1
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
2
|
Rodriguez C, Chocarro L, Echaide M, Ausin K, Escors D, Kochan G. Fractalkine in Health and Disease. Int J Mol Sci 2024; 25:8007. [PMID: 39125578 PMCID: PMC11311528 DOI: 10.3390/ijms25158007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.
Collapse
Grants
- FIS PI23/00196 Instituto de Salud Carlos III-FEDER
- FIS PI20/00010 Instituto de Salud Carlos III-FEDER
- BMED 036-2023 Departamento de Salud del Gobierno de Navarra-FEDER, Spain
- LINTERNA, Ref. 0011-1411-2020-000033 Departamento de Industria, Gobierno de Navarra, Spain
- ARNMUNE, 0011-1411-2023-000111 Departamento de Industria, Gobierno de Navarra, Spain
- ISOLDA project, under grant agreement ID: 848166. Horizon 2020, European Union
- PFIS, FI21/00080 Instituto de Salud Carlos III-FEDER
Collapse
Affiliation(s)
| | | | | | | | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| |
Collapse
|
3
|
Sun Y, Xie J, Zhu J, Yuan Y. Bioinformatics and Machine Learning Methods Identified MGST1 and QPCT as Novel Biomarkers for Severe Acute Pancreatitis. Mol Biotechnol 2024; 66:1246-1265. [PMID: 38236462 DOI: 10.1007/s12033-023-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Severe acute pancreatitis (SAP) is a life-threatening gastrointestinal emergency. The study aimed to identify biomarkers and investigate molecular mechanisms of SAP. The GSE194331 dataset from GEO database was analyzed using bioinformatics. Differentially expressed genes (DEGs) associated with SAP were identified, and a protein-protein interaction network (PPI) was constructed. Machine learning algorithms were used to determine potential biomarkers. Gene set enrichment analysis (GSEA) explored molecular mechanisms. Immune cell infiltration were analyzed, and correlation between biomarker expression and immune cell infiltration was calculated. A competing endogenous RNA network (ceRNA) was constructed, and biomarker expression levels were quantified in clinical samples using RT-PCR. 1101 DEGs were found, with two modules most relevant to SAP. Potential biomarkers in peripheral blood samples were identified as glutathione S-transferase 1 (MGST1) and glutamyl peptidyltransferase (QPCT). GSEA revealed their association with immunoglobulin regulation, with QPCT potentially linked to pancreatic cancer development. Correlation between biomarkers and immune cell infiltration was demonstrated. A ceRNA network consisting of 39 nodes and 41 edges was constructed. Elevated expression levels of MGST1 and QPCT were verified in clinical samples. In conclusion, peripheral blood MGST1 and QPCT show promise as SAP biomarkers for diagnosis, providing targets for therapeutic intervention and contributing to SAP understanding.
Collapse
Affiliation(s)
- Yang Sun
- Department of Emergency Medicine, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Jingjun Xie
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jun Zhu
- Department of Pharmacy, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yadong Yuan
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Szczęśniak K, Veillard F, Scavenius C, Chudzik K, Ferenc K, Bochtler M, Potempa J, Mizgalska D. The Bacteroidetes Q-rule and glutaminyl cyclase activity increase the stability of extracytoplasmic proteins. mBio 2023; 14:e0098023. [PMID: 37750700 PMCID: PMC10653852 DOI: 10.1128/mbio.00980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.
Collapse
Affiliation(s)
- Katarzyna Szczęśniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kamila Chudzik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Ferenc
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
7
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
8
|
Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, Fuchsberger C, Stringham HM, Welch R, Yu K, Fernandes Silva L, Service SK, Zhang D, Hector EC, Young E, Ganel L, Das I, Abel H, Erdos MR, Bonnycastle LL, Kuusisto J, Stitziel NO, Hall IM, Wagner GR, Kang J, Morrison J, Burant CF, Collins FS, Ripatti S, Palotie A, Freimer NB, Mohlke KL, Scott LJ, Wen X, Fauman EB, Laakso M, Boehnke M. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat Commun 2022; 13:1644. [PMID: 35347128 PMCID: PMC8960770 DOI: 10.1038/s41467-022-29143-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 01/13/2023] Open
Abstract
Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Lap Sum Chan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Debraj Bose
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Peter VandeHaar
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Ketian Yu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Susan K Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Daiwei Zhang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Emily C Hector
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Haley Abel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael R Erdos
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lori L Bonnycastle
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
- Center for Medicine and Clinical Research, Kuopio University Hospital, Kuopio, 70210, Finland
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ira M Hall
- Center for Genomic Health, Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | | | - Jian Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Jean Morrison
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00290, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00290, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, 02139, USA.
