1
|
Zur Nedden S, Safari MS, Weber D, Kuenkel L, Garmsiri C, Lang L, Orset C, Freret T, Haelewyn B, Hotze M, Kwiatkowski M, Sarg B, Faserl K, Savic D, Skvortsova II, Krogsdam A, Carollo S, Trajanoski Z, Oberacher H, Zlotek D, Ostermaier F, Cameron A, Baier G, Baier-Bitterlich G. Protein kinase N1 deficiency results in upregulation of cerebral energy metabolism and is highly protective in in vivo and in vitro stroke models. Metabolism 2024; 161:156039. [PMID: 39332493 DOI: 10.1016/j.metabol.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND AIM We recently identified protein kinase N1 (PKN1) as a master regulator of brain development. However, its function in the adult brain has not been clearly established. In this study, we assessed the cerebral energetic phenotype of wildtype (WT) and global Pkn1 knockout (Pkn1-/-) animals under physiological and pathophysiological conditions. METHODS Cerebral energy metabolism was analyzed by 13C6-glucose tracing in vivo and real time seahorse analysis of extracellular acidification rates as well as mitochondrial oxygen consumption rates (OCR) of brain slice punches in vitro. Isolated WT and Pkn1-/- brain mitochondria were tested for differences in OCR with different substrates. Metabolite levels were determined by mass spectrometric analysis in brain slices under control and energetic stress conditions, induced by oxygen-glucose deprivation and reperfusion, an in vitro model of ischemic stroke. Differences in enzyme activities were assessed by enzymatic assays, western blotting and bulk RNA sequencing. A middle cerebral artery occlusion stroke model was used to analyze lesion volumes and functional recovery in WT and Pkn1-/- mice. RESULTS Pkn1 deficiency resulted in a remarkable upregulation of cerebral energy metabolism, in vivo and in vitro. This was due to two separate mechanisms involving an enhanced glycolytic flux and higher pyruvate-induced mitochondrial OCR. Mechanistically we show that Pkn1-/- brain tissue exhibits an increased activity of the glycolysis rate-limiting enzyme phosphofructokinase. Additionally, glucose-1,6-bisphosphate levels, a metabolite that increases mitochondrial pyruvate uptake, were elevated upon Pkn1 deficiency. Consequently, Pkn1-/- brain slices had more ATP and a greater accumulation of ATP degradation metabolites during energetic stress. This translated into increased phosphorylation and activity of adenosine monophosphate (AMP)-activated protein kinase (AMPK) during in vitro stroke. Accordingly, Pkn1-/- brain slices showed a post-ischemic transcriptional upregulation of energy metabolism pathways and Pkn1 deficiency was strongly protective in in vitro and in vivo stroke models. While inhibition of mitochondrial pyruvate uptake only moderately affected the protective phenotype, inhibition of AMPK in Pkn1-/- slices increased post-ischemic cell death in vitro. CONCLUSION This is the first study to comprehensively demonstrate an essential and unique role of PKN1 in cerebral energy metabolism, regulating glycolysis and mitochondrial pyruvate-induced respiration. We further uncovered a highly protective phenotype of Pkn1 deficiency in both, in vitro and in vivo stroke models, validating inhibition of PKN1 as a promising new therapeutic target for the development of novel stroke therapies.
