural materials for food applications. Crit Rev Food Sci Nutr 2022; 64:256-279. [PMID: 35917117 DOI: 10.1080/10408398.2022.2105808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Plants store triacylglycerols in the form of oil bodies (OBs) as an energy source for germination and subsequent seedling growth. The interfacial biomaterials from these OBs are called OB membrane materials (OBMMs) and have several applications in foods, e.g., as emulsifiers. OBMMs are preferred, compared with their synthetic counterparts, in food applications as emulsifiers because they are natural, i.e., suitable for clean label, and may stabilize bioactive components during storage. This review focuses mainly on the extraction technologies for plant OBMMs, the functionality of these materials, and the interaction of OB membranes with other food components. Different sources of OBs are evaluated and the challenges during the extraction and use of these OBMMs for food applications are addressed.
Collapse
Affiliation(s)
- Aylin Şen
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
10
|
Almeida OP, de Freitas Marques MB, de Oliveira JP, da Costa JMG, Rodrigues AP, Yoshida MI, Mussel WDN, Carneiro G. Encapsulation of safflower oil in nanostructured lipid carriers for food application. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:805-814. [PMID: 35185192 PMCID: PMC8814268 DOI: 10.1007/s13197-021-05078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023]
Abstract
Safflower oil (SO) is mainly rich in linoleic acid (ω-6), oleic acid (ω-9), and other bioactives with potential antioxidant, antidiabetic, thermogenic, anti-inflammatory, cardioprotective and anticancer activities. The reduced aqueous solubility and high susceptibility to oxidative degradation are undesirable for food applications and can be overcome by incorporation in lipid nanoparticles. Thus, the main goal was to develop and characterize SO-loaded nanostructured lipid carriers (NLC-SO) and to evaluate their potential for protection of the antioxidant activity of the bioactive. NLC-SO showed average size of 222 ± 2.0 nm, zeta potential of 43 ± 3.5 mV and the encapsulation efficiency was 49.0 ± 2.8%, combined with high thermal compatibility (up to 228 °C) and physical stability for up to 60 days in aqueous dispersion. Besides, the NLC-SO showed threefold reduction in the DPPH radical scavenge activity after encapsulation, indicating protection of the antioxidant components of the SO and preservation of the bioactives. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05078-5.
Collapse
Affiliation(s)
- Osmar Patricio Almeida
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Rodovia MGT 367, Km 583, Diamantina, Minas Gerais CEP 39100-000 Brazil
| | - Maria Betânia de Freitas Marques
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Rodovia MGT 367, Km 583, Diamantina, Minas Gerais CEP 39100-000 Brazil
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Jocilane Pereira de Oliveira
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais Brazil
| | - Joyce Maria Gomes da Costa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais Brazil
| | - Ana Paula Rodrigues
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Rodovia MGT 367, Km 583, Diamantina, Minas Gerais CEP 39100-000 Brazil
| | - Maria Irene Yoshida
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Wagner da Nova Mussel
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Rodovia MGT 367, Km 583, Diamantina, Minas Gerais CEP 39100-000 Brazil
| |
Collapse
|
11
|
Cassen A, Fabre JF, Lacroux E, Cerny M, Vaca-Medina G, Mouloungui Z, Merah O, Valentin R. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds. Biomolecules 2022; 12:biom12020149. [PMID: 35204650 PMCID: PMC8961559 DOI: 10.3390/biom12020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
An aqueous integrated process was developed to obtain several valuable products from sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation, it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69% (w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater (d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm) but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities for valorization in food or technical applications.
Collapse
|
12
|
Board AJ, Crowther JM, Acevedo-Fani A, Meisrimler CN, Jameson GB, Dobson RCJ. How plants solubilise seed fats: revisiting oleosin structure and function to inform commercial applications. Biophys Rev 2022; 14:257-266. [PMID: 35340610 PMCID: PMC8921422 DOI: 10.1007/s12551-021-00923-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Plants store triacylglycerides in organelles called oil bodies, which are important fuel sources for germination. Oil bodies consist of a lipid core surrounded by an interfacial single layer membrane of phospholipids and proteins. Oleosins are highly conserved plant proteins that are important for oil body formation, solubilising the triacylglycerides, stabilising oil bodies, and playing a role in mobilising the fuel during the germination process. The domain structure of oleosins is well established, with N- and C-terminal domains that are hydrophilic flanking a long hydrophobic domain that is proposed to protrude into the triacylglyceride core of the oil body. However, beyond this general understanding, little molecular level detail on the structure is available and what is known is disputed. This lack of knowledge limits our understanding of oleosin function and concomitantly our ability to engineer them. Here, we review the state of play in the literature regarding oleosin structure and function, and provide some examples of how oleosins can be used in commercial settings.