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland.
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nat Immunol 2022; 23:568-580. [DOI: 10.1038/s41590-022-01153-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
|
10
|
Bresser K, Logtenberg MEW, Toebes M, Proost N, Sprengers J, Siteur B, Boeije M, Kroese LJ, Schumacher TN. QPCTL regulates macrophage and monocyte abundance and inflammatory signatures in the tumor microenvironment. Oncoimmunology 2022; 11:2049486. [PMID: 35309731 PMCID: PMC8932921 DOI: 10.1080/2162402x.2022.2049486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzyme glutaminyl-peptide cyclotransferase-like protein (QPCTL) catalyzes the formation of pyroglutamate residues at the NH2-terminus of proteins, thereby influencing their biological properties. A number of studies have implicated QPCTL in the regulation of chemokine stability. Furthermore, QPCTL activity has recently been shown to be critical for the formation of the high-affinity SIRPα binding site of the CD47 “don’t-eat-me” protein. Based on the latter data, interference with QPCTL activity —and hence CD47 maturation—may be proposed as a means to promote anti-tumor immunity. However, the pleiotropic activity of QPCTL makes it difficult to predict the effects of QPCTL inhibition on the tumor microenvironment (TME). Using a syngeneic mouse melanoma model, we demonstrate that QPCTL deficiency alters the intra-tumoral monocyte-to-macrophage ratio, results in a profound increase in the presence of pro-inflammatory cancer-associated fibroblasts (CAFs) relative to immunosuppressive TGF-β1-driven CAFs, and leads to an increased IFN and decreased TGF-β transcriptional response signature in tumor cells. Importantly, the functional relevance of the observed TME remodeling is demonstrated by the synergy between QPCTL deletion and anti PD-L1 therapy, sensitizing an otherwise refractory melanoma model to anti-checkpoint therapy. Collectively, these data provide support for the development of strategies to interfere with QPCTL activity as a means to promote tumor-specific immunity.
Collapse
Affiliation(s)
- Kaspar Bresser
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike E. W. Logtenberg
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Justin Sprengers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bjorn Siteur
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Manon Boeije
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lona J. Kroese
- Transgenic Facility, Mouse Clinic for Cancer and Aging Research, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Rychkov D, Neely J, Oskotsky T, Yu S, Perlmutter N, Nititham J, Carvidi A, Krueger M, Gross A, Criswell LA, Ashouri JF, Sirota M. Cross-Tissue Transcriptomic Analysis Leveraging Machine Learning Approaches Identifies New Biomarkers for Rheumatoid Arthritis. Front Immunol 2021; 12:638066. [PMID: 34177888 PMCID: PMC8223752 DOI: 10.3389/fimmu.2021.638066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need to identify biomarkers for diagnosis and disease activity monitoring in rheumatoid arthritis (RA). We leveraged publicly available microarray gene expression data in the NCBI GEO database for whole blood (N=1,885) and synovial (N=284) tissues from RA patients and healthy controls. We developed a robust machine learning feature selection pipeline with validation on five independent datasets culminating in 13 genes: TNFAIP6, S100A8, TNFSF10, DRAM1, LY96, QPCT, KYNU, ENTPD1, CLIC1, ATP6V0E1, HSP90AB1, NCL and CIRBP which define the RA score and demonstrate its clinical utility: the score tracks the disease activity DAS28 (p = 7e-9), distinguishes osteoarthritis (OA) from RA (OR 0.57, p = 8e-10) and polyJIA from healthy controls (OR 1.15, p = 2e-4) and monitors treatment effect in RA (p = 2e-4). Finally, the immunoblotting analysis of six proteins on an independent cohort confirmed two proteins, TNFAIP6/TSG6 and HSP90AB1/HSP90.
Collapse
Affiliation(s)
- Dmitry Rychkov
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Jessica Neely
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
| | - Steven Yu
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, United States
| | - Noah Perlmutter
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Joanne Nititham
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Alexander Carvidi
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Melissa Krueger
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Andrew Gross
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey A. Criswell
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Institute for Human Genetics (IHG), University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Judith F. Ashouri
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
D'Aloisio V, Dognini P, Hutcheon GA, Coxon CR. PepTherDia: database and structural composition analysis of approved peptide therapeutics and diagnostics. Drug Discov Today 2021; 26:1409-1419. [PMID: 33647438 DOI: 10.1016/j.drudis.2021.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
As of 2020, there were >100 approved peptides with therapeutic or diagnostic applications. However, a complete database providing information on marketed peptides is not freely available, making the peptide chemists' job of designing future peptide drug candidates challenging. Unlike the rules for small-molecule drugs, there is no general set of guidelines for designing a successful peptide-based drug. In this review, together with our freely available database (PepTherDia, http://peptherdia.herokuapp.com), we provide insights into what a successful peptide therapeutic or diagnostic agent looks like and lay the foundation for establishing a set of rules to help future medicinal chemists to design peptide candidates with increased approval rates.