Collapse
Affiliation(s)
- Stephanie Zur Nedden
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Motahareh S Safari
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Dido Weber
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Louisa Kuenkel
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Carolin Garmsiri
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Luisa Lang
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Cyrille Orset
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Tom Freret
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Benoît Haelewyn
- Normandie University, UNICAEN, ESR3P, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institute of Blood and Brain @ Caen-Normandie (BB@C), GIP Cyceron, Caen, France
| | - Madlen Hotze
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Marcel Kwiatkowski
- University of Innsbruck, Department of Biochemistry, Institute of Bioanalytic & Intermediary Metabolism, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Medical University of Innsbruck, CCB-Biocenter, Institute of Medical Biochemistry, Protein Core Facility, 6020 Innsbruck, Austria
| | - Dragana Savic
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Ira-Ida Skvortsova
- Medical University of Innsbruck, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innsbruck A-6020, Austria
| | - Anne Krogsdam
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Sandro Carollo
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, CCB-Biocenter, Institute of Bioinformatics, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Medical University of Innsbruck, Institute of Legal Medicine and Core Facility Metabolomics, 6020 Innsbruck, Austria
| | - Dominik Zlotek
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Florian Ostermaier
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Angus Cameron
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gottfried Baier
- Medical University of Innsbruck, Institute for Cell Genetics, 6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Medical University of Innsbruck, CCB-Biocenter, Institute of Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Gross LZF, Winkel AF, Galceran F, Schulze JO, Fröhner W, Cämmerer S, Zeuzem S, Engel M, Leroux AE, Biondi RM. Molecular insights into the regulatory landscape of PKC-related kinase-2 (PRK2/PKN2) using targeted small compounds. J Biol Chem 2024; 300:107550. [PMID: 39002682 PMCID: PMC11357854 DOI: 10.1016/j.jbc.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.
Collapse
Affiliation(s)
| | - Angelika F Winkel
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | | | - Jörg O Schulze
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Wolfgang Fröhner
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Simon Cämmerer
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Ricardo M Biondi
- IBioBA-CONICET-MPSP, Buenos Aires, Argentina; Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
zur Nedden S, Safari MS, Fresser F, Faserl K, Lindner H, Sarg B, Baier G, Baier-Bitterlich G. PKN1 Exerts Neurodegenerative Effects in an In Vitro Model of Cerebellar Hypoxic-Ischemic Encephalopathy via Inhibition of AKT/GSK3β Signaling. Biomolecules 2023; 13:1599. [PMID: 38002281 PMCID: PMC10669522 DOI: 10.3390/biom13111599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.
Collapse
Affiliation(s)
- Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Motahareh Solina Safari
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Friedrich Fresser
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Herbert Lindner
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Gottfried Baier
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
4
|
PKN2 deficiency leads both to prenatal congenital cardiomyopathy and defective angiotensin II stress responses. Biochem J 2022; 479:1467-1486. [PMID: 35730579 PMCID: PMC9342899 DOI: 10.1042/bcj20220281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.
Collapse
|
5
|
Asquith CRM, Temme L, East MP, Laitinen T, Pickett J, Kwarcinski FE, Sinha P, Wells CI, Johnson GL, Zutshi R, Drewry DH. Identification of 4-anilino-quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem 2022; 17:e202200161. [PMID: 35403825 DOI: 10.1002/cmdc.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Deep annotation of a library of 4-anilinoquinolines led to the identification of 7-iodo- N -(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC 50 = 14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquinolines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.
Collapse
Affiliation(s)
| | - Louisa Temme
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Michael P East
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine, UNITED STATES
| | - Tuomo Laitinen
- University of Eastern Finland Faculty of Health Sciences: Ita-Suomen yliopisto Terveystieteiden tiedekunta, School of Pharmacy, FINLAND
| | - Julie Pickett
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Frank E Kwarcinski
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Parvathi Sinha
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Carrow I Wells
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Gary L Johnson
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine,, UNITED STATES
| | - Reena Zutshi
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC,, UNITED STATES
| | - David H Drewry
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| |
Collapse
|
6
|
Uehara S, Mukai H, Yamashita T, Koide M, Murakami K, Udagawa N, Kobayashi Y. Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. J Bone Miner Metab 2022; 40:251-261. [PMID: 35028715 DOI: 10.1007/s00774-021-01296-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The long-term inhibition of bone resorption suppresses new bone formation because these processes are coupled during physiological bone remodeling. The development of anti-bone-resorbing agents that do not suppress bone formation is urgently needed. We previously demonstrated that Wnt5a-Ror2 signaling in mature osteoclasts promoted bone-resorbing activity through protein kinase N3 (Pkn3). The p38 MAPK inhibitor SB202190 reportedly inhibited Pkn3 with a low Ki value (0.004 μM). We herein examined the effects of SB202190 on osteoclast differentiation and function in vitro and in vivo. MATERIALS AND METHODS Bone marrow cells were cultured in the presence of M-csf and GST-Rankl to differentiate into multinucleated osteoclasts. Osteoclasts were treated with increasing concentrations of SB202190. For in vivo study, 10-week-old female mice were subjected to ovariectomy (OVX). OVX mice were intraperitoneally administered with a Pkn3 inhibitor at 2 mg/kg or vehicle for 4 weeks, and bone mass was analyzed by micro-CT. RESULTS SB202190 suppressed the auto-phosphorylation of Pkn3 in osteoclast cultures. SB202190 significantly inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation. SB202190 reduced c-Src activity in osteoclast cultures without affecting the interaction between Pkn3 and c-Src. A treatment with SB202190 attenuated OVX-induced bone loss without affecting the number of osteoclasts or bone formation by osteoblasts. CONCLUSIONS Our results showed that Pkn3 has potential as a therapeutic target for bone loss due to increased bone resorption. SB202190 is promising as a lead compound for the development of novel anti-bone-resorbing agents.