Collapse
Affiliation(s)
- Amanda J. Board
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand ,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jennifer M. Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand ,Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Claudia-Nicole Meisrimler
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - Geoffrey B. Jameson
- Riddet Institute, Massey University, Palmerston North, New Zealand ,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand ,Riddet Institute, Massey University, Palmerston North, New Zealand ,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
13
|
Ashique S, Singh A, Sandhu NK. Stability Issues, Probable Approaches for Stabilization and Associated Patents in the Pharmaceutical Field for Oleosome, A Novel Carrier for Drug Delivery. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:207-218. [PMID: 33726660 DOI: 10.2174/1872210515666210316104149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Oleosomes are oil-containing micro-carriers of natural origin that are comprised of special oleosin proteins embedded with a monolayer of phospholipids having a triacylglycerol core. Due to their unique structure and non-toxicity in the biological system, these oil carriers are becoming very eye-catching for formulation development in the field of pharmacy. Consequently, oleosome offers emoliency, occlusivity, self-emulsification, anti-oxidant, and film-forming properties, which leads to controlled and sustained release of encapsulated bio-actives. It is also feasible to load oil-soluble ingredients, such as fragrance, vitamins (retinol), and lipophilic drug moieties inside the core. Being a natural carrier, it shows some stability issues (leakage of oil from the core, oxidation of the loaded oil, aggregation of oil droplets), which are controllable. In this review, we have focused on the various stability issues, the techniques (coating, surface modification, solvents) and how to overcome those problems, and how to load any lipophilic drug into the oil core, and we have also linked patent research works in the field of formulation development.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Ajmer Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Navjot K Sandhu
- Department of Quality Assurance and Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab-142001, India
| |
Collapse
|
14
|
Küyük F, Aslan M, Özbek Ö. Characterization of Genetic Diversity in Populations of Cultivated and Wild Safflower Species in the Genus Carthamus L. from Turkey as Revealed by ISSR. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
15
|
Effects of pH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J CHEM-NY 2021. [DOI: 10.1155/2021/2441385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oil body (POB), which is rich in unsaturated fatty acids and bioactive substances, is widely used in cosmetics, food, and medicine. Compared with synthetic emulsifiers, peanut oil bodies have health advantages as natural emulsions. The physicochemical properties of oil bodies affect their food processing applications. To improve peanut oil body yield, cell-wall-breaking enzymes were screened for aqueous enzymatic extraction. The optimum conditions were as follows: enzymatic hydrolysis time, 2 h; material-to-liquid ratio, 1 : 5 (
); enzyme concentration, 2% (
); and temperature, 50°C. Oil body stability was closely related to pH. With increasing pH, the average particle size and zeta-potential of the oil bodies increased, indicating aggregation, as confirmed by microstructure analysis. At pH 11, exogenous proteins at the oil body interface were eluted, leaving endogenous proteins, which led to a decreased interfacial protein content and oil body aggregation. Therefore, oil body stability decreased under alkaline pH conditions, but no demulsification occurred.
Collapse
|
16
|
Julien JA, Mutchek SG, Wittenberg NJ, Glover KJ. Biophysical characterization of full-length oleosin in dodecylphosphocholine micelles. Proteins 2021; 90:560-565. [PMID: 34596903 DOI: 10.1002/prot.26252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Oleosin is a hydrophobic protein that punctuates the surface of plant seed lipid droplets, which are 20 nm-100 μm entities that serve as reservoirs for high-energy metabolites. Oleosin is purported to stabilize lipid droplets, but its exact mechanism of stabilization has not been established. Probing the structure of oleosin directly in lipid droplets is challenging due to the size of lipid droplets and their high degree of light scattering. Therefore, a medium in which the native structure of oleosin is retained, but is also amenable to spectroscopic studies is needed. Here, we show, using a suite of biophysical techniques, that dodecylphosphocholine micelles appear to support the tertiary structure of the oleosin protein (i.e., hairpin conformation) and render the protein in an oligomeric state that is amenable to more sophisticated biophysical techniques such as NMR.
Collapse
Affiliation(s)
- Jeffrey A Julien
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Sarah G Mutchek
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | |
Collapse
|
17
|
Güneş R, Gülseren İ. FT-IR spectroscopy based investigation of stability in wheat germ oil body emulsions as affected by general processing treatments. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00897-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
18
|
Julien JA, Pellett AL, Shah SS, Wittenberg NJ, Glover KJ. Preparation and characterization of neutrally-buoyant oleosin-rich synthetic lipid droplets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183624. [PMID: 33933429 DOI: 10.1016/j.bbamem.2021.183624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 01/28/2023]
Abstract
Lipid droplets also known as oil bodies are found in a variety of organisms and function as stores of high-energy metabolites. Recently, there has been interest in using lipid droplets for protein production and drug delivery. Artificial lipid droplets have been previously prepared, but their short lifetime in solution and inhomogeneity has severely limited their applicability. Herein we report an improved methodology for the production of synthetic lipid droplets that overcomes the aforementioned limitations. These advancements include: 1) development of a methodology for the expression and purification of high-levels of oleosin, a crucial lipid droplet component, 2) preparation of neutrally-buoyant synthetic lipid droplets, and 3) production of synthetic lipid droplets of a specific size. Together, these important enhancements will facilitate the advancement of lipid droplet science and its application in biotechnology.