Collapse
Affiliation(s)
- Vera D'Aloisio
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Paolo Dognini
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Gillian A Hutcheon
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Christopher R Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
15
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
16
|
Arens R, Scheeren FA. Genetic Screening for Novel Regulators of Immune Checkpoint Molecules. Trends Immunol 2020; 41:692-705. [PMID: 32605801 DOI: 10.1016/j.it.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Inhibitory and stimulatory immune checkpoint molecules play important roles in regulating immune responses. An increasing number of these immune regulators are currently being evaluated as targets in putative anti-cancer therapies. Recently, sophisticated genetic screens have been performed to increase our understanding of immune checkpoint pathways and their immunomodulatory regulators. Here, we summarize novel insights obtained by these screens and discuss new directions to advance possible strategies to treat malignancies.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
17
|
Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA, Tsugawa H, Furuno M, Bamba T, Fukusaki E, Shimomura I. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol 2020; 19:75. [PMID: 32527273 PMCID: PMC7291560 DOI: 10.1186/s12933-020-01057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although an increased arterial stiffness has been associated with traditional coronary risk factors, the risk factors and pathology of arterial stiffness remain unclear. In this study, we aimed to identify the plasma metabolites associated with arterial stiffness in patients with type 2 diabetes mellitus. METHODS We used the metabolomic data of 209 patients with type 2 diabetes as the first dataset for screening. To form the second dataset for validation, we enlisted an additional 31 individuals with type 2 diabetes. The non-targeted metabolome analysis of fasting plasma samples using gas chromatography coupled with mass spectrometry and the measurement of brachial-ankle pulse wave velocity (baPWV) were performed. RESULTS A total of 65 annotated metabolites were detected. In the screening dataset, there were statistically significant associations between the baPWV and plasma levels of indoxyl sulfate (r = 0.226, p = 0.001), mannitol (r = 0.178, p = 0.010), mesoerythritol (r = 0.234, p = 0.001), and pyroglutamic acid (r = 0.182, p = 0.008). Multivariate regression analyses revealed that the plasma levels of mesoerythritol were significantly (β = 0.163, p = 0.025) and that of indoxyl sulfate were marginally (β = 0.124, p = 0.076) associated with baPWV, even after adjusting for traditional coronary risk factors. In the independent validation dataset, there was a statistically significant association between the baPWV and plasma levels of indoxyl sulfate (r = 0.430, p = 0.016). However, significant associations between the baPWV and plasma levels of the other three metabolites were not confirmed. CONCLUSIONS/INTERPRETATION The plasma levels of indoxyl sulfate were associated with arterial stiffness in Japanese patients with type 2 diabetes. Although the plasma levels of mannitol, mesoerythritol, and pyroglutamic acid were also associated with arterial stiffness, further investigation is needed to verify the results.
Collapse
Affiliation(s)
- Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoya Arakawa
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masahiro Furuno
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Eiichiro Fukusaki
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Wang X, Wang L, Yu X, Li Y, Liu Z, Zou Y, Zheng Y, He Z, Wu H. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. Int Immunopharmacol 2019; 75:105770. [DOI: 10.1016/j.intimp.2019.105770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
19
|
Ren T, Li W, Liu D, Liang K, Wang X, Li H, Jiang R, Tian Y, Kang X, Li Z. Two insertion/deletion variants in the promoter region of the QPCTL gene are significantly associated with body weight and carcass traits in chickens. Anim Genet 2019; 50:279-282. [PMID: 30974000 DOI: 10.1111/age.12741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 01/23/2023]
Abstract
Glutaminyl-peptide cyclotransferase-like (QPCTL) is an isoenzyme of glutaminyl-peptide cyclotransferase (QPCT). QPCTL and QPCT catalyze the formation of N-terminal modified pyroglutamate-fractalkine and the chemokine CCL2. The objective of this study was to investigate the association between insertions/deletions in the chicken QPCTL promoter region with growth traits in chickens. We first detected two insertion/deletion variants of QPCTL via whole-genome resequencing analysis of DNA samples from Xichuan chickens. A total of 1896 individuals from 12 breeds were genotyped for 52- and 224-bp insertions/deletions. We found two novel insertions/deletions in the promoter region of the chicken QPCTL gene and studied their association with chicken body weight and carcass traits. Our findings show that QPCTL can be a molecular marker for chicken genetics and breeding programs.