Collapse
Affiliation(s)
- Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Hideyuki Mukai
- Biosignal Research Center, Kobe University, Hyogo, 657-8501, Japan
- Department of Clinical Laboratory, Kitano Hospital, Osaka, 530-8480, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan
| | - Kohei Murakami
- Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-8555, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka , Shiojiri-shi, Nagano, 399-0781, Japan.
| |
Collapse
|
7
|
Murray ER, Menezes S, Henry JC, Williams JL, Alba-Castellón L, Baskaran P, Quétier I, Desai A, Marshall JJT, Rosewell I, Tatari M, Rajeeve V, Khan F, Wang J, Kotantaki P, Tyler EJ, Singh N, Reader CS, Carter EP, Hodivala-Dilke K, Grose RP, Kocher HM, Gavara N, Pearce O, Cutillas P, Marshall JF, Cameron AJM. Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. Cell Rep 2022; 38:110227. [PMID: 35081338 PMCID: PMC8810397 DOI: 10.1016/j.celrep.2021.110227] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.
Collapse
Affiliation(s)
- Elizabeth R Murray
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Shinelle Menezes
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jack C Henry
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Josie L Williams
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorena Alba-Castellón
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Priththivika Baskaran
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ivan Quétier
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ami Desai
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacqueline J T Marshall
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Transgenic Services, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marianthi Tatari
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz Khan
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Eleanor J Tyler
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Namrata Singh
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Claire S Reader
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Edward P Carter
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Nuria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Oliver Pearce
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Angus J M Cameron
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
The structure and function of protein kinase C-related kinases (PRKs). Biochem Soc Trans 2021; 49:217-235. [PMID: 33522581 PMCID: PMC7925014 DOI: 10.1042/bst20200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1, PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies have linked these kinases to multiple signalling pathways and physiological roles, but while PRK1 is relatively well-characterized, the entire PRK family remains understudied. Here, we provide a holistic overview of the structure and function of PRKs and describe the molecular events that govern activation and autoregulation of catalytic activity, including phosphorylation, protein interactions and lipid binding. We begin with a structural description of the regulatory and catalytic domains, which facilitates the understanding of their regulation in molecular detail. We then examine their diverse physiological roles in cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor signalling, cell cycle regulation, the immune response, glucose metabolism and development, highlighting isoform redundancy but also isoform specificity. Finally, we consider the involvement of PRKs in pathologies, including cancer, heart disease and bacterial infections. The abundance of PRK-driven pathologies suggests that these enzymes will be good therapeutic targets and we briefly report some of the progress to date.