Collapse
Affiliation(s)
- Jeffrey A Julien
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, PA 18015, USA
| | - Alexandria L Pellett
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, PA 18015, USA
| | - Shivani S Shah
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, PA 18015, USA
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, PA 18015, USA
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, PA 18015, USA.
| |
Collapse
|
19
|
Sharma B, Ma Y, Ferguson AL, Liu AP. In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment. SOFT MATTER 2020; 16:10769-10780. [PMID: 33179713 DOI: 10.1039/d0sm01644f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been introduced as a synthetic cell model that would potentially overcome the aforementioned limitations. Peptide vesicles are robust, reasonably more stable than lipid vesicles and can withstand harsh conditions including pH, thermal, and osmotic variations. This mini-review summarizes the current state-of-the-art in the design, engineering, and realization of peptide-based chassis materials, including both experimental and computational work. We present an outlook for simulation-aided and data-driven design and experimental realization of engineered and multifunctional synthetic cells.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
20
|
Zielbauer BI, Jackson AJ, Maurer S, Waschatko G, Ghebremedhin M, Rogers SE, Heenan RK, Porcar L, Vilgis TA. Soybean oleosomes studied by small angle neutron scattering (SANS). J Colloid Interface Sci 2018; 529:197-204. [PMID: 29894938 DOI: 10.1016/j.jcis.2018.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Oleosomes are stabilized by a complex outer phospholipid-protein-layer. To improve understanding of its structure and stabilization mechanism, this shell has to be studied in extracellular native conditions. This should be possible by SANS using contrast variation. Oleosomes are expected to be highly temperature stable, with molecular changes occurring first in the protein shell. Direct measurements of changes in the shell structure are also important for processing methods, e.g. encapsulation. EXPERIMENTS Extracted soybean oleosomes were studied directly and after encapsulation with pectin by SANS using contrast variation. In order to determine structure and size, a shell model of oleosomes was developed. The method was tested against a simple phospholipid-stabilized emulsion. The oleosomes' temperature stability was investigated by performing SANS at elevated temperatures. FINDINGS Size (Rg = 1380 Å) and shell thickness of native and encapsulated oleosomes have been determined. This is the first report measuring the shell thickness of oleosomes directly. For native oleosomes, a shell of 9 nm thickness surrounds the oil core, corresponding to a layer of phospholipids and proteins. Up to 90 °C, no structural change was observed, confirming the oleosomes' high temperature stability. Successful coavervation of oleosomes was shown by an increase in shell thickness of 10 nm after electrostatic deposition of pectin.
Collapse
Affiliation(s)
- Birgitta I Zielbauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Andrew J Jackson
- European Spallation Source, Box 176, Lund 221 00, Sweden; Physical Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| | - Sania Maurer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Gustav Waschatko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Marta Ghebremedhin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Sarah E Rogers
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Richard K Heenan
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | | | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Lu Y, Chi M, Li L, Li H, Noman M, Yang Y, Ji K, Lan X, Qiang W, Du L, Li H, Yang J. Genome-Wide Identification, Expression Profiling, and Functional Validation of Oleosin Gene Family in Carthamus tinctorius L. FRONTIERS IN PLANT SCIENCE 2018; 9:1393. [PMID: 30405647 PMCID: PMC6201191 DOI: 10.3389/fpls.2018.01393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Accepted: 09/03/2018] [Indexed: 05/29/2023]
Abstract
Carthamus tinctorius L., commonly known as safflower, is an important oilseed crop containing oil bodies. Oil bodies are intracellular organelles in plant cells for storing triacylglycerols (TAGs) and sterol esters. Oleosins are the most important surface proteins of the oil bodies. We predicted and retrieved the sequences of eight putative C. tinctorius oleosin (Ctoleosin) genes from the genome database of safflower. The bioinformatics analyses revealed the size of their open reading frames ranging from 414 to 675 bp, encoding 137 to 224 aa polypeptides with predicted molecular weights of 14.812 to 22.155 kDa, all containing the typical "proline knot" motif. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) determined the spatiotemporal expression pattern of Ctoleosin genes, which gradually increased and peaked during flowering and seed ripening, and decreased thereafter. To validate their role in plant development, we transformed and overexpressed these eight putative Ctoleosin genes in Arabidopsis. Overexpressing Ctoleosins did not affect leaf size, although silique length was altered. Arabidopsis transformed with Ctoleosin3, 4, and 5 grew longer siliques than did the wild-type plants, without altering seed quantity. The 100-grain weight of the transgenic Arabidopsis seeds was slightly more than that of the wild-type seeds. The seed germination rates of the plants overexpressing Ctoleosin4 and 6 were slightly lower as compared with that of the wild-type Arabidopsis, whereas that in the other transgenic lines were higher than that in the wild-type plants. The overexpression of Ctoleosin genes elevated the oil content in the seeds of transgenic Arabidopsis. Our findings not only provide an approach for increasing the oil content, but also for elucidating the intricate mechanisms of oil body synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haiyan Li