Collapse
Affiliation(s)
- T Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - D Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - K Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - X Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - H Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - R Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Y Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| |
Collapse
|
20
|
Identification of novel serum markers for the progression of coronary atherosclerosis in WHHLMI rabbits, an animal model of familial hypercholesterolemia. Atherosclerosis 2019; 284:18-23. [PMID: 30870703 DOI: 10.1016/j.atherosclerosis.2019.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The development of serum markers specific for coronary lesions is important to prevent coronary events. However, analyses of serum markers in humans are affected by environmental factors and non-target diseases. Using an appropriate model animal can reduce these effects. To identify specific markers for coronary atherosclerosis, we comprehensively analyzed the serum of WHHLMI rabbits, which spontaneously develop coronary atherosclerosis. METHODS Female WHHLMI rabbits were fed standard chow. Serum and plasma were collected under fasting at intervals of 4 months from 4 months old, and a total of 313 lipid molecules, 59 metabolites, lipoprotein lipid levels, and various plasma biochemical parameters were analyzed. The severity of coronary lesions was evaluated with cross-sectional narrowing (CSN) corrected with a frequency of 75%-89% CSN and CSN> 90%. RESULTS There was a large variation in the severity of coronary lesions in WHHLMI rabbits despite almost no differences in plasma biochemical parameters and aortic lesion area between rabbits with severe and mild coronary lesions. The metabolites and lipid molecules selected as serum markers for coronary atherosclerosis were lysophosphatidylcholine (LPC) 22:4 and diacylglycerol 18:0-18:0 at 4 months old, LPC 20:4 (sn-2), ceramide d18:1-18:2, citric acid plus isocitric acid, and pyroglutamic acid at 8 months old, and phosphatidylethanolamine plasminogen 16:1p-22:2 at 16 months old. CONCLUSIONS These serum markers were coronary lesion-specific markers independent of cholesterol levels and aortic lesions and may be useful to detect patients who develop cardiovascular disease.
Collapse
|
21
|
Bender P, Egger A, Westermann M, Taudte N, Sculean A, Potempa J, Möller B, Buchholz M, Eick S. Expression of human and Porphyromonas gingivalis glutaminyl cyclases in periodontitis and rheumatoid arthritis-A pilot study. Arch Oral Biol 2018; 97:223-230. [PMID: 30399509 DOI: 10.1016/j.archoralbio.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Human glutaminyl cyclases (QC and isoQC) play an important role in maintaining inflammatory conditions. Meanwhile a glutaminyl cyclase synthesized by Porphyromonas gingivalis (PgQC), a key pathogen in developing periodontitis and a potential link of periodontitis with rheumatoid arthritis (RA), was discovered. This study was aimed to determine the expression of QC, isoQC and PgQC in patients with chronic periodontitis (CP) and RA. DESIGN Thirty volunteers were enrolled in a pilot study and divided into 3 groups (healthy, CP and RA individuals). Blood samples, biofilm and gingival crevicular fluid (GCF) were analysed for mRNA expression of QC, isoQC and P. gingivalis QC. Major bacteria being associated with periodontal disease were quantified in subgingival biofilm and protein levels for monocyte chemoattractant protein (MCP)-1, MCP-3 and interleukin (IL)-1β) were determined in the GCF. Expression of PgQC on the mRNA and protein levels was assessed in two P. gingivalis strains. RESULTS PgQC is expressed in P. gingivalis strains and the protein seems to be located mainly in peri-plasmatic space. mRNA expression of QC was significantly increased in the peripheral blood from RA patients vs. healthy subjects and CP patients (p = 0.013 and p = 0.003, respectively). In GCF of RA patients, QC mRNA was detected more frequently than in healthy controls (p = 0.043). In these samples IL-1β levels were also elevated compared to GCF from periodontally healthy individuals (p = 0.003). PgQC was detected in eight out of the 13 P. gingivalis positive biofilm samples. CONCLUSION Activity of QC may play a supportive role in maintaining chronic periodontal inflammation and destruction in RA. PgQC is expressed in vivo but further research is needed to evaluate biological importance of this enzyme and if it constitutes a potential target in periodontal antimicrobial therapy.
Collapse
Affiliation(s)
- Philip Bender
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andreas Egger
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Martin Westermann
- Center of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Nadine Taudte
- Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle/Saale, Germany
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, USA
| | - Burkhard Möller
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital of Bern, Bern, Switzerland
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle/Saale, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|