Collapse
|
9
|
Sophocleous G, Wood G, Owen D, Mott HR. 1H, 15N and 13C resonance assignments of the HR1c domain of PRK1, a protein kinase C-related kinase. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:245-250. [PMID: 32500230 PMCID: PMC7462907 DOI: 10.1007/s12104-020-09954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
PRK1 is a member of the protein kinase C-related kinase (PRK) family of serine/threonine kinases and a downstream effector of Rho GTPases. PRK1 has three N-terminal Homology Region 1 (HR1) domains (HR1a, HR1b and HR1c), which form antiparallel coiled coils that interact with Rho family GTPases. PRK1 also has a C2-like domain that targets it to the plasma membrane and a kinase domain, which is a member of the protein kinase C superfamily. PRK1 is involved in cytoskeletal regulation, cell adhesion, cell cycle progression and the immune response, and is implicated in cancer. There is currently no structural information for the HR1c domain. The 1H, 15N and 13C NMR backbone and sidechain resonance assignment of the HR1c domain presented here forms the basis for this domain's structural characterisation. This work will also enable studies of interactions between the three HR1 domains in an effort to obtain structural insight into the regulation of PRK1 activity.
Collapse
Affiliation(s)
| | - George Wood
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Pathology, 10, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Darerca Owen
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Helen R Mott
- Department of Biochemistry, 80, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
10
|
Wallroth A, Koch PA, Marat AL, Krause E, Haucke V. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Nat Cell Biol 2019; 21:1093-1101. [PMID: 31451768 DOI: 10.1038/s41556-019-0377-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023]
Abstract
Mechanistic target of rapamycin (mTOR) kinase functions in two multiprotein complexes: lysosomal mTOR complex 1 (mTORC1) and mTORC2 at the plasma membrane. mTORC1 modulates the cell response to growth factors and nutrients by increasing protein synthesis and cell growth, and repressing the autophagy-lysosomal pathway1-4; however, dysfunction in mTORC1 is implicated in various diseases3,5,6. mTORC1 activity is regulated by phosphoinositide lipids7-10. Class I phosphatidylinositol-3-kinase (PI3K)-mediated production of phosphatidylinositol-3,4,5-trisphosphate6,11 at the plasma membrane stimulates mTORC1 signalling, while local synthesis of phosphatidylinositol-3,4-bisphosphate by starvation-induced recruitment of class II PI3K-β (PI3KC2-β) to lysosomes represses mTORC1 activity12. How the localization and activity of PI3KC2-β are regulated by mitogens is unknown. We demonstrate that protein kinase N (PKN) facilitates mTORC1 signalling by repressing PI3KC2-β-mediated phosphatidylinositol-3,4-bisphosphate synthesis downstream of mTORC2. Active PKN2 phosphorylates PI3KC2-β to trigger PI3KC2-β complex formation with inhibitory 14-3-3 proteins. Conversely, loss of PKN2 or inactivation of its target phosphorylation site in PI3KC2-β represses nutrient signalling via mTORC1. These results uncover a mechanism that couples mTORC2-dependent activation of PKN2 to the regulation of mTORC1-mediated nutrient signalling by local lipid signals.
Collapse
Affiliation(s)
- Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Philipp A Koch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andrea L Marat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Lin JLJ. Characterization of the novel cardiolipin binding regions identified on the protease and lipid activated PKC-related kinase 1. Protein Sci 2019; 28:1473-1486. [PMID: 31125460 DOI: 10.1002/pro.3663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 11/09/2022]
Abstract
Protein kinase C-related kinase 1 (PRK1) or PKN is a protease and lipid activated protein kinase that acted downstream of the RhoA or Rac1 pathway. PRK1 comprises a unique regulatory domain and a PKC homologous kinase domain. The regulatory domain of PRK1 consists of homologous region -1 (HR1) and -2 (HR2). PRK1-(HR1) features a pseudosubstrate motif that overlapped with the putative cardiolipin and known RhoA binding sites. In fact, cardiolipin is the most potent lipid activator for PRK1 in respect of its either auto- or substrate phosphorylation activity. This study was thus aimed to characterize the binding region(s) of cardiolipin that was previously suggested for the regulatory domain of PRK1. The principal findings of this work established (i) PRK1-(HR1) folded into an active conformation where high affinity binding sites (mainly located in HR1a subdomain) were accessible for cardiolipin binding to protect against limited Lys-C digestion, (ii) the binding nature between acidic phospholipids and PRK1 (HR1) involved both polar and nonpolar components consistent with the amphipathic nature of the known cardiolipin-binding motifs, (iii) identification of the molecule masses of the Lys-C fragments of PRK1-(HR1) complexed with cardiolipin molecule, and (iv) appreciable reductions in the secondary structural contents at 222 nm measured by circular dichroism analyses demonstrated the binding of cardiolipin elicited the disruptive effect that was most evident among all phospholipids tested, suggestive of a functional correlation between the extents of helical disruption and PRK1 activation.