- *Correspondence: Jing Yang, Haiyan Li,
| | - Jing Yang
- *Correspondence: Jing Yang, Haiyan Li,
| |
Collapse
|
22
|
Chhikara S, Abdullah HM, Akbari P, Schnell D, Dhankher OP. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1034-1045. [PMID: 28975735 PMCID: PMC5902773 DOI: 10.1111/pbi.12847] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Present address:
Centre for BiotechnologyMaharshi Dayanand UniversityRohtak124001India
| | - Hesham M. Abdullah
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
- Biotechnology DepartmentFaculty of AgricultureAl‐Azhar UniversityCairoEgypt
| | - Parisa Akbari
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| | - Danny Schnell
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Om Parkash Dhankher
- Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstMAUSA
| |
Collapse
|
23
|
Idogawa S, Abe N, Abe K, Fujii T. Effect of Oleosins on the Stability of Oil Bodies in Soymilk. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shiori Idogawa
- Taishi Food Inc
- Graduate School of Agricultural Science, Tohoku University
| | - Naoki Abe
- Graduate School of Agricultural Science, Tohoku University
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
24
|
Qi B, Ding J, Wang Z, Li Y, Ma C, Chen F, Sui X, Jiang L. Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Res Int 2017; 100:551-557. [DOI: 10.1016/j.foodres.2017.07.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 11/25/2022]
|
25
|
Abstract
Coagulation and rheological behaviors of soy milk are reviewed from the viewpoint of colloidal dispersion system. From the results of relative viscosity in the range of small oil body volume fractions, oil bodies containing oleosin behave as rigid spheres. The Krieger-Dougherty equation was found to describe relative viscosities well under high oil body volume fraction. These results indicate that oil bodies in soy milk behave as though suspended matter. Cross-linking between colloid particles occurs when the coagulant is added, and bulky clusters are formed. The viscosity rises due to the hydrodynamic effects of these bulky clusters. A new viscosity equation that combines the Krieger-Dougherty equation and the effective volume fraction could describe the viscos behavior well for wide range of solid contents. Tofu is made by adding a coagulant to soy milk. For lipid concentrations of less than 2%, rupture stress increases depending on the lipid concentration, whereas at concentrations of more than 3%, rupture stress tends to decline. Kinugoshi tofu samples have a maximum value for rupture stress depending on lipid concentration. Digestion of oleosin in high-fat soy milk using papain treatment results in the centrifugal separation of soy milk cream easily. This result indicates that oleosin let oil bodies in soy milk stable. Therefore, it is important to control the state of soy milk colloidal dispersions.
Collapse
Affiliation(s)
- Tomoyuki Fujii
- a Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
26
|
Abstract
A supply of pure, intact oil bodies is essential for carrying out morphological and biochemical studies of these plant organelles and exploring their application. Preparation requires a carefully controlled breakage of plant cells, followed by separation of the oil bodies from cytoplasm and cell debris. This paper focuses on the recovery and characterisation of oil bodies from pecan nuts where no work has been published to date. The results showed that soaking softens the nut tissue and appears to reduce the damage to oil bodies during grinding and centrifugal force must be carefully selected to minimise oil bodies damage on recovery. A 24 h soaking time coupled with a 5500 RCF recovery force allows for the recovery of intact pecan nut oil bodies.
Collapse
|
27
|
Zhao L, Chen Y, Chen Y, Kong X, Hua Y. Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis. Food Chem 2016; 200:125-33. [DOI: 10.1016/j.foodchem.2016.01.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/01/2022]
|
28
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
29
|
Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, Chardot T, D'Andrea S. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1374-87. [PMID: 25907570 DOI: 10.1093/pcp/pcv056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 05/04/2023]
Abstract
In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation. Several post-translational modifications (e.g. phosphorylation and ubiquination) of oleosins were concomitant with oleosin degradation. Phosphorylation occurred only on the minor OLE5 and on an 8 kDa proteolytic fragment of OLE2. A combination of immunochemical and proteomic approaches revealed ubiquitination of the four oleosins OLE1-OLE4 at the onset of OB mobilization. Ubiquitination topology was surprisingly complex. OLE1 and OLE2 were modified by three distinct and predominantly exclusive motifs: monoubiquitin, K48-linked diubiquitin (K48Ub(2)) and K63-linked diubiquitin. Ubiquitinated oleosins may be channeled towards specific degradation pathways according to ubiquitination type. One of these pathways was identified as the ubiquitin-proteasome pathway. A proteasome inhibitor (MG132) reduced oleosin degradation and induced cytosolic accumulation of K48Ub(2)-oleosin aggregates. These results indicate that K48Ub(2)-modified oleosins are selectively extracted from OB coat and degraded by the proteasome. Proteasome inhibition also reduced lipid hydrolysis, providing in vivo evidence that oleosin degradation is required for lipid mobilization.
Collapse
Affiliation(s)
- Carine Deruyffelaere
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Isabelle Bouchez
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Halima Morin
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Alain Guillot
- INRA, UMR 1319, PAPPSO, F-78350 Jouy-en-Josas, France
| | - Martine Miquel
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Marine Froissard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Thierry Chardot
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Sabine D'Andrea
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| |
Collapse
|
30
|
Makkhun S, Khosla A, Foster T, McClements DJ, Grundy MML, Gray DA. Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study. Food Funct 2015; 6:125-34. [PMID: 25284307 DOI: 10.1039/c4fo00422a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2024]
Abstract
In this study, we examined the physicochemical nature of sunflower seed oil bodies (in the absence and presence of added protein) exposed to gastrointestinal conditions in vitro: crude oil bodies (COB); washed oil bodies (WOB); whey protein isolate-enriched oil bodies (WOB-WPI); and, sodium caseinate enriched-oil bodies (WOB-SC). All oil body emulsions were passed through an in vitro digestion model that mimicked the stomach and duodenal environments, and their physicochemical properties were measured before, during, and after digestion. Oil bodies had a positive charge under gastric conditions because the pH was below the isoelectric point of the adsorbed protein layer, but they had a negative charge under duodenal conditions which was attributed to changes in interfacial composition resulting from adsorption of bile salts. Oil bodies were highly susceptible to flocculation and coalescence in both gastric and duodenal conditions. SDS-PAGE analysis indicated degradation of oleosin proteins (ca. 18-21 kDa) to a greater or lesser extent (dependent on the emulsion) during the gastric phase in all emulsions tested; there is evidence that some oleosin remained intact in the crude oil body preparation during this phase of the digestion process. Measurements of protein displacement from the surface of COBs during direct exposure to bile salts, without inclusion of a gastric phase, indicated the removal of intact oleosin from native oil bodies.
Collapse
Affiliation(s)
- Sakunkhun Makkhun
- University of Phayao, Division of Food Science and Technology, School of Agriculture and Natural Resources, Muang, Phayao, 56000 Thailand
| | | | | | | | | | | |
Collapse
|
31
|
Bettini S, Santino A, Giancane G, Valli L. Reconstituted oil bodies characterization at the air/water and at the air/oil/water interfaces. Colloids Surf B Biointerfaces 2014; 122:12-18. [DOI: 10.1016/j.colsurfb.2014.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2013] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022]
|
32
|
Vargo KB, Sood N, Moeller TD, Heiney PA, Hammer DA. Spherical micelles assembled from variants of recombinant oleosin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11292-11300. [PMID: 25145981 DOI: 10.1021/la502664e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/03/2023]
Abstract
An emerging field in biomaterials is the creation and engineering of protein surfactants made by recombinant biotechnology. Protein surfactants made by recombinant biotechnology allow for complete control of the molecular weight and chemical sequence of the surfactant. The proteins are monodisperse in molecular weight, and functionalization with bioactive amino acid sequences is straightforwardly achieved through genetic engineering. We modified the naturally occurring amphiphilic plant protein oleosin by truncating a large portion of its central hydrophobic block, creating a soluble triblock surfactant. Additional variants were constructed to eliminate secondary structure and create ionic surfactants. Variants of oleosin self-assembled into spherical micelles with a diameter of ∼21 nm at concentrations above the critical micelle concentration (cmc). We found that the cmc could be manipulated through changes in the protein backbone and was correlated with changes in the protein secondary structure. Micelle size and shape are characterized with dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). Micelles were functionalized with the integrin-binding domain, RGDS, leading to a 2.9-fold increase in uptake in Ovcar-5 cells after 12 h. Oleosin surfactants present a promising platform for micellar assembly because of the ability to precisely modify the protein backbone through molecular biology, allowing for the control over the cmc and the addition of functional domains into the material.