Collapse
Affiliation(s)
- Jason L J Lin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
12
|
Penzo M, de Las Heras-Dueña L, Mata-Cantero L, Diaz-Hernandez B, Vazquez-Muñiz MJ, Ghidelli-Disse S, Drewes G, Fernandez-Alvaro E, Baker DA. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep 2019; 9:7005. [PMID: 31065005 PMCID: PMC6504873 DOI: 10.1038/s41598-019-42801-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022] Open
Abstract
Antimalarial drug resistance compels the quest for new compounds that target alternative pathways to current drugs. The Plasmodium cyclic GMP-dependent protein kinase (PKG) has essential functions in all of the major life cycle developmental stages. An imidazopyridine PKG inhibitor scaffold was previously shown to clear P. falciparum infection in a rodent model in vivo and blocked transmission to mosquitoes providing proof of concept for this target. To find new classes of PKG inhibitors to serve as alternative chemical starting points, we performed a high-throughput screen of the GSK Full Diversity Collection using recombinant P. falciparum PKG. We developed a robust enzymatic assay in a 1536-well plate format. Promising compounds were then tested for activity against P. falciparum asexual blood stage growth, selectivity and cytotoxicity. By using a scoring system we selected the 66 most promising PKG inhibitors (comprising nine clusters and seven singletons). Among these, thiazoles were the most potent scaffold with mid-nanomolar activity on P. falciparum blood stage and gamete development. Using Kinobeads profiling we identified additional P. falciparum protein kinases targeted by the thiazoles that mediate a faster speed of the kill than PKG-selective compounds. This scaffold represents a promising starting point to develop a new antimalarial.
Collapse
Affiliation(s)
- Maria Penzo
- GSK Global Health, Severo Ochoa 2, Tres Cantos 28760 Madrid, Spain
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
| | | | | | | | | | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
13
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
14
|
Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, Card JD, Sivakumaren SC, Alexander WM, Yaron TM, Murphy CJ, Kwiatkowski NP, Zhang T, Cantley LC, Gray NS, Marto JA. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2018; 141:191-203. [PMID: 30518210 DOI: 10.1021/jacs.8b07911] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.
Collapse
Affiliation(s)
- Christopher M Browne
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Baishan Jiang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Scott B Ficarro
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Zainab M Doctor
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jared L Johnson
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Joseph D Card
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - William M Alexander
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Tomer M Yaron
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Charles J Murphy
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Tinghu Zhang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lewis C Cantley
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Pathology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
15
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
16
|
O'Sullivan AG, Mulvaney EP, Kinsella BT. Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A 2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:838-856. [PMID: 28108419 DOI: 10.1016/j.bbadis.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.
Collapse
Affiliation(s)
- Aine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
17
|
Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, Chae JJ, Bliska JB. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe 2016; 20:296-306. [PMID: 27569559 DOI: 10.1016/j.chom.2016.07.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have shown that YopM suppresses infection-induced inflammasome activation; however, the underlying molecular mechanism is largely unknown. Here we show that YopM specifically restricts the pyrin inflammasome, which is triggered by the RhoA-inactivating enzymatic activities of YopE and YopT, in Y. pseudotuberculosis-infected macrophages. The attenuation of a yopM mutant is fully reversed in pyrin knockout mice, demonstrating that YopM inhibits pyrin to promote virulence. Mechanistically, YopM recruits and activates the host kinases PRK1 and PRK2 to negatively regulate pyrin by phosphorylation. These results show how a virulence factor can hijack host kinases to inhibit effector-triggered pyrin inflammasome activation.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yong Hwan Park
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yueting Zheng
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
18
|
Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 2016; 17:914-21. [PMID: 27270401 PMCID: PMC4955684 DOI: 10.1038/ni.3457] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Mutations in the genes encoding pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases: familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutant or in response to bacterial modification of the GTPase RhoA. We found that RhoA activated the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin bound to 14-3-3 proteins, regulatory proteins that in turn blocked the pyrin inflammasome. The binding of 14-3-3 and PKN proteins to FMF-associated mutant pyrin was substantially decreased, and the constitutive IL-1β release from peripheral blood mononuclear cells of patients with FMF or HIDS was attenuated by activation of PKN1 and PKN2. Defects in prenylation, seen in HIDS, led to RhoA inactivation and consequent pyrin inflammasome activation. These data suggest a previously unsuspected fundamental molecular connection between two seemingly distinct autoinflammatory disorders.