Collapse
Affiliation(s)
- Kevin B Vargo
- Department of Chemical and Biomolecular Engineering, and ‡Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
33
|
Acevedo F, Rubilar M, Jofré I, Villarroel M, Navarrete P, Esparza M, Romero F, Vilches EA, Acevedo V, Shene C. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery. J Microencapsul 2014; 31:488-500. [PMID: 24697185 DOI: 10.3109/02652048.2013.879931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Astaxanthin (AST) is a valued molecule because of its high antioxidant properties. However, AST is extremely sensitive to oxidation, causing the loss of its bioactive properties. The purposes of this study were to define conditions for microencapsulating AST in oil bodies (OB) from Brassica napus to enhance its oxidative stability, and to test the bioactivity of the microencapsulated AST (AST-M) in cells. Conditions for maximising microencapsulation efficiency (ME) were determined using the Response Surface Methodology, obtaining a high ME (>99%). OB loaded with AST showed a strong electrostatic repulsion in a wide range of pH and ionic strengths. It was found that AST-M exposed to air and light was more stable than free AST. In addition, the protective effect of AST against intracellular ROS production was positively influenced by microencapsulation in OB. These results suggest that OB offer a novel option for stabilising and delivering AST.
Collapse
Affiliation(s)
- Francisca Acevedo
- Agriaquaculture Nutritional Genomic Center, CGNA, Technology and Processes Unit , Temuco , Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 2013; 38:52-8. [PMID: 24558311 PMCID: PMC3915324 DOI: 10.1016/j.jgr.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.
Collapse
|
35
|
Maurer S, Waschatko G, Schach D, Zielbauer BI, Dahl J, Weidner T, Bonn M, Vilgis TA. The role of intact oleosin for stabilization and function of oleosomes. J Phys Chem B 2013; 117:13872-83. [PMID: 24088014 DOI: 10.1021/jp403893n] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Lipid storage in plants is achieved among all plant species by formation of oleosomes, enclosing oil (triacylglycerides) in small subcellular droplets. Seeds are rich in this pre-emulsified oil to provide a sufficient energy reservoir for growing. The triacylglyceride core of the oleosomes is surrounded by a phospholipid monolayer containing densely packed proteins called oleosins. They are anchored in the triacylglycerides core with a hydrophobic domain, while the hydrophilic termini remain on the surface. These specialized proteins are expressed during seed development and maturation. Particularly, they play a major role in the stabilization and function of oleosomes. To better understand the importance of oleosins for oleosome stabilization, enzymatic digestion of oleosins was performed. This made it possible to compare and correlate changes in the molecular structure of oleosins and changing macroscopic properties of oleosomes. Tryptic digestion cleaves the hydrophilic part of the oleosins, which is accompanied by a loss of secondary structures as evidenced by Fourier-transform infrared and sum frequency generation spectra. After digestion, the ability of oleosins to stabilize oil-water or air-water interfaces was lost. The surface charge and the associated aggregation behavior of oleosomes are governed by interactions typical of proteins before digestion and by interactions typical of phospholipids after digestion.
Collapse
Affiliation(s)
- Sania Maurer
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae. PLoS One 2013; 8:e74421. [PMID: 24040242 PMCID: PMC3770668 DOI: 10.1371/journal.pone.0074421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2013] [Accepted: 08/01/2013] [Indexed: 12/14/2022] Open
Abstract
In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.
Collapse
|
37
|
Vindigni JD, Wien F, Giuliani A, Erpapazoglou Z, Tache R, Jagic F, Chardot T, Gohon Y, Froissard M. Fold of an oleosin targeted to cellular oil bodies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1881-8. [DOI: 10.1016/j.bbamem.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/02/2013] [Revised: 03/26/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
|
38
|
Abstract
Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin- and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.
Collapse
Affiliation(s)
- Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
39
|
Waschatko G, Schiedt B, Vilgis TA, Junghans A. Soybean oleosomes behavior at the air-water interface. J Phys Chem B 2012; 116:10832-41. [PMID: 22823247 DOI: 10.1021/jp211871v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Soy milk is a highly stable emulsion, the stability being mainly due to the presence of oleosomes or oil bodies, spherical structures filled with triacylglycerides (TAGs) and surrounded by a monolayer of phospholipids and proteins called oleosins. For oleosomes purified from raw soymilk, surface pressure investigations and Brewster angle microscopy have been performed to unveil their adsorption, rupture and structural changes over time at different subphase conditions (pH, ionic strength). Such investigations are important for (industrial) food applications of oleosomes, but are also useful for the understanding of the general behavior of proteins and phospholipids at interfaces. In addition a better comprehension of the highly stable oleosomes can lead to advancements in liposome manufacturing, e.g., for storage and transport applications. Although oleosomes have their origin in food systems, their unique stability and physical behavior show transferable characteristics which lead to a much better understanding of the description of any kind of emulsion. This study is one of the first steps toward the comparison of natural emulsification concepts based on different physical structures: e.g., the animals' low density lipoproteins, where apolipoproteins with phospholipids are located only at the interface and plant oleosomes with its oleosins, which are embedded in a phospholipid monolayer and reach deep inside the oil phase.
Collapse
Affiliation(s)
- Gustav Waschatko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
40
|
Vargo KB, Parthasarathy R, Hammer DA. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc Natl Acad Sci U S A 2012; 109:11657-62. [PMID: 22753512 PMCID: PMC3406865 DOI: 10.1073/pnas.1205426109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications.
Collapse
Affiliation(s)
- Kevin B. Vargo
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Ranganath Parthasarathy
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Daniel A. Hammer
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104; and
- Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
41
|
Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans. Food Chem 2012; 132:1514-1520. [DOI: 10.1016/j.foodchem.2011.11.144] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 11/20/2022]
|
42
|
Li H, Dong Y, Yang J, Liu X, Wang Y, Yao N, Guan L, Wang N, Wu J, Li X. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PLoS One 2012; 7:e30987. [PMID: 22363528 PMCID: PMC3283594 DOI: 10.1371/journal.pone.0030987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
Safflower (Carthamus tinctorius L.) is one of the most extensively used oil crops in the world. However, little is known about how its compounds are synthesized at the genetic level. In this study, Solexa-based deep sequencing on seed, leaf and petal of safflower produced a de novo transcriptome consisting of 153,769 unigenes. We annotated 82,916 of the unigenes with gene annotation and assigned functional terms and specific pathways to a subset of them. Metabolic pathway analysis revealed that 23 unigenes were predicted to be responsible for the biosynthesis of flavonoids and 8 were characterized as seed-specific oleosins. In addition, a large number of differentially expressed unigenes, for example, those annotated as participating in anthocyanin and chalcone synthesis, were predicted to be involved in flavonoid biosynthesis pathways. In conclusion, the de novo transcriptome investigation of the unique transcripts provided candidate gene resources for studying oleosin-coding genes and for investigating genes related to flavonoid biosynthesis and metabolism in safflower.
Collapse
Affiliation(s)
- Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuanyuan Dong
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiuming Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Na Yao
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Nan Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinyu Wu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- * E-mail: (JW); (X. Li)
| | - Xiaokun Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- * E-mail: (JW); (X. Li)
| |
Collapse
|
43
|
van der Schoot C, Paul LK, Paul SB, Rinne PLH. Plant lipid bodies and cell-cell signaling: a new role for an old organelle? PLANT SIGNALING & BEHAVIOR 2011; 6:1732-8. [PMID: 22057325 PMCID: PMC3329345 DOI: 10.4161/psb.6.11.17639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.
Collapse
|
44
|
Chiang CJ, Lin CC, Lu TL, Wang HF. Functionalized nanoscale oil bodies for targeted delivery of a hydrophobic drug. NANOTECHNOLOGY 2011; 22:415102. [PMID: 21914943 DOI: 10.1088/0957-4484/22/41/415102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2023]
Abstract
Effective formulations of hydrophobic drugs for cancer therapies are challenging. To address this issue, we have sought to nanoscale artificial oil bodies (NOBs) as an alternative. NOBs are lipid-based particles which consist of a central oil space surrounded by a monolayer of oleosin (Ole)-embedded phospholipids (PLs). Ole was first fused with the anti-HER2/neu affibody (Ole-ZH2), and the resulting hybrid protein was overproduced in Escherichia coli. ZH2-displayed NOBs were then assembled by sonicating the mixture containing plant oil, PLs, and isolated Ole-ZH2 in one step. To illustrate their usefulness, functionalized NOBs were employed to encapsulate a hydrophobic anticancer drug, Camptothecin (CPT). As a result, these CPT-loaded NOBs remained stable in serum and the release of CPT at the non-permissive condition exhibited a sustained and prolonged profile. Moreover, plain NOBs were biocompatible whereas CPT-loaded NOBs exerted a strong cytotoxic effect on HER2/neu-positive cells in vitro. Administration of xenograft nude mice with CPT-loaded NOBs also led to the regression of solid tumors in an effective way. Overall, the result indicates the potential of NOBs for targeted delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
45
|
Gohon Y, Vindigni JD, Pallier A, Wien F, Celia H, Giuliani A, Tribet C, Chardot T, Briozzo P. High water solubility and fold in amphipols of proteins with large hydrophobic regions: Oleosins and caleosin from seed lipid bodies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:706-16. [DOI: 10.1016/j.bbamem.2010.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/14/2010] [Revised: 11/12/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
46
|
Scott RW, Winichayakul S, Roldan M, Cookson R, Willingham M, Castle M, Pueschel R, Peng CC, Tzen JTC, Roberts NJ. Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:912-927. [PMID: 20444209 DOI: 10.1111/j.1467-7652.2010.00522.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/29/2023]
Abstract
We have successfully created polyoleosins by joining multiple oleosin units in tandem head-to-tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies-containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.