Collapse
Affiliation(s)
- Yong Hwan Park
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Geryl Wood
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate cancer. Oncotarget 2016; 6:26437-56. [PMID: 26296974 PMCID: PMC4694913 DOI: 10.18632/oncotarget.4664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 01/03/2023] Open
Abstract
The prostanoid thromboxane (TX) A2 is increasingly implicated in neoplastic progression, including prostate cancer (PCa). Mechanistically, we recently identified protein kinase C-related kinase (PRK) 1 as a functional interactant of both the TPα and TPβ isoforms of the human T prostanoid receptor (TP). The interaction with PRK1 was not only essential for TPα/TPβ-induced PCa cell migration but also enabled the TXA2-TP axis to induce phosphorylation of histone H3 at Thr11 (H3Thr11), an epigenetic marker both essential for and previously exclusively associated with androgen-induced chromatin remodelling and transcriptional activation. PRK1 is a member of a subfamily of three structurally related kinases comprising PRK1/PKNα, PRK2/PKNγ and PRK3/PKNβ that are widely yet differentially implicated in various cancers. Hence, focusing on the setting of prostate cancer, this study investigated whether TPα and/or TPβ might also complex with PRK2 and PRK3 to regulate their activity and neoplastic responses. While TPα and TPβ were found in immune complexes with PRK1, PRK2 and PRK3 to regulate their activation and signalling, they do so differentially and in a TP agonist-regulated manner dependent on the T-loop activation status of the PRKs but independent of their kinase activity. Furthermore, TXA2-mediated neoplastic responses in prostate adenocarcinoma PC-3 cells, including histone H3Thr11 phosphorylation, was found to occur through a PRK1- and PRK2-, but not PRK3-, dependent mechanism. Collectively, these data suggest that TXA2 acts as both a neoplastic and epigenetic regulator and provides a mechanistic explanation, at least in part, for the prophylactic benefits of Aspirin in reducing the risk of certain cancers.
Collapse
|
20
|
Quétier I, Marshall JJT, Spencer-Dene B, Lachmann S, Casamassima A, Franco C, Escuin S, Worrall JT, Baskaran P, Rajeeve V, Howell M, Copp AJ, Stamp G, Rosewell I, Cutillas P, Gerhardt H, Parker PJ, Cameron AJM. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Rep 2016; 14:440-448. [PMID: 26774483 PMCID: PMC4733087 DOI: 10.1016/j.celrep.2015.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022] Open
Abstract
In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality.
Collapse
Affiliation(s)
- Ivan Quétier
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacqueline J T Marshall
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | - Sylvie Lachmann
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Adele Casamassima
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Claudio Franco
- Instituto Medicina Molecular (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College, London WC1N 1EH, UK
| | - Joseph T Worrall
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Priththivika Baskaran
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajeeve
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Howell
- Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College, London WC1N 1EH, UK
| | - Gordon Stamp
- Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ian Rosewell
- Genetic Manipulation Services, Francis Crick Institute, Clare Hall, Herts EN6 3LD, UK
| | - Pedro Cutillas
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Holger Gerhardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Saint Thomas Street, London SE1 1UL, UK.
| | - Angus J M Cameron
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|