Collapse
Affiliation(s)
- Richard W Scott
- AgResearch Limited, Forage Biotechnology, Tennent Drive, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gray DA, Payne G, McClements DJ, Decker EA, Lad M. Oxidative stability of Echium plantagineum seed oil bodies. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
|
48
|
Chapman MA, Hvala J, Strever J, Burke JM. Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a Near Eastern origin and five centers of diversity. AMERICAN JOURNAL OF BOTANY 2010; 97:831-40. [PMID: 21622448 DOI: 10.3732/ajb.0900137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Analyses of genetic variation in crop gene pools are a powerful tool for investigating the origin and early evolution of crop lineages. Such analyses also have the potential to identify unique genetic resources for continued crop improvement. The oilseed crop safflower (Carthamus tinctorius) is believed to have been domesticated in the Fertile Crescent region, but up to 10 geographic centers of similarity throughout the world have been proposed based on morphology. Nuclear microsatellite analysis of accessions from each of the 10 proposed centers of similarity, as well as individuals of the progenitor species, suggested the presence of five genetic clusters (1, Europe; 2, Turkey-Iran-Iraq-Afghanistan; 3, Israel-Jordan-Syria; 4, Egypt-Ethiopia; and 5, the Far East-India-Pakistan). North American accessions, products of a secondary introduction from the native range, suggest that a subset of the native accessions harbor unique genetic diversity that could be useful in future breeding efforts. Overall, a Near Eastern origin of safflower was confirmed based on the genetic similarity between the progenitor and the Near Eastern safflower accessions, as well as previous archaeological finds. Genetic differentiation between geographical clusters of accessions is evident, although not to the degree proposed based on morphology.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| | | | | | | |
Collapse
|
49
|
Mayerhofer R, Archibald C, Bowles V, Good AG. Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 2010; 53:266-76. [DOI: 10.1139/g10-002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
A set of SSR and RFLP markers for safflower ( Carthamus tinctorius ) and jeweled distaff thistle ( C. oxyacanthus ) was generated from cDNA and genomic libraries and by mining public and proprietary sequence databases. In total, 1412 PCR-based markers and 75 RFLP markers were screened and polymorphic loci were mapped in an intraspecific F2 population of C. tinctorius and an interspecific BC1 population of C. tinctorius × C. oxyacanthus. The two populations shared one common parent and the resulting linkage maps could be compared for synteny. The level of polymorphism was low in both populations and only 8.2% and 13.7% of the analyzed markers could be mapped in the intraspecific and interspecific maps, respectively. The two maps showed significant colinearity of markers in several regions and an apparent translocation or inversion event on one linkage group. Noticeable segregation distortion was found on one linkage group of the C. tinctorius map and dense clustering of loci occurred on several linkage groups of the C. oxyacanthus map. The two maps represent the first major linkage analysis of Carthamus species. The molecular tools will be useful for a variety of genetic and genomic applications in safflower and its related species and have been used in our laboratory to map a flower color gene in C. tinctorius.
Collapse
Affiliation(s)
- Reinhold Mayerhofer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Catherine Archibald
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Victoria Bowles
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Allen G. Good
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
50
|
Chapman MA, Hvala J, Strever J, Matvienko M, Kozik A, Michelmore RW, Tang S, Knapp SJ, Burke JM. Development, polymorphism, and cross-taxon utility of EST-SSR markers from safflower (Carthamus tinctorius L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 120:85-91. [PMID: 19820913 DOI: 10.1007/s00122-009-1161-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/10/2009] [Accepted: 09/11/2009] [Indexed: 05/13/2023]
Abstract
Due to their highly polymorphic and codominant nature, simple-sequence repeat (SSR) markers are a common choice for assaying genetic diversity and genetic mapping. In this paper, we describe the generation of an expressed-sequence tag (EST) collection for the oilseed crop safflower and the subsequent development of EST-SSR markers for the genetic analysis of safflower and related species. We assembled 40,874 reads into 19,395 unigenes, of which 4,416 (22.8%) contained at least one SSR. Primer pairs were developed and tested for 384 of these loci, resulting in a collection of 104 polymorphic markers that amplify reliably across 27 accessions (3 species) of the genus Carthamus. These markers exhibited a high level of polymorphism, with an average of 6.0 +/- 0.4 alleles per locus and an average gene diversity of 0.54 +/- 0.03 across Carthamus species. In terms of cross-taxon transferability, 50% of these primer pairs produced an amplicon in at least one other species in the Asteraceae, and 28% produced an amplicon in at least one species outside the safflower subfamily (i.e., lettuce, sunflower, and/or Gerbera). These markers represent a valuable resource for the genetic analysis of safflower and related species, and also have the potential to facilitate comparative map-based analyses across a broader array of taxa within the Asteraceae.